sys_lwp.c revision 1.44 1 /* $NetBSD: sys_lwp.c,v 1.44 2009/01/11 02:45:52 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Lightweight process (LWP) system calls. See kern_lwp.c for a description
34 * of LWPs.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.44 2009/01/11 02:45:52 christos Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/pool.h>
43 #include <sys/proc.h>
44 #include <sys/types.h>
45 #include <sys/syscallargs.h>
46 #include <sys/kauth.h>
47 #include <sys/kmem.h>
48 #include <sys/sleepq.h>
49 #include <sys/lwpctl.h>
50
51 #include <uvm/uvm_extern.h>
52
53 #include "opt_sa.h"
54
55 #define LWP_UNPARK_MAX 1024
56
57 syncobj_t lwp_park_sobj = {
58 SOBJ_SLEEPQ_LIFO,
59 sleepq_unsleep,
60 sleepq_changepri,
61 sleepq_lendpri,
62 syncobj_noowner,
63 };
64
65 sleeptab_t lwp_park_tab;
66
67 void
68 lwp_sys_init(void)
69 {
70 sleeptab_init(&lwp_park_tab);
71 }
72
73 /* ARGSUSED */
74 int
75 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap, register_t *retval)
76 {
77 /* {
78 syscallarg(const ucontext_t *) ucp;
79 syscallarg(u_long) flags;
80 syscallarg(lwpid_t *) new_lwp;
81 } */
82 struct proc *p = l->l_proc;
83 struct lwp *l2;
84 vaddr_t uaddr;
85 bool inmem;
86 ucontext_t *newuc;
87 int error, lid;
88
89 #ifdef KERN_SA
90 mutex_enter(p->p_lock);
91 if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) {
92 mutex_exit(p->p_lock);
93 return EINVAL;
94 }
95 mutex_exit(p->p_lock);
96 #endif
97
98 newuc = pool_get(&lwp_uc_pool, PR_WAITOK);
99
100 error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
101 if (error) {
102 pool_put(&lwp_uc_pool, newuc);
103 return error;
104 }
105
106 /* XXX check against resource limits */
107
108 inmem = uvm_uarea_alloc(&uaddr);
109 if (__predict_false(uaddr == 0)) {
110 pool_put(&lwp_uc_pool, newuc);
111 return ENOMEM;
112 }
113
114 error = lwp_create(l, p, uaddr, inmem, SCARG(uap, flags) & LWP_DETACHED,
115 NULL, 0, p->p_emul->e_startlwp, newuc, &l2, l->l_class);
116 if (error) {
117 uvm_uarea_free(uaddr, curcpu());
118 pool_put(&lwp_uc_pool, newuc);
119 return error;
120 }
121
122 lid = l2->l_lid;
123 error = copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
124 if (error) {
125 lwp_exit(l2);
126 pool_put(&lwp_uc_pool, newuc);
127 return error;
128 }
129
130 /*
131 * Set the new LWP running, unless the caller has requested that
132 * it be created in suspended state. If the process is stopping,
133 * then the LWP is created stopped.
134 */
135 mutex_enter(p->p_lock);
136 lwp_lock(l2);
137 if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0 &&
138 (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
139 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0)
140 l2->l_stat = LSSTOP;
141 else {
142 KASSERT(lwp_locked(l2, l2->l_cpu->ci_schedstate.spc_mutex));
143 p->p_nrlwps++;
144 l2->l_stat = LSRUN;
145 sched_enqueue(l2, false);
146 }
147 lwp_unlock(l2);
148 } else {
149 l2->l_stat = LSSUSPENDED;
150 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_lwplock);
151 }
152 mutex_exit(p->p_lock);
153
154 return 0;
155 }
156
157 int
158 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
159 {
160
161 lwp_exit(l);
162 return 0;
163 }
164
165 int
166 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
167 {
168
169 *retval = l->l_lid;
170 return 0;
171 }
172
173 int
174 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
175 {
176
177 *retval = (uintptr_t)l->l_private;
178 return 0;
179 }
180
181 int
182 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap, register_t *retval)
183 {
184 /* {
185 syscallarg(void *) ptr;
186 } */
187
188 l->l_private = SCARG(uap, ptr);
189 return 0;
190 }
191
192 int
193 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap, register_t *retval)
194 {
195 /* {
196 syscallarg(lwpid_t) target;
197 } */
198 struct proc *p = l->l_proc;
199 struct lwp *t;
200 int error;
201
202 mutex_enter(p->p_lock);
203
204 #ifdef KERN_SA
205 if ((p->p_sflag & PS_SA) != 0 || p->p_sa != NULL) {
206 mutex_exit(p->p_lock);
207 return EINVAL;
208 }
209 #endif
210
211 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
212 mutex_exit(p->p_lock);
213 return ESRCH;
214 }
215
216 /*
217 * Check for deadlock, which is only possible when we're suspending
218 * ourself. XXX There is a short race here, as p_nrlwps is only
219 * incremented when an LWP suspends itself on the kernel/user
220 * boundary. It's still possible to kill -9 the process so we
221 * don't bother checking further.
222 */
223 lwp_lock(t);
224 if ((t == l && p->p_nrlwps == 1) ||
225 (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
226 lwp_unlock(t);
227 mutex_exit(p->p_lock);
228 return EDEADLK;
229 }
230
231 /*
232 * Suspend the LWP. XXX If it's on a different CPU, we should wait
233 * for it to be preempted, where it will put itself to sleep.
234 *
235 * Suspension of the current LWP will happen on return to userspace.
236 */
237 error = lwp_suspend(l, t);
238 if (error) {
239 mutex_exit(p->p_lock);
240 return error;
241 }
242
243 /*
244 * Wait for:
245 * o process exiting
246 * o target LWP suspended
247 * o target LWP not suspended and L_WSUSPEND clear
248 * o target LWP exited
249 */
250 for (;;) {
251 error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
252 if (error) {
253 error = ERESTART;
254 break;
255 }
256 if (lwp_find(p, SCARG(uap, target)) == NULL) {
257 error = ESRCH;
258 break;
259 }
260 if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
261 error = ERESTART;
262 break;
263 }
264 if (t->l_stat == LSSUSPENDED ||
265 (t->l_flag & LW_WSUSPEND) == 0)
266 break;
267 }
268 mutex_exit(p->p_lock);
269
270 return error;
271 }
272
273 int
274 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap, register_t *retval)
275 {
276 /* {
277 syscallarg(lwpid_t) target;
278 } */
279 int error;
280 struct proc *p = l->l_proc;
281 struct lwp *t;
282
283 error = 0;
284
285 mutex_enter(p->p_lock);
286 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
287 mutex_exit(p->p_lock);
288 return ESRCH;
289 }
290
291 lwp_lock(t);
292 lwp_continue(t);
293 mutex_exit(p->p_lock);
294
295 return error;
296 }
297
298 int
299 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap, register_t *retval)
300 {
301 /* {
302 syscallarg(lwpid_t) target;
303 } */
304 struct lwp *t;
305 struct proc *p;
306 int error;
307
308 p = l->l_proc;
309 mutex_enter(p->p_lock);
310
311 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
312 mutex_exit(p->p_lock);
313 return ESRCH;
314 }
315
316 lwp_lock(t);
317 t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
318
319 if (t->l_stat != LSSLEEP) {
320 lwp_unlock(t);
321 error = ENODEV;
322 } else if ((t->l_flag & LW_SINTR) == 0) {
323 lwp_unlock(t);
324 error = EBUSY;
325 } else {
326 /* Wake it up. lwp_unsleep() will release the LWP lock. */
327 (void)lwp_unsleep(t, true);
328 error = 0;
329 }
330
331 mutex_exit(p->p_lock);
332
333 return error;
334 }
335
336 int
337 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap, register_t *retval)
338 {
339 /* {
340 syscallarg(lwpid_t) wait_for;
341 syscallarg(lwpid_t *) departed;
342 } */
343 struct proc *p = l->l_proc;
344 int error;
345 lwpid_t dep;
346
347 mutex_enter(p->p_lock);
348 error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0);
349 mutex_exit(p->p_lock);
350
351 if (error)
352 return error;
353
354 if (SCARG(uap, departed)) {
355 error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
356 if (error)
357 return error;
358 }
359
360 return 0;
361 }
362
363 /* ARGSUSED */
364 int
365 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap, register_t *retval)
366 {
367 /* {
368 syscallarg(lwpid_t) target;
369 syscallarg(int) signo;
370 } */
371 struct proc *p = l->l_proc;
372 struct lwp *t;
373 ksiginfo_t ksi;
374 int signo = SCARG(uap, signo);
375 int error = 0;
376
377 if ((u_int)signo >= NSIG)
378 return EINVAL;
379
380 KSI_INIT(&ksi);
381 ksi.ksi_signo = signo;
382 ksi.ksi_code = SI_LWP;
383 ksi.ksi_pid = p->p_pid;
384 ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
385 ksi.ksi_lid = SCARG(uap, target);
386
387 mutex_enter(proc_lock);
388 mutex_enter(p->p_lock);
389 if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
390 error = ESRCH;
391 else if (signo != 0)
392 kpsignal2(p, &ksi);
393 mutex_exit(p->p_lock);
394 mutex_exit(proc_lock);
395
396 return error;
397 }
398
399 int
400 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap, register_t *retval)
401 {
402 /* {
403 syscallarg(lwpid_t) target;
404 } */
405 struct proc *p;
406 struct lwp *t;
407 lwpid_t target;
408 int error;
409
410 target = SCARG(uap, target);
411 p = l->l_proc;
412
413 mutex_enter(p->p_lock);
414
415 if (l->l_lid == target)
416 t = l;
417 else {
418 /*
419 * We can't use lwp_find() here because the target might
420 * be a zombie.
421 */
422 LIST_FOREACH(t, &p->p_lwps, l_sibling)
423 if (t->l_lid == target)
424 break;
425 }
426
427 /*
428 * If the LWP is already detached, there's nothing to do.
429 * If it's a zombie, we need to clean up after it. LSZOMB
430 * is visible with the proc mutex held.
431 *
432 * After we have detached or released the LWP, kick any
433 * other LWPs that may be sitting in _lwp_wait(), waiting
434 * for the target LWP to exit.
435 */
436 if (t != NULL && t->l_stat != LSIDL) {
437 if ((t->l_prflag & LPR_DETACHED) == 0) {
438 p->p_ndlwps++;
439 t->l_prflag |= LPR_DETACHED;
440 if (t->l_stat == LSZOMB) {
441 /* Releases proc mutex. */
442 lwp_free(t, false, false);
443 return 0;
444 }
445 error = 0;
446
447 /*
448 * Have any LWPs sleeping in lwp_wait() recheck
449 * for deadlock.
450 */
451 cv_broadcast(&p->p_lwpcv);
452 } else
453 error = EINVAL;
454 } else
455 error = ESRCH;
456
457 mutex_exit(p->p_lock);
458
459 return error;
460 }
461
462 static inline wchan_t
463 lwp_park_wchan(struct proc *p, const void *hint)
464 {
465
466 return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
467 }
468
469 int
470 lwp_unpark(lwpid_t target, const void *hint)
471 {
472 sleepq_t *sq;
473 wchan_t wchan;
474 int swapin;
475 kmutex_t *mp;
476 proc_t *p;
477 lwp_t *t;
478
479 /*
480 * Easy case: search for the LWP on the sleep queue. If
481 * it's parked, remove it from the queue and set running.
482 */
483 p = curproc;
484 wchan = lwp_park_wchan(p, hint);
485 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
486
487 TAILQ_FOREACH(t, sq, l_sleepchain)
488 if (t->l_proc == p && t->l_lid == target)
489 break;
490
491 if (__predict_true(t != NULL)) {
492 swapin = sleepq_remove(sq, t);
493 mutex_spin_exit(mp);
494 if (swapin)
495 uvm_kick_scheduler();
496 return 0;
497 }
498
499 /*
500 * The LWP hasn't parked yet. Take the hit and mark the
501 * operation as pending.
502 */
503 mutex_spin_exit(mp);
504
505 mutex_enter(p->p_lock);
506 if ((t = lwp_find(p, target)) == NULL) {
507 mutex_exit(p->p_lock);
508 return ESRCH;
509 }
510
511 /*
512 * It may not have parked yet, we may have raced, or it
513 * is parked on a different user sync object.
514 */
515 lwp_lock(t);
516 if (t->l_syncobj == &lwp_park_sobj) {
517 /* Releases the LWP lock. */
518 (void)lwp_unsleep(t, true);
519 } else {
520 /*
521 * Set the operation pending. The next call to _lwp_park
522 * will return early.
523 */
524 t->l_flag |= LW_UNPARKED;
525 lwp_unlock(t);
526 }
527
528 mutex_exit(p->p_lock);
529 return 0;
530 }
531
532 int
533 lwp_park(struct timespec *ts, const void *hint)
534 {
535 struct timespec tsx;
536 sleepq_t *sq;
537 kmutex_t *mp;
538 wchan_t wchan;
539 int timo, error;
540 lwp_t *l;
541
542 /* Fix up the given timeout value. */
543 if (ts != NULL) {
544 getnanotime(&tsx);
545 timespecsub(ts, &tsx, &tsx);
546 if (tsx.tv_sec < 0 || (tsx.tv_sec == 0 && tsx.tv_nsec <= 0))
547 return ETIMEDOUT;
548 if ((error = itimespecfix(&tsx)) != 0)
549 return error;
550 timo = tstohz(&tsx);
551 KASSERT(timo != 0);
552 } else
553 timo = 0;
554
555 /* Find and lock the sleep queue. */
556 l = curlwp;
557 wchan = lwp_park_wchan(l->l_proc, hint);
558 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
559
560 /*
561 * Before going the full route and blocking, check to see if an
562 * unpark op is pending.
563 */
564 lwp_lock(l);
565 if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
566 l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
567 lwp_unlock(l);
568 mutex_spin_exit(mp);
569 return EALREADY;
570 }
571 lwp_unlock_to(l, mp);
572 l->l_biglocks = 0;
573 sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
574 error = sleepq_block(timo, true);
575 switch (error) {
576 case EWOULDBLOCK:
577 error = ETIMEDOUT;
578 break;
579 case ERESTART:
580 error = EINTR;
581 break;
582 default:
583 /* nothing */
584 break;
585 }
586 return error;
587 }
588
589 /*
590 * 'park' an LWP waiting on a user-level synchronisation object. The LWP
591 * will remain parked until another LWP in the same process calls in and
592 * requests that it be unparked.
593 */
594 int
595 sys____lwp_park50(struct lwp *l, const struct sys____lwp_park50_args *uap,
596 register_t *retval)
597 {
598 /* {
599 syscallarg(const struct timespec *) ts;
600 syscallarg(lwpid_t) unpark;
601 syscallarg(const void *) hint;
602 syscallarg(const void *) unparkhint;
603 } */
604 struct timespec ts, *tsp;
605 int error;
606
607 if (SCARG(uap, ts) == NULL)
608 tsp = NULL;
609 else {
610 error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
611 if (error != 0)
612 return error;
613 tsp = &ts;
614 }
615
616 if (SCARG(uap, unpark) != 0) {
617 error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
618 if (error != 0)
619 return error;
620 }
621
622 return lwp_park(tsp, SCARG(uap, hint));
623 }
624
625 int
626 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap, register_t *retval)
627 {
628 /* {
629 syscallarg(lwpid_t) target;
630 syscallarg(const void *) hint;
631 } */
632
633 return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
634 }
635
636 int
637 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap, register_t *retval)
638 {
639 /* {
640 syscallarg(const lwpid_t *) targets;
641 syscallarg(size_t) ntargets;
642 syscallarg(const void *) hint;
643 } */
644 struct proc *p;
645 struct lwp *t;
646 sleepq_t *sq;
647 wchan_t wchan;
648 lwpid_t targets[32], *tp, *tpp, *tmax, target;
649 int swapin, error;
650 kmutex_t *mp;
651 u_int ntargets;
652 size_t sz;
653
654 p = l->l_proc;
655 ntargets = SCARG(uap, ntargets);
656
657 if (SCARG(uap, targets) == NULL) {
658 /*
659 * Let the caller know how much we are willing to do, and
660 * let it unpark the LWPs in blocks.
661 */
662 *retval = LWP_UNPARK_MAX;
663 return 0;
664 }
665 if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
666 return EINVAL;
667
668 /*
669 * Copy in the target array. If it's a small number of LWPs, then
670 * place the numbers on the stack.
671 */
672 sz = sizeof(target) * ntargets;
673 if (sz <= sizeof(targets))
674 tp = targets;
675 else {
676 tp = kmem_alloc(sz, KM_SLEEP);
677 if (tp == NULL)
678 return ENOMEM;
679 }
680 error = copyin(SCARG(uap, targets), tp, sz);
681 if (error != 0) {
682 if (tp != targets) {
683 kmem_free(tp, sz);
684 }
685 return error;
686 }
687
688 swapin = 0;
689 wchan = lwp_park_wchan(p, SCARG(uap, hint));
690 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
691
692 for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
693 target = *tpp;
694
695 /*
696 * Easy case: search for the LWP on the sleep queue. If
697 * it's parked, remove it from the queue and set running.
698 */
699 TAILQ_FOREACH(t, sq, l_sleepchain)
700 if (t->l_proc == p && t->l_lid == target)
701 break;
702
703 if (t != NULL) {
704 swapin |= sleepq_remove(sq, t);
705 continue;
706 }
707
708 /*
709 * The LWP hasn't parked yet. Take the hit and
710 * mark the operation as pending.
711 */
712 mutex_spin_exit(mp);
713 mutex_enter(p->p_lock);
714 if ((t = lwp_find(p, target)) == NULL) {
715 mutex_exit(p->p_lock);
716 mutex_spin_enter(mp);
717 continue;
718 }
719 lwp_lock(t);
720
721 /*
722 * It may not have parked yet, we may have raced, or
723 * it is parked on a different user sync object.
724 */
725 if (t->l_syncobj == &lwp_park_sobj) {
726 /* Releases the LWP lock. */
727 (void)lwp_unsleep(t, true);
728 } else {
729 /*
730 * Set the operation pending. The next call to
731 * _lwp_park will return early.
732 */
733 t->l_flag |= LW_UNPARKED;
734 lwp_unlock(t);
735 }
736
737 mutex_exit(p->p_lock);
738 mutex_spin_enter(mp);
739 }
740
741 mutex_spin_exit(mp);
742 if (tp != targets)
743 kmem_free(tp, sz);
744 if (swapin)
745 uvm_kick_scheduler();
746
747 return 0;
748 }
749
750 int
751 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap, register_t *retval)
752 {
753 /* {
754 syscallarg(lwpid_t) target;
755 syscallarg(const char *) name;
756 } */
757 char *name, *oname;
758 lwpid_t target;
759 proc_t *p;
760 lwp_t *t;
761 int error;
762
763 if ((target = SCARG(uap, target)) == 0)
764 target = l->l_lid;
765
766 name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
767 if (name == NULL)
768 return ENOMEM;
769 error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
770 switch (error) {
771 case ENAMETOOLONG:
772 case 0:
773 name[MAXCOMLEN - 1] = '\0';
774 break;
775 default:
776 kmem_free(name, MAXCOMLEN);
777 return error;
778 }
779
780 p = curproc;
781 mutex_enter(p->p_lock);
782 if ((t = lwp_find(p, target)) == NULL) {
783 mutex_exit(p->p_lock);
784 kmem_free(name, MAXCOMLEN);
785 return ESRCH;
786 }
787 lwp_lock(t);
788 oname = t->l_name;
789 t->l_name = name;
790 lwp_unlock(t);
791 mutex_exit(p->p_lock);
792
793 if (oname != NULL)
794 kmem_free(oname, MAXCOMLEN);
795
796 return 0;
797 }
798
799 int
800 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap, register_t *retval)
801 {
802 /* {
803 syscallarg(lwpid_t) target;
804 syscallarg(char *) name;
805 syscallarg(size_t) len;
806 } */
807 char name[MAXCOMLEN];
808 lwpid_t target;
809 proc_t *p;
810 lwp_t *t;
811
812 if ((target = SCARG(uap, target)) == 0)
813 target = l->l_lid;
814
815 p = curproc;
816 mutex_enter(p->p_lock);
817 if ((t = lwp_find(p, target)) == NULL) {
818 mutex_exit(p->p_lock);
819 return ESRCH;
820 }
821 lwp_lock(t);
822 if (t->l_name == NULL)
823 name[0] = '\0';
824 else
825 strcpy(name, t->l_name);
826 lwp_unlock(t);
827 mutex_exit(p->p_lock);
828
829 return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
830 }
831
832 int
833 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap, register_t *retval)
834 {
835 /* {
836 syscallarg(int) features;
837 syscallarg(struct lwpctl **) address;
838 } */
839 int error, features;
840 vaddr_t vaddr;
841
842 features = SCARG(uap, features);
843 features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
844 if (features != 0)
845 return ENODEV;
846 if ((error = lwp_ctl_alloc(&vaddr)) != 0)
847 return error;
848 return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
849 }
850