sys_lwp.c revision 1.49 1 /* $NetBSD: sys_lwp.c,v 1.49 2010/04/23 19:18:09 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Lightweight process (LWP) system calls. See kern_lwp.c for a description
34 * of LWPs.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.49 2010/04/23 19:18:09 rmind Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/pool.h>
43 #include <sys/proc.h>
44 #include <sys/types.h>
45 #include <sys/syscallargs.h>
46 #include <sys/kauth.h>
47 #include <sys/kmem.h>
48 #include <sys/sleepq.h>
49 #include <sys/lwpctl.h>
50 #include <sys/cpu.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include "opt_sa.h"
55
56 #define LWP_UNPARK_MAX 1024
57
58 static syncobj_t lwp_park_sobj = {
59 SOBJ_SLEEPQ_LIFO,
60 sleepq_unsleep,
61 sleepq_changepri,
62 sleepq_lendpri,
63 syncobj_noowner,
64 };
65
66 static sleeptab_t lwp_park_tab;
67
68 void
69 lwp_sys_init(void)
70 {
71 sleeptab_init(&lwp_park_tab);
72 }
73
74 int
75 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
76 register_t *retval)
77 {
78 /* {
79 syscallarg(const ucontext_t *) ucp;
80 syscallarg(u_long) flags;
81 syscallarg(lwpid_t *) new_lwp;
82 } */
83 struct proc *p = l->l_proc;
84 struct lwp *l2;
85 vaddr_t uaddr;
86 ucontext_t *newuc;
87 int error, lid;
88
89 #ifdef KERN_SA
90 mutex_enter(p->p_lock);
91 if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) {
92 mutex_exit(p->p_lock);
93 return EINVAL;
94 }
95 mutex_exit(p->p_lock);
96 #endif
97
98 newuc = kmem_alloc(sizeof(ucontext_t), KM_SLEEP);
99 error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
100 if (error) {
101 kmem_free(newuc, sizeof(ucontext_t));
102 return error;
103 }
104
105 /* XXX check against resource limits */
106
107 uaddr = uvm_uarea_alloc();
108 if (__predict_false(uaddr == 0)) {
109 kmem_free(newuc, sizeof(ucontext_t));
110 return ENOMEM;
111 }
112
113 error = lwp_create(l, p, uaddr, SCARG(uap, flags) & LWP_DETACHED,
114 NULL, 0, p->p_emul->e_startlwp, newuc, &l2, l->l_class);
115 if (__predict_false(error)) {
116 uvm_uarea_free(uaddr);
117 kmem_free(newuc, sizeof(ucontext_t));
118 return error;
119 }
120
121 lid = l2->l_lid;
122 error = copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
123 if (error) {
124 lwp_exit(l2);
125 kmem_free(newuc, sizeof(ucontext_t));
126 return error;
127 }
128
129 /*
130 * Set the new LWP running, unless the caller has requested that
131 * it be created in suspended state. If the process is stopping,
132 * then the LWP is created stopped.
133 */
134 mutex_enter(p->p_lock);
135 lwp_lock(l2);
136 if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0 &&
137 (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
138 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0)
139 l2->l_stat = LSSTOP;
140 else {
141 KASSERT(lwp_locked(l2, l2->l_cpu->ci_schedstate.spc_mutex));
142 p->p_nrlwps++;
143 l2->l_stat = LSRUN;
144 sched_enqueue(l2, false);
145 }
146 lwp_unlock(l2);
147 } else {
148 l2->l_stat = LSSUSPENDED;
149 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_lwplock);
150 }
151 mutex_exit(p->p_lock);
152
153 return 0;
154 }
155
156 int
157 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
158 {
159
160 lwp_exit(l);
161 return 0;
162 }
163
164 int
165 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
166 {
167
168 *retval = l->l_lid;
169 return 0;
170 }
171
172 int
173 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
174 {
175
176 *retval = (uintptr_t)l->l_private;
177 return 0;
178 }
179
180 int
181 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
182 register_t *retval)
183 {
184 /* {
185 syscallarg(void *) ptr;
186 } */
187
188 l->l_private = SCARG(uap, ptr);
189 #ifdef __HAVE_CPU_LWP_SETPRIVATE
190 cpu_lwp_setprivate(l, SCARG(uap, ptr));
191 #endif
192
193 return 0;
194 }
195
196 int
197 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
198 register_t *retval)
199 {
200 /* {
201 syscallarg(lwpid_t) target;
202 } */
203 struct proc *p = l->l_proc;
204 struct lwp *t;
205 int error;
206
207 mutex_enter(p->p_lock);
208
209 #ifdef KERN_SA
210 if ((p->p_sflag & PS_SA) != 0 || p->p_sa != NULL) {
211 mutex_exit(p->p_lock);
212 return EINVAL;
213 }
214 #endif
215
216 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
217 mutex_exit(p->p_lock);
218 return ESRCH;
219 }
220
221 /*
222 * Check for deadlock, which is only possible when we're suspending
223 * ourself. XXX There is a short race here, as p_nrlwps is only
224 * incremented when an LWP suspends itself on the kernel/user
225 * boundary. It's still possible to kill -9 the process so we
226 * don't bother checking further.
227 */
228 lwp_lock(t);
229 if ((t == l && p->p_nrlwps == 1) ||
230 (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
231 lwp_unlock(t);
232 mutex_exit(p->p_lock);
233 return EDEADLK;
234 }
235
236 /*
237 * Suspend the LWP. XXX If it's on a different CPU, we should wait
238 * for it to be preempted, where it will put itself to sleep.
239 *
240 * Suspension of the current LWP will happen on return to userspace.
241 */
242 error = lwp_suspend(l, t);
243 if (error) {
244 mutex_exit(p->p_lock);
245 return error;
246 }
247
248 /*
249 * Wait for:
250 * o process exiting
251 * o target LWP suspended
252 * o target LWP not suspended and L_WSUSPEND clear
253 * o target LWP exited
254 */
255 for (;;) {
256 error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
257 if (error) {
258 error = ERESTART;
259 break;
260 }
261 if (lwp_find(p, SCARG(uap, target)) == NULL) {
262 error = ESRCH;
263 break;
264 }
265 if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
266 error = ERESTART;
267 break;
268 }
269 if (t->l_stat == LSSUSPENDED ||
270 (t->l_flag & LW_WSUSPEND) == 0)
271 break;
272 }
273 mutex_exit(p->p_lock);
274
275 return error;
276 }
277
278 int
279 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
280 register_t *retval)
281 {
282 /* {
283 syscallarg(lwpid_t) target;
284 } */
285 int error;
286 struct proc *p = l->l_proc;
287 struct lwp *t;
288
289 error = 0;
290
291 mutex_enter(p->p_lock);
292 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
293 mutex_exit(p->p_lock);
294 return ESRCH;
295 }
296
297 lwp_lock(t);
298 lwp_continue(t);
299 mutex_exit(p->p_lock);
300
301 return error;
302 }
303
304 int
305 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
306 register_t *retval)
307 {
308 /* {
309 syscallarg(lwpid_t) target;
310 } */
311 struct lwp *t;
312 struct proc *p;
313 int error;
314
315 p = l->l_proc;
316 mutex_enter(p->p_lock);
317
318 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
319 mutex_exit(p->p_lock);
320 return ESRCH;
321 }
322
323 lwp_lock(t);
324 t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
325
326 if (t->l_stat != LSSLEEP) {
327 lwp_unlock(t);
328 error = ENODEV;
329 } else if ((t->l_flag & LW_SINTR) == 0) {
330 lwp_unlock(t);
331 error = EBUSY;
332 } else {
333 /* Wake it up. lwp_unsleep() will release the LWP lock. */
334 lwp_unsleep(t, true);
335 error = 0;
336 }
337
338 mutex_exit(p->p_lock);
339
340 return error;
341 }
342
343 int
344 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
345 register_t *retval)
346 {
347 /* {
348 syscallarg(lwpid_t) wait_for;
349 syscallarg(lwpid_t *) departed;
350 } */
351 struct proc *p = l->l_proc;
352 int error;
353 lwpid_t dep;
354
355 mutex_enter(p->p_lock);
356 error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0);
357 mutex_exit(p->p_lock);
358
359 if (error)
360 return error;
361
362 if (SCARG(uap, departed)) {
363 error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
364 if (error)
365 return error;
366 }
367
368 return 0;
369 }
370
371 int
372 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
373 register_t *retval)
374 {
375 /* {
376 syscallarg(lwpid_t) target;
377 syscallarg(int) signo;
378 } */
379 struct proc *p = l->l_proc;
380 struct lwp *t;
381 ksiginfo_t ksi;
382 int signo = SCARG(uap, signo);
383 int error = 0;
384
385 if ((u_int)signo >= NSIG)
386 return EINVAL;
387
388 KSI_INIT(&ksi);
389 ksi.ksi_signo = signo;
390 ksi.ksi_code = SI_LWP;
391 ksi.ksi_pid = p->p_pid;
392 ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
393 ksi.ksi_lid = SCARG(uap, target);
394
395 mutex_enter(proc_lock);
396 mutex_enter(p->p_lock);
397 if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
398 error = ESRCH;
399 else if (signo != 0)
400 kpsignal2(p, &ksi);
401 mutex_exit(p->p_lock);
402 mutex_exit(proc_lock);
403
404 return error;
405 }
406
407 int
408 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
409 register_t *retval)
410 {
411 /* {
412 syscallarg(lwpid_t) target;
413 } */
414 struct proc *p;
415 struct lwp *t;
416 lwpid_t target;
417 int error;
418
419 target = SCARG(uap, target);
420 p = l->l_proc;
421
422 mutex_enter(p->p_lock);
423
424 if (l->l_lid == target)
425 t = l;
426 else {
427 /*
428 * We can't use lwp_find() here because the target might
429 * be a zombie.
430 */
431 LIST_FOREACH(t, &p->p_lwps, l_sibling)
432 if (t->l_lid == target)
433 break;
434 }
435
436 /*
437 * If the LWP is already detached, there's nothing to do.
438 * If it's a zombie, we need to clean up after it. LSZOMB
439 * is visible with the proc mutex held.
440 *
441 * After we have detached or released the LWP, kick any
442 * other LWPs that may be sitting in _lwp_wait(), waiting
443 * for the target LWP to exit.
444 */
445 if (t != NULL && t->l_stat != LSIDL) {
446 if ((t->l_prflag & LPR_DETACHED) == 0) {
447 p->p_ndlwps++;
448 t->l_prflag |= LPR_DETACHED;
449 if (t->l_stat == LSZOMB) {
450 /* Releases proc mutex. */
451 lwp_free(t, false, false);
452 return 0;
453 }
454 error = 0;
455
456 /*
457 * Have any LWPs sleeping in lwp_wait() recheck
458 * for deadlock.
459 */
460 cv_broadcast(&p->p_lwpcv);
461 } else
462 error = EINVAL;
463 } else
464 error = ESRCH;
465
466 mutex_exit(p->p_lock);
467
468 return error;
469 }
470
471 static inline wchan_t
472 lwp_park_wchan(struct proc *p, const void *hint)
473 {
474
475 return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
476 }
477
478 int
479 lwp_unpark(lwpid_t target, const void *hint)
480 {
481 sleepq_t *sq;
482 wchan_t wchan;
483 kmutex_t *mp;
484 proc_t *p;
485 lwp_t *t;
486
487 /*
488 * Easy case: search for the LWP on the sleep queue. If
489 * it's parked, remove it from the queue and set running.
490 */
491 p = curproc;
492 wchan = lwp_park_wchan(p, hint);
493 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
494
495 TAILQ_FOREACH(t, sq, l_sleepchain)
496 if (t->l_proc == p && t->l_lid == target)
497 break;
498
499 if (__predict_true(t != NULL)) {
500 sleepq_remove(sq, t);
501 mutex_spin_exit(mp);
502 return 0;
503 }
504
505 /*
506 * The LWP hasn't parked yet. Take the hit and mark the
507 * operation as pending.
508 */
509 mutex_spin_exit(mp);
510
511 mutex_enter(p->p_lock);
512 if ((t = lwp_find(p, target)) == NULL) {
513 mutex_exit(p->p_lock);
514 return ESRCH;
515 }
516
517 /*
518 * It may not have parked yet, we may have raced, or it
519 * is parked on a different user sync object.
520 */
521 lwp_lock(t);
522 if (t->l_syncobj == &lwp_park_sobj) {
523 /* Releases the LWP lock. */
524 lwp_unsleep(t, true);
525 } else {
526 /*
527 * Set the operation pending. The next call to _lwp_park
528 * will return early.
529 */
530 t->l_flag |= LW_UNPARKED;
531 lwp_unlock(t);
532 }
533
534 mutex_exit(p->p_lock);
535 return 0;
536 }
537
538 int
539 lwp_park(struct timespec *ts, const void *hint)
540 {
541 sleepq_t *sq;
542 kmutex_t *mp;
543 wchan_t wchan;
544 int timo, error;
545 lwp_t *l;
546
547 /* Fix up the given timeout value. */
548 if (ts != NULL) {
549 error = abstimeout2timo(ts, &timo);
550 if (error) {
551 return error;
552 }
553 KASSERT(timo != 0);
554 } else {
555 timo = 0;
556 }
557
558 /* Find and lock the sleep queue. */
559 l = curlwp;
560 wchan = lwp_park_wchan(l->l_proc, hint);
561 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
562
563 /*
564 * Before going the full route and blocking, check to see if an
565 * unpark op is pending.
566 */
567 lwp_lock(l);
568 if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
569 l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
570 lwp_unlock(l);
571 mutex_spin_exit(mp);
572 return EALREADY;
573 }
574 lwp_unlock_to(l, mp);
575 l->l_biglocks = 0;
576 sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
577 error = sleepq_block(timo, true);
578 switch (error) {
579 case EWOULDBLOCK:
580 error = ETIMEDOUT;
581 break;
582 case ERESTART:
583 error = EINTR;
584 break;
585 default:
586 /* nothing */
587 break;
588 }
589 return error;
590 }
591
592 /*
593 * 'park' an LWP waiting on a user-level synchronisation object. The LWP
594 * will remain parked until another LWP in the same process calls in and
595 * requests that it be unparked.
596 */
597 int
598 sys____lwp_park50(struct lwp *l, const struct sys____lwp_park50_args *uap,
599 register_t *retval)
600 {
601 /* {
602 syscallarg(const struct timespec *) ts;
603 syscallarg(lwpid_t) unpark;
604 syscallarg(const void *) hint;
605 syscallarg(const void *) unparkhint;
606 } */
607 struct timespec ts, *tsp;
608 int error;
609
610 if (SCARG(uap, ts) == NULL)
611 tsp = NULL;
612 else {
613 error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
614 if (error != 0)
615 return error;
616 tsp = &ts;
617 }
618
619 if (SCARG(uap, unpark) != 0) {
620 error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
621 if (error != 0)
622 return error;
623 }
624
625 return lwp_park(tsp, SCARG(uap, hint));
626 }
627
628 int
629 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
630 register_t *retval)
631 {
632 /* {
633 syscallarg(lwpid_t) target;
634 syscallarg(const void *) hint;
635 } */
636
637 return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
638 }
639
640 int
641 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
642 register_t *retval)
643 {
644 /* {
645 syscallarg(const lwpid_t *) targets;
646 syscallarg(size_t) ntargets;
647 syscallarg(const void *) hint;
648 } */
649 struct proc *p;
650 struct lwp *t;
651 sleepq_t *sq;
652 wchan_t wchan;
653 lwpid_t targets[32], *tp, *tpp, *tmax, target;
654 int error;
655 kmutex_t *mp;
656 u_int ntargets;
657 size_t sz;
658
659 p = l->l_proc;
660 ntargets = SCARG(uap, ntargets);
661
662 if (SCARG(uap, targets) == NULL) {
663 /*
664 * Let the caller know how much we are willing to do, and
665 * let it unpark the LWPs in blocks.
666 */
667 *retval = LWP_UNPARK_MAX;
668 return 0;
669 }
670 if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
671 return EINVAL;
672
673 /*
674 * Copy in the target array. If it's a small number of LWPs, then
675 * place the numbers on the stack.
676 */
677 sz = sizeof(target) * ntargets;
678 if (sz <= sizeof(targets))
679 tp = targets;
680 else {
681 tp = kmem_alloc(sz, KM_SLEEP);
682 if (tp == NULL)
683 return ENOMEM;
684 }
685 error = copyin(SCARG(uap, targets), tp, sz);
686 if (error != 0) {
687 if (tp != targets) {
688 kmem_free(tp, sz);
689 }
690 return error;
691 }
692
693 wchan = lwp_park_wchan(p, SCARG(uap, hint));
694 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
695
696 for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
697 target = *tpp;
698
699 /*
700 * Easy case: search for the LWP on the sleep queue. If
701 * it's parked, remove it from the queue and set running.
702 */
703 TAILQ_FOREACH(t, sq, l_sleepchain)
704 if (t->l_proc == p && t->l_lid == target)
705 break;
706
707 if (t != NULL) {
708 sleepq_remove(sq, t);
709 continue;
710 }
711
712 /*
713 * The LWP hasn't parked yet. Take the hit and
714 * mark the operation as pending.
715 */
716 mutex_spin_exit(mp);
717 mutex_enter(p->p_lock);
718 if ((t = lwp_find(p, target)) == NULL) {
719 mutex_exit(p->p_lock);
720 mutex_spin_enter(mp);
721 continue;
722 }
723 lwp_lock(t);
724
725 /*
726 * It may not have parked yet, we may have raced, or
727 * it is parked on a different user sync object.
728 */
729 if (t->l_syncobj == &lwp_park_sobj) {
730 /* Releases the LWP lock. */
731 lwp_unsleep(t, true);
732 } else {
733 /*
734 * Set the operation pending. The next call to
735 * _lwp_park will return early.
736 */
737 t->l_flag |= LW_UNPARKED;
738 lwp_unlock(t);
739 }
740
741 mutex_exit(p->p_lock);
742 mutex_spin_enter(mp);
743 }
744
745 mutex_spin_exit(mp);
746 if (tp != targets)
747 kmem_free(tp, sz);
748
749 return 0;
750 }
751
752 int
753 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
754 register_t *retval)
755 {
756 /* {
757 syscallarg(lwpid_t) target;
758 syscallarg(const char *) name;
759 } */
760 char *name, *oname;
761 lwpid_t target;
762 proc_t *p;
763 lwp_t *t;
764 int error;
765
766 if ((target = SCARG(uap, target)) == 0)
767 target = l->l_lid;
768
769 name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
770 if (name == NULL)
771 return ENOMEM;
772 error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
773 switch (error) {
774 case ENAMETOOLONG:
775 case 0:
776 name[MAXCOMLEN - 1] = '\0';
777 break;
778 default:
779 kmem_free(name, MAXCOMLEN);
780 return error;
781 }
782
783 p = curproc;
784 mutex_enter(p->p_lock);
785 if ((t = lwp_find(p, target)) == NULL) {
786 mutex_exit(p->p_lock);
787 kmem_free(name, MAXCOMLEN);
788 return ESRCH;
789 }
790 lwp_lock(t);
791 oname = t->l_name;
792 t->l_name = name;
793 lwp_unlock(t);
794 mutex_exit(p->p_lock);
795
796 if (oname != NULL)
797 kmem_free(oname, MAXCOMLEN);
798
799 return 0;
800 }
801
802 int
803 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
804 register_t *retval)
805 {
806 /* {
807 syscallarg(lwpid_t) target;
808 syscallarg(char *) name;
809 syscallarg(size_t) len;
810 } */
811 char name[MAXCOMLEN];
812 lwpid_t target;
813 proc_t *p;
814 lwp_t *t;
815
816 if ((target = SCARG(uap, target)) == 0)
817 target = l->l_lid;
818
819 p = curproc;
820 mutex_enter(p->p_lock);
821 if ((t = lwp_find(p, target)) == NULL) {
822 mutex_exit(p->p_lock);
823 return ESRCH;
824 }
825 lwp_lock(t);
826 if (t->l_name == NULL)
827 name[0] = '\0';
828 else
829 strcpy(name, t->l_name);
830 lwp_unlock(t);
831 mutex_exit(p->p_lock);
832
833 return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
834 }
835
836 int
837 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
838 register_t *retval)
839 {
840 /* {
841 syscallarg(int) features;
842 syscallarg(struct lwpctl **) address;
843 } */
844 int error, features;
845 vaddr_t vaddr;
846
847 features = SCARG(uap, features);
848 features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
849 if (features != 0)
850 return ENODEV;
851 if ((error = lwp_ctl_alloc(&vaddr)) != 0)
852 return error;
853 return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
854 }
855