Home | History | Annotate | Line # | Download | only in kern
sys_lwp.c revision 1.49
      1 /*	$NetBSD: sys_lwp.c,v 1.49 2010/04/23 19:18:09 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Lightweight process (LWP) system calls.  See kern_lwp.c for a description
     34  * of LWPs.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.49 2010/04/23 19:18:09 rmind Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/pool.h>
     43 #include <sys/proc.h>
     44 #include <sys/types.h>
     45 #include <sys/syscallargs.h>
     46 #include <sys/kauth.h>
     47 #include <sys/kmem.h>
     48 #include <sys/sleepq.h>
     49 #include <sys/lwpctl.h>
     50 #include <sys/cpu.h>
     51 
     52 #include <uvm/uvm_extern.h>
     53 
     54 #include "opt_sa.h"
     55 
     56 #define	LWP_UNPARK_MAX		1024
     57 
     58 static syncobj_t lwp_park_sobj = {
     59 	SOBJ_SLEEPQ_LIFO,
     60 	sleepq_unsleep,
     61 	sleepq_changepri,
     62 	sleepq_lendpri,
     63 	syncobj_noowner,
     64 };
     65 
     66 static sleeptab_t	lwp_park_tab;
     67 
     68 void
     69 lwp_sys_init(void)
     70 {
     71 	sleeptab_init(&lwp_park_tab);
     72 }
     73 
     74 int
     75 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
     76     register_t *retval)
     77 {
     78 	/* {
     79 		syscallarg(const ucontext_t *) ucp;
     80 		syscallarg(u_long) flags;
     81 		syscallarg(lwpid_t *) new_lwp;
     82 	} */
     83 	struct proc *p = l->l_proc;
     84 	struct lwp *l2;
     85 	vaddr_t uaddr;
     86 	ucontext_t *newuc;
     87 	int error, lid;
     88 
     89 #ifdef KERN_SA
     90 	mutex_enter(p->p_lock);
     91 	if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) {
     92 		mutex_exit(p->p_lock);
     93 		return EINVAL;
     94 	}
     95 	mutex_exit(p->p_lock);
     96 #endif
     97 
     98 	newuc = kmem_alloc(sizeof(ucontext_t), KM_SLEEP);
     99 	error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
    100 	if (error) {
    101 		kmem_free(newuc, sizeof(ucontext_t));
    102 		return error;
    103 	}
    104 
    105 	/* XXX check against resource limits */
    106 
    107 	uaddr = uvm_uarea_alloc();
    108 	if (__predict_false(uaddr == 0)) {
    109 		kmem_free(newuc, sizeof(ucontext_t));
    110 		return ENOMEM;
    111 	}
    112 
    113 	error = lwp_create(l, p, uaddr, SCARG(uap, flags) & LWP_DETACHED,
    114 	    NULL, 0, p->p_emul->e_startlwp, newuc, &l2, l->l_class);
    115 	if (__predict_false(error)) {
    116 		uvm_uarea_free(uaddr);
    117 		kmem_free(newuc, sizeof(ucontext_t));
    118 		return error;
    119 	}
    120 
    121 	lid = l2->l_lid;
    122 	error = copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
    123 	if (error) {
    124 		lwp_exit(l2);
    125 		kmem_free(newuc, sizeof(ucontext_t));
    126 		return error;
    127 	}
    128 
    129 	/*
    130 	 * Set the new LWP running, unless the caller has requested that
    131 	 * it be created in suspended state.  If the process is stopping,
    132 	 * then the LWP is created stopped.
    133 	 */
    134 	mutex_enter(p->p_lock);
    135 	lwp_lock(l2);
    136 	if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0 &&
    137 	    (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
    138 	    	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0)
    139 	    		l2->l_stat = LSSTOP;
    140 		else {
    141 			KASSERT(lwp_locked(l2, l2->l_cpu->ci_schedstate.spc_mutex));
    142 			p->p_nrlwps++;
    143 			l2->l_stat = LSRUN;
    144 			sched_enqueue(l2, false);
    145 		}
    146 		lwp_unlock(l2);
    147 	} else {
    148 		l2->l_stat = LSSUSPENDED;
    149 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_lwplock);
    150 	}
    151 	mutex_exit(p->p_lock);
    152 
    153 	return 0;
    154 }
    155 
    156 int
    157 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
    158 {
    159 
    160 	lwp_exit(l);
    161 	return 0;
    162 }
    163 
    164 int
    165 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
    166 {
    167 
    168 	*retval = l->l_lid;
    169 	return 0;
    170 }
    171 
    172 int
    173 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
    174 {
    175 
    176 	*retval = (uintptr_t)l->l_private;
    177 	return 0;
    178 }
    179 
    180 int
    181 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
    182     register_t *retval)
    183 {
    184 	/* {
    185 		syscallarg(void *) ptr;
    186 	} */
    187 
    188 	l->l_private = SCARG(uap, ptr);
    189 #ifdef __HAVE_CPU_LWP_SETPRIVATE
    190 	cpu_lwp_setprivate(l, SCARG(uap, ptr));
    191 #endif
    192 
    193 	return 0;
    194 }
    195 
    196 int
    197 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
    198     register_t *retval)
    199 {
    200 	/* {
    201 		syscallarg(lwpid_t) target;
    202 	} */
    203 	struct proc *p = l->l_proc;
    204 	struct lwp *t;
    205 	int error;
    206 
    207 	mutex_enter(p->p_lock);
    208 
    209 #ifdef KERN_SA
    210 	if ((p->p_sflag & PS_SA) != 0 || p->p_sa != NULL) {
    211 		mutex_exit(p->p_lock);
    212 		return EINVAL;
    213 	}
    214 #endif
    215 
    216 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
    217 		mutex_exit(p->p_lock);
    218 		return ESRCH;
    219 	}
    220 
    221 	/*
    222 	 * Check for deadlock, which is only possible when we're suspending
    223 	 * ourself.  XXX There is a short race here, as p_nrlwps is only
    224 	 * incremented when an LWP suspends itself on the kernel/user
    225 	 * boundary.  It's still possible to kill -9 the process so we
    226 	 * don't bother checking further.
    227 	 */
    228 	lwp_lock(t);
    229 	if ((t == l && p->p_nrlwps == 1) ||
    230 	    (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
    231 		lwp_unlock(t);
    232 		mutex_exit(p->p_lock);
    233 		return EDEADLK;
    234 	}
    235 
    236 	/*
    237 	 * Suspend the LWP.  XXX If it's on a different CPU, we should wait
    238 	 * for it to be preempted, where it will put itself to sleep.
    239 	 *
    240 	 * Suspension of the current LWP will happen on return to userspace.
    241 	 */
    242 	error = lwp_suspend(l, t);
    243 	if (error) {
    244 		mutex_exit(p->p_lock);
    245 		return error;
    246 	}
    247 
    248 	/*
    249 	 * Wait for:
    250 	 *  o process exiting
    251 	 *  o target LWP suspended
    252 	 *  o target LWP not suspended and L_WSUSPEND clear
    253 	 *  o target LWP exited
    254 	 */
    255 	for (;;) {
    256 		error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
    257 		if (error) {
    258 			error = ERESTART;
    259 			break;
    260 		}
    261 		if (lwp_find(p, SCARG(uap, target)) == NULL) {
    262 			error = ESRCH;
    263 			break;
    264 		}
    265 		if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
    266 			error = ERESTART;
    267 			break;
    268 		}
    269 		if (t->l_stat == LSSUSPENDED ||
    270 		    (t->l_flag & LW_WSUSPEND) == 0)
    271 			break;
    272 	}
    273 	mutex_exit(p->p_lock);
    274 
    275 	return error;
    276 }
    277 
    278 int
    279 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
    280     register_t *retval)
    281 {
    282 	/* {
    283 		syscallarg(lwpid_t) target;
    284 	} */
    285 	int error;
    286 	struct proc *p = l->l_proc;
    287 	struct lwp *t;
    288 
    289 	error = 0;
    290 
    291 	mutex_enter(p->p_lock);
    292 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
    293 		mutex_exit(p->p_lock);
    294 		return ESRCH;
    295 	}
    296 
    297 	lwp_lock(t);
    298 	lwp_continue(t);
    299 	mutex_exit(p->p_lock);
    300 
    301 	return error;
    302 }
    303 
    304 int
    305 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
    306     register_t *retval)
    307 {
    308 	/* {
    309 		syscallarg(lwpid_t) target;
    310 	} */
    311 	struct lwp *t;
    312 	struct proc *p;
    313 	int error;
    314 
    315 	p = l->l_proc;
    316 	mutex_enter(p->p_lock);
    317 
    318 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
    319 		mutex_exit(p->p_lock);
    320 		return ESRCH;
    321 	}
    322 
    323 	lwp_lock(t);
    324 	t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
    325 
    326 	if (t->l_stat != LSSLEEP) {
    327 		lwp_unlock(t);
    328 		error = ENODEV;
    329 	} else if ((t->l_flag & LW_SINTR) == 0) {
    330 		lwp_unlock(t);
    331 		error = EBUSY;
    332 	} else {
    333 		/* Wake it up.  lwp_unsleep() will release the LWP lock. */
    334 		lwp_unsleep(t, true);
    335 		error = 0;
    336 	}
    337 
    338 	mutex_exit(p->p_lock);
    339 
    340 	return error;
    341 }
    342 
    343 int
    344 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
    345     register_t *retval)
    346 {
    347 	/* {
    348 		syscallarg(lwpid_t) wait_for;
    349 		syscallarg(lwpid_t *) departed;
    350 	} */
    351 	struct proc *p = l->l_proc;
    352 	int error;
    353 	lwpid_t dep;
    354 
    355 	mutex_enter(p->p_lock);
    356 	error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0);
    357 	mutex_exit(p->p_lock);
    358 
    359 	if (error)
    360 		return error;
    361 
    362 	if (SCARG(uap, departed)) {
    363 		error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
    364 		if (error)
    365 			return error;
    366 	}
    367 
    368 	return 0;
    369 }
    370 
    371 int
    372 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
    373     register_t *retval)
    374 {
    375 	/* {
    376 		syscallarg(lwpid_t)	target;
    377 		syscallarg(int)		signo;
    378 	} */
    379 	struct proc *p = l->l_proc;
    380 	struct lwp *t;
    381 	ksiginfo_t ksi;
    382 	int signo = SCARG(uap, signo);
    383 	int error = 0;
    384 
    385 	if ((u_int)signo >= NSIG)
    386 		return EINVAL;
    387 
    388 	KSI_INIT(&ksi);
    389 	ksi.ksi_signo = signo;
    390 	ksi.ksi_code = SI_LWP;
    391 	ksi.ksi_pid = p->p_pid;
    392 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
    393 	ksi.ksi_lid = SCARG(uap, target);
    394 
    395 	mutex_enter(proc_lock);
    396 	mutex_enter(p->p_lock);
    397 	if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
    398 		error = ESRCH;
    399 	else if (signo != 0)
    400 		kpsignal2(p, &ksi);
    401 	mutex_exit(p->p_lock);
    402 	mutex_exit(proc_lock);
    403 
    404 	return error;
    405 }
    406 
    407 int
    408 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
    409     register_t *retval)
    410 {
    411 	/* {
    412 		syscallarg(lwpid_t)	target;
    413 	} */
    414 	struct proc *p;
    415 	struct lwp *t;
    416 	lwpid_t target;
    417 	int error;
    418 
    419 	target = SCARG(uap, target);
    420 	p = l->l_proc;
    421 
    422 	mutex_enter(p->p_lock);
    423 
    424 	if (l->l_lid == target)
    425 		t = l;
    426 	else {
    427 		/*
    428 		 * We can't use lwp_find() here because the target might
    429 		 * be a zombie.
    430 		 */
    431 		LIST_FOREACH(t, &p->p_lwps, l_sibling)
    432 			if (t->l_lid == target)
    433 				break;
    434 	}
    435 
    436 	/*
    437 	 * If the LWP is already detached, there's nothing to do.
    438 	 * If it's a zombie, we need to clean up after it.  LSZOMB
    439 	 * is visible with the proc mutex held.
    440 	 *
    441 	 * After we have detached or released the LWP, kick any
    442 	 * other LWPs that may be sitting in _lwp_wait(), waiting
    443 	 * for the target LWP to exit.
    444 	 */
    445 	if (t != NULL && t->l_stat != LSIDL) {
    446 		if ((t->l_prflag & LPR_DETACHED) == 0) {
    447 			p->p_ndlwps++;
    448 			t->l_prflag |= LPR_DETACHED;
    449 			if (t->l_stat == LSZOMB) {
    450 				/* Releases proc mutex. */
    451 				lwp_free(t, false, false);
    452 				return 0;
    453 			}
    454 			error = 0;
    455 
    456 			/*
    457 			 * Have any LWPs sleeping in lwp_wait() recheck
    458 			 * for deadlock.
    459 			 */
    460 			cv_broadcast(&p->p_lwpcv);
    461 		} else
    462 			error = EINVAL;
    463 	} else
    464 		error = ESRCH;
    465 
    466 	mutex_exit(p->p_lock);
    467 
    468 	return error;
    469 }
    470 
    471 static inline wchan_t
    472 lwp_park_wchan(struct proc *p, const void *hint)
    473 {
    474 
    475 	return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
    476 }
    477 
    478 int
    479 lwp_unpark(lwpid_t target, const void *hint)
    480 {
    481 	sleepq_t *sq;
    482 	wchan_t wchan;
    483 	kmutex_t *mp;
    484 	proc_t *p;
    485 	lwp_t *t;
    486 
    487 	/*
    488 	 * Easy case: search for the LWP on the sleep queue.  If
    489 	 * it's parked, remove it from the queue and set running.
    490 	 */
    491 	p = curproc;
    492 	wchan = lwp_park_wchan(p, hint);
    493 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
    494 
    495 	TAILQ_FOREACH(t, sq, l_sleepchain)
    496 		if (t->l_proc == p && t->l_lid == target)
    497 			break;
    498 
    499 	if (__predict_true(t != NULL)) {
    500 		sleepq_remove(sq, t);
    501 		mutex_spin_exit(mp);
    502 		return 0;
    503 	}
    504 
    505 	/*
    506 	 * The LWP hasn't parked yet.  Take the hit and mark the
    507 	 * operation as pending.
    508 	 */
    509 	mutex_spin_exit(mp);
    510 
    511 	mutex_enter(p->p_lock);
    512 	if ((t = lwp_find(p, target)) == NULL) {
    513 		mutex_exit(p->p_lock);
    514 		return ESRCH;
    515 	}
    516 
    517 	/*
    518 	 * It may not have parked yet, we may have raced, or it
    519 	 * is parked on a different user sync object.
    520 	 */
    521 	lwp_lock(t);
    522 	if (t->l_syncobj == &lwp_park_sobj) {
    523 		/* Releases the LWP lock. */
    524 		lwp_unsleep(t, true);
    525 	} else {
    526 		/*
    527 		 * Set the operation pending.  The next call to _lwp_park
    528 		 * will return early.
    529 		 */
    530 		t->l_flag |= LW_UNPARKED;
    531 		lwp_unlock(t);
    532 	}
    533 
    534 	mutex_exit(p->p_lock);
    535 	return 0;
    536 }
    537 
    538 int
    539 lwp_park(struct timespec *ts, const void *hint)
    540 {
    541 	sleepq_t *sq;
    542 	kmutex_t *mp;
    543 	wchan_t wchan;
    544 	int timo, error;
    545 	lwp_t *l;
    546 
    547 	/* Fix up the given timeout value. */
    548 	if (ts != NULL) {
    549 		error = abstimeout2timo(ts, &timo);
    550 		if (error) {
    551 			return error;
    552 		}
    553 		KASSERT(timo != 0);
    554 	} else {
    555 		timo = 0;
    556 	}
    557 
    558 	/* Find and lock the sleep queue. */
    559 	l = curlwp;
    560 	wchan = lwp_park_wchan(l->l_proc, hint);
    561 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
    562 
    563 	/*
    564 	 * Before going the full route and blocking, check to see if an
    565 	 * unpark op is pending.
    566 	 */
    567 	lwp_lock(l);
    568 	if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
    569 		l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
    570 		lwp_unlock(l);
    571 		mutex_spin_exit(mp);
    572 		return EALREADY;
    573 	}
    574 	lwp_unlock_to(l, mp);
    575 	l->l_biglocks = 0;
    576 	sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
    577 	error = sleepq_block(timo, true);
    578 	switch (error) {
    579 	case EWOULDBLOCK:
    580 		error = ETIMEDOUT;
    581 		break;
    582 	case ERESTART:
    583 		error = EINTR;
    584 		break;
    585 	default:
    586 		/* nothing */
    587 		break;
    588 	}
    589 	return error;
    590 }
    591 
    592 /*
    593  * 'park' an LWP waiting on a user-level synchronisation object.  The LWP
    594  * will remain parked until another LWP in the same process calls in and
    595  * requests that it be unparked.
    596  */
    597 int
    598 sys____lwp_park50(struct lwp *l, const struct sys____lwp_park50_args *uap,
    599     register_t *retval)
    600 {
    601 	/* {
    602 		syscallarg(const struct timespec *)	ts;
    603 		syscallarg(lwpid_t)			unpark;
    604 		syscallarg(const void *)		hint;
    605 		syscallarg(const void *)		unparkhint;
    606 	} */
    607 	struct timespec ts, *tsp;
    608 	int error;
    609 
    610 	if (SCARG(uap, ts) == NULL)
    611 		tsp = NULL;
    612 	else {
    613 		error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
    614 		if (error != 0)
    615 			return error;
    616 		tsp = &ts;
    617 	}
    618 
    619 	if (SCARG(uap, unpark) != 0) {
    620 		error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
    621 		if (error != 0)
    622 			return error;
    623 	}
    624 
    625 	return lwp_park(tsp, SCARG(uap, hint));
    626 }
    627 
    628 int
    629 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
    630     register_t *retval)
    631 {
    632 	/* {
    633 		syscallarg(lwpid_t)		target;
    634 		syscallarg(const void *)	hint;
    635 	} */
    636 
    637 	return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
    638 }
    639 
    640 int
    641 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
    642     register_t *retval)
    643 {
    644 	/* {
    645 		syscallarg(const lwpid_t *)	targets;
    646 		syscallarg(size_t)		ntargets;
    647 		syscallarg(const void *)	hint;
    648 	} */
    649 	struct proc *p;
    650 	struct lwp *t;
    651 	sleepq_t *sq;
    652 	wchan_t wchan;
    653 	lwpid_t targets[32], *tp, *tpp, *tmax, target;
    654 	int error;
    655 	kmutex_t *mp;
    656 	u_int ntargets;
    657 	size_t sz;
    658 
    659 	p = l->l_proc;
    660 	ntargets = SCARG(uap, ntargets);
    661 
    662 	if (SCARG(uap, targets) == NULL) {
    663 		/*
    664 		 * Let the caller know how much we are willing to do, and
    665 		 * let it unpark the LWPs in blocks.
    666 		 */
    667 		*retval = LWP_UNPARK_MAX;
    668 		return 0;
    669 	}
    670 	if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
    671 		return EINVAL;
    672 
    673 	/*
    674 	 * Copy in the target array.  If it's a small number of LWPs, then
    675 	 * place the numbers on the stack.
    676 	 */
    677 	sz = sizeof(target) * ntargets;
    678 	if (sz <= sizeof(targets))
    679 		tp = targets;
    680 	else {
    681 		tp = kmem_alloc(sz, KM_SLEEP);
    682 		if (tp == NULL)
    683 			return ENOMEM;
    684 	}
    685 	error = copyin(SCARG(uap, targets), tp, sz);
    686 	if (error != 0) {
    687 		if (tp != targets) {
    688 			kmem_free(tp, sz);
    689 		}
    690 		return error;
    691 	}
    692 
    693 	wchan = lwp_park_wchan(p, SCARG(uap, hint));
    694 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
    695 
    696 	for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
    697 		target = *tpp;
    698 
    699 		/*
    700 		 * Easy case: search for the LWP on the sleep queue.  If
    701 		 * it's parked, remove it from the queue and set running.
    702 		 */
    703 		TAILQ_FOREACH(t, sq, l_sleepchain)
    704 			if (t->l_proc == p && t->l_lid == target)
    705 				break;
    706 
    707 		if (t != NULL) {
    708 			sleepq_remove(sq, t);
    709 			continue;
    710 		}
    711 
    712 		/*
    713 		 * The LWP hasn't parked yet.  Take the hit and
    714 		 * mark the operation as pending.
    715 		 */
    716 		mutex_spin_exit(mp);
    717 		mutex_enter(p->p_lock);
    718 		if ((t = lwp_find(p, target)) == NULL) {
    719 			mutex_exit(p->p_lock);
    720 			mutex_spin_enter(mp);
    721 			continue;
    722 		}
    723 		lwp_lock(t);
    724 
    725 		/*
    726 		 * It may not have parked yet, we may have raced, or
    727 		 * it is parked on a different user sync object.
    728 		 */
    729 		if (t->l_syncobj == &lwp_park_sobj) {
    730 			/* Releases the LWP lock. */
    731 			lwp_unsleep(t, true);
    732 		} else {
    733 			/*
    734 			 * Set the operation pending.  The next call to
    735 			 * _lwp_park will return early.
    736 			 */
    737 			t->l_flag |= LW_UNPARKED;
    738 			lwp_unlock(t);
    739 		}
    740 
    741 		mutex_exit(p->p_lock);
    742 		mutex_spin_enter(mp);
    743 	}
    744 
    745 	mutex_spin_exit(mp);
    746 	if (tp != targets)
    747 		kmem_free(tp, sz);
    748 
    749 	return 0;
    750 }
    751 
    752 int
    753 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
    754     register_t *retval)
    755 {
    756 	/* {
    757 		syscallarg(lwpid_t)		target;
    758 		syscallarg(const char *)	name;
    759 	} */
    760 	char *name, *oname;
    761 	lwpid_t target;
    762 	proc_t *p;
    763 	lwp_t *t;
    764 	int error;
    765 
    766 	if ((target = SCARG(uap, target)) == 0)
    767 		target = l->l_lid;
    768 
    769 	name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
    770 	if (name == NULL)
    771 		return ENOMEM;
    772 	error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
    773 	switch (error) {
    774 	case ENAMETOOLONG:
    775 	case 0:
    776 		name[MAXCOMLEN - 1] = '\0';
    777 		break;
    778 	default:
    779 		kmem_free(name, MAXCOMLEN);
    780 		return error;
    781 	}
    782 
    783 	p = curproc;
    784 	mutex_enter(p->p_lock);
    785 	if ((t = lwp_find(p, target)) == NULL) {
    786 		mutex_exit(p->p_lock);
    787 		kmem_free(name, MAXCOMLEN);
    788 		return ESRCH;
    789 	}
    790 	lwp_lock(t);
    791 	oname = t->l_name;
    792 	t->l_name = name;
    793 	lwp_unlock(t);
    794 	mutex_exit(p->p_lock);
    795 
    796 	if (oname != NULL)
    797 		kmem_free(oname, MAXCOMLEN);
    798 
    799 	return 0;
    800 }
    801 
    802 int
    803 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
    804     register_t *retval)
    805 {
    806 	/* {
    807 		syscallarg(lwpid_t)		target;
    808 		syscallarg(char *)		name;
    809 		syscallarg(size_t)		len;
    810 	} */
    811 	char name[MAXCOMLEN];
    812 	lwpid_t target;
    813 	proc_t *p;
    814 	lwp_t *t;
    815 
    816 	if ((target = SCARG(uap, target)) == 0)
    817 		target = l->l_lid;
    818 
    819 	p = curproc;
    820 	mutex_enter(p->p_lock);
    821 	if ((t = lwp_find(p, target)) == NULL) {
    822 		mutex_exit(p->p_lock);
    823 		return ESRCH;
    824 	}
    825 	lwp_lock(t);
    826 	if (t->l_name == NULL)
    827 		name[0] = '\0';
    828 	else
    829 		strcpy(name, t->l_name);
    830 	lwp_unlock(t);
    831 	mutex_exit(p->p_lock);
    832 
    833 	return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
    834 }
    835 
    836 int
    837 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
    838     register_t *retval)
    839 {
    840 	/* {
    841 		syscallarg(int)			features;
    842 		syscallarg(struct lwpctl **)	address;
    843 	} */
    844 	int error, features;
    845 	vaddr_t vaddr;
    846 
    847 	features = SCARG(uap, features);
    848 	features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
    849 	if (features != 0)
    850 		return ENODEV;
    851 	if ((error = lwp_ctl_alloc(&vaddr)) != 0)
    852 		return error;
    853 	return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
    854 }
    855