sys_lwp.c revision 1.50 1 /* $NetBSD: sys_lwp.c,v 1.50 2010/06/06 07:46:17 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Lightweight process (LWP) system calls. See kern_lwp.c for a description
34 * of LWPs.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.50 2010/06/06 07:46:17 skrll Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/pool.h>
43 #include <sys/proc.h>
44 #include <sys/types.h>
45 #include <sys/syscallargs.h>
46 #include <sys/kauth.h>
47 #include <sys/kmem.h>
48 #include <sys/sleepq.h>
49 #include <sys/lwpctl.h>
50 #include <sys/cpu.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include "opt_sa.h"
55
56 #define LWP_UNPARK_MAX 1024
57
58 static syncobj_t lwp_park_sobj = {
59 SOBJ_SLEEPQ_LIFO,
60 sleepq_unsleep,
61 sleepq_changepri,
62 sleepq_lendpri,
63 syncobj_noowner,
64 };
65
66 static sleeptab_t lwp_park_tab;
67
68 void
69 lwp_sys_init(void)
70 {
71 sleeptab_init(&lwp_park_tab);
72 }
73
74 int
75 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
76 register_t *retval)
77 {
78 /* {
79 syscallarg(const ucontext_t *) ucp;
80 syscallarg(u_long) flags;
81 syscallarg(lwpid_t *) new_lwp;
82 } */
83 struct proc *p = l->l_proc;
84 struct lwp *l2;
85 struct schedstate_percpu *spc;
86 vaddr_t uaddr;
87 ucontext_t *newuc;
88 int error, lid;
89
90 #ifdef KERN_SA
91 mutex_enter(p->p_lock);
92 if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) {
93 mutex_exit(p->p_lock);
94 return EINVAL;
95 }
96 mutex_exit(p->p_lock);
97 #endif
98
99 newuc = kmem_alloc(sizeof(ucontext_t), KM_SLEEP);
100 error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
101 if (error) {
102 kmem_free(newuc, sizeof(ucontext_t));
103 return error;
104 }
105
106 /* XXX check against resource limits */
107
108 uaddr = uvm_uarea_alloc();
109 if (__predict_false(uaddr == 0)) {
110 kmem_free(newuc, sizeof(ucontext_t));
111 return ENOMEM;
112 }
113
114 error = lwp_create(l, p, uaddr, SCARG(uap, flags) & LWP_DETACHED,
115 NULL, 0, p->p_emul->e_startlwp, newuc, &l2, l->l_class);
116 if (__predict_false(error)) {
117 uvm_uarea_free(uaddr);
118 kmem_free(newuc, sizeof(ucontext_t));
119 return error;
120 }
121
122 lid = l2->l_lid;
123 error = copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
124 if (error) {
125 lwp_exit(l2);
126 kmem_free(newuc, sizeof(ucontext_t));
127 return error;
128 }
129
130 /*
131 * Set the new LWP running, unless the caller has requested that
132 * it be created in suspended state. If the process is stopping,
133 * then the LWP is created stopped.
134 */
135 mutex_enter(p->p_lock);
136 lwp_lock(l2);
137 spc = &l2->l_cpu->ci_schedstate;
138 if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0 &&
139 (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
140 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
141 KASSERT(l2->l_wchan == NULL);
142 l2->l_stat = LSSTOP;
143 lwp_unlock_to(l2, spc->spc_lwplock);
144 } else {
145 KASSERT(lwp_locked(l2, spc->spc_mutex));
146 p->p_nrlwps++;
147 l2->l_stat = LSRUN;
148 sched_enqueue(l2, false);
149 lwp_unlock(l2);
150 }
151 } else {
152 l2->l_stat = LSSUSPENDED;
153 lwp_unlock_to(l2, spc->spc_lwplock);
154 }
155 mutex_exit(p->p_lock);
156
157 return 0;
158 }
159
160 int
161 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
162 {
163
164 lwp_exit(l);
165 return 0;
166 }
167
168 int
169 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
170 {
171
172 *retval = l->l_lid;
173 return 0;
174 }
175
176 int
177 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
178 {
179
180 *retval = (uintptr_t)l->l_private;
181 return 0;
182 }
183
184 int
185 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
186 register_t *retval)
187 {
188 /* {
189 syscallarg(void *) ptr;
190 } */
191
192 l->l_private = SCARG(uap, ptr);
193 #ifdef __HAVE_CPU_LWP_SETPRIVATE
194 cpu_lwp_setprivate(l, SCARG(uap, ptr));
195 #endif
196
197 return 0;
198 }
199
200 int
201 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
202 register_t *retval)
203 {
204 /* {
205 syscallarg(lwpid_t) target;
206 } */
207 struct proc *p = l->l_proc;
208 struct lwp *t;
209 int error;
210
211 mutex_enter(p->p_lock);
212
213 #ifdef KERN_SA
214 if ((p->p_sflag & PS_SA) != 0 || p->p_sa != NULL) {
215 mutex_exit(p->p_lock);
216 return EINVAL;
217 }
218 #endif
219
220 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
221 mutex_exit(p->p_lock);
222 return ESRCH;
223 }
224
225 /*
226 * Check for deadlock, which is only possible when we're suspending
227 * ourself. XXX There is a short race here, as p_nrlwps is only
228 * incremented when an LWP suspends itself on the kernel/user
229 * boundary. It's still possible to kill -9 the process so we
230 * don't bother checking further.
231 */
232 lwp_lock(t);
233 if ((t == l && p->p_nrlwps == 1) ||
234 (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
235 lwp_unlock(t);
236 mutex_exit(p->p_lock);
237 return EDEADLK;
238 }
239
240 /*
241 * Suspend the LWP. XXX If it's on a different CPU, we should wait
242 * for it to be preempted, where it will put itself to sleep.
243 *
244 * Suspension of the current LWP will happen on return to userspace.
245 */
246 error = lwp_suspend(l, t);
247 if (error) {
248 mutex_exit(p->p_lock);
249 return error;
250 }
251
252 /*
253 * Wait for:
254 * o process exiting
255 * o target LWP suspended
256 * o target LWP not suspended and L_WSUSPEND clear
257 * o target LWP exited
258 */
259 for (;;) {
260 error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
261 if (error) {
262 error = ERESTART;
263 break;
264 }
265 if (lwp_find(p, SCARG(uap, target)) == NULL) {
266 error = ESRCH;
267 break;
268 }
269 if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
270 error = ERESTART;
271 break;
272 }
273 if (t->l_stat == LSSUSPENDED ||
274 (t->l_flag & LW_WSUSPEND) == 0)
275 break;
276 }
277 mutex_exit(p->p_lock);
278
279 return error;
280 }
281
282 int
283 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
284 register_t *retval)
285 {
286 /* {
287 syscallarg(lwpid_t) target;
288 } */
289 int error;
290 struct proc *p = l->l_proc;
291 struct lwp *t;
292
293 error = 0;
294
295 mutex_enter(p->p_lock);
296 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
297 mutex_exit(p->p_lock);
298 return ESRCH;
299 }
300
301 lwp_lock(t);
302 lwp_continue(t);
303 mutex_exit(p->p_lock);
304
305 return error;
306 }
307
308 int
309 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
310 register_t *retval)
311 {
312 /* {
313 syscallarg(lwpid_t) target;
314 } */
315 struct lwp *t;
316 struct proc *p;
317 int error;
318
319 p = l->l_proc;
320 mutex_enter(p->p_lock);
321
322 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
323 mutex_exit(p->p_lock);
324 return ESRCH;
325 }
326
327 lwp_lock(t);
328 t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
329
330 if (t->l_stat != LSSLEEP) {
331 lwp_unlock(t);
332 error = ENODEV;
333 } else if ((t->l_flag & LW_SINTR) == 0) {
334 lwp_unlock(t);
335 error = EBUSY;
336 } else {
337 /* Wake it up. lwp_unsleep() will release the LWP lock. */
338 lwp_unsleep(t, true);
339 error = 0;
340 }
341
342 mutex_exit(p->p_lock);
343
344 return error;
345 }
346
347 int
348 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
349 register_t *retval)
350 {
351 /* {
352 syscallarg(lwpid_t) wait_for;
353 syscallarg(lwpid_t *) departed;
354 } */
355 struct proc *p = l->l_proc;
356 int error;
357 lwpid_t dep;
358
359 mutex_enter(p->p_lock);
360 error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0);
361 mutex_exit(p->p_lock);
362
363 if (error)
364 return error;
365
366 if (SCARG(uap, departed)) {
367 error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
368 if (error)
369 return error;
370 }
371
372 return 0;
373 }
374
375 int
376 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
377 register_t *retval)
378 {
379 /* {
380 syscallarg(lwpid_t) target;
381 syscallarg(int) signo;
382 } */
383 struct proc *p = l->l_proc;
384 struct lwp *t;
385 ksiginfo_t ksi;
386 int signo = SCARG(uap, signo);
387 int error = 0;
388
389 if ((u_int)signo >= NSIG)
390 return EINVAL;
391
392 KSI_INIT(&ksi);
393 ksi.ksi_signo = signo;
394 ksi.ksi_code = SI_LWP;
395 ksi.ksi_pid = p->p_pid;
396 ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
397 ksi.ksi_lid = SCARG(uap, target);
398
399 mutex_enter(proc_lock);
400 mutex_enter(p->p_lock);
401 if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
402 error = ESRCH;
403 else if (signo != 0)
404 kpsignal2(p, &ksi);
405 mutex_exit(p->p_lock);
406 mutex_exit(proc_lock);
407
408 return error;
409 }
410
411 int
412 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
413 register_t *retval)
414 {
415 /* {
416 syscallarg(lwpid_t) target;
417 } */
418 struct proc *p;
419 struct lwp *t;
420 lwpid_t target;
421 int error;
422
423 target = SCARG(uap, target);
424 p = l->l_proc;
425
426 mutex_enter(p->p_lock);
427
428 if (l->l_lid == target)
429 t = l;
430 else {
431 /*
432 * We can't use lwp_find() here because the target might
433 * be a zombie.
434 */
435 LIST_FOREACH(t, &p->p_lwps, l_sibling)
436 if (t->l_lid == target)
437 break;
438 }
439
440 /*
441 * If the LWP is already detached, there's nothing to do.
442 * If it's a zombie, we need to clean up after it. LSZOMB
443 * is visible with the proc mutex held.
444 *
445 * After we have detached or released the LWP, kick any
446 * other LWPs that may be sitting in _lwp_wait(), waiting
447 * for the target LWP to exit.
448 */
449 if (t != NULL && t->l_stat != LSIDL) {
450 if ((t->l_prflag & LPR_DETACHED) == 0) {
451 p->p_ndlwps++;
452 t->l_prflag |= LPR_DETACHED;
453 if (t->l_stat == LSZOMB) {
454 /* Releases proc mutex. */
455 lwp_free(t, false, false);
456 return 0;
457 }
458 error = 0;
459
460 /*
461 * Have any LWPs sleeping in lwp_wait() recheck
462 * for deadlock.
463 */
464 cv_broadcast(&p->p_lwpcv);
465 } else
466 error = EINVAL;
467 } else
468 error = ESRCH;
469
470 mutex_exit(p->p_lock);
471
472 return error;
473 }
474
475 static inline wchan_t
476 lwp_park_wchan(struct proc *p, const void *hint)
477 {
478
479 return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
480 }
481
482 int
483 lwp_unpark(lwpid_t target, const void *hint)
484 {
485 sleepq_t *sq;
486 wchan_t wchan;
487 kmutex_t *mp;
488 proc_t *p;
489 lwp_t *t;
490
491 /*
492 * Easy case: search for the LWP on the sleep queue. If
493 * it's parked, remove it from the queue and set running.
494 */
495 p = curproc;
496 wchan = lwp_park_wchan(p, hint);
497 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
498
499 TAILQ_FOREACH(t, sq, l_sleepchain)
500 if (t->l_proc == p && t->l_lid == target)
501 break;
502
503 if (__predict_true(t != NULL)) {
504 sleepq_remove(sq, t);
505 mutex_spin_exit(mp);
506 return 0;
507 }
508
509 /*
510 * The LWP hasn't parked yet. Take the hit and mark the
511 * operation as pending.
512 */
513 mutex_spin_exit(mp);
514
515 mutex_enter(p->p_lock);
516 if ((t = lwp_find(p, target)) == NULL) {
517 mutex_exit(p->p_lock);
518 return ESRCH;
519 }
520
521 /*
522 * It may not have parked yet, we may have raced, or it
523 * is parked on a different user sync object.
524 */
525 lwp_lock(t);
526 if (t->l_syncobj == &lwp_park_sobj) {
527 /* Releases the LWP lock. */
528 lwp_unsleep(t, true);
529 } else {
530 /*
531 * Set the operation pending. The next call to _lwp_park
532 * will return early.
533 */
534 t->l_flag |= LW_UNPARKED;
535 lwp_unlock(t);
536 }
537
538 mutex_exit(p->p_lock);
539 return 0;
540 }
541
542 int
543 lwp_park(struct timespec *ts, const void *hint)
544 {
545 sleepq_t *sq;
546 kmutex_t *mp;
547 wchan_t wchan;
548 int timo, error;
549 lwp_t *l;
550
551 /* Fix up the given timeout value. */
552 if (ts != NULL) {
553 error = abstimeout2timo(ts, &timo);
554 if (error) {
555 return error;
556 }
557 KASSERT(timo != 0);
558 } else {
559 timo = 0;
560 }
561
562 /* Find and lock the sleep queue. */
563 l = curlwp;
564 wchan = lwp_park_wchan(l->l_proc, hint);
565 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
566
567 /*
568 * Before going the full route and blocking, check to see if an
569 * unpark op is pending.
570 */
571 lwp_lock(l);
572 if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
573 l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
574 lwp_unlock(l);
575 mutex_spin_exit(mp);
576 return EALREADY;
577 }
578 lwp_unlock_to(l, mp);
579 l->l_biglocks = 0;
580 sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
581 error = sleepq_block(timo, true);
582 switch (error) {
583 case EWOULDBLOCK:
584 error = ETIMEDOUT;
585 break;
586 case ERESTART:
587 error = EINTR;
588 break;
589 default:
590 /* nothing */
591 break;
592 }
593 return error;
594 }
595
596 /*
597 * 'park' an LWP waiting on a user-level synchronisation object. The LWP
598 * will remain parked until another LWP in the same process calls in and
599 * requests that it be unparked.
600 */
601 int
602 sys____lwp_park50(struct lwp *l, const struct sys____lwp_park50_args *uap,
603 register_t *retval)
604 {
605 /* {
606 syscallarg(const struct timespec *) ts;
607 syscallarg(lwpid_t) unpark;
608 syscallarg(const void *) hint;
609 syscallarg(const void *) unparkhint;
610 } */
611 struct timespec ts, *tsp;
612 int error;
613
614 if (SCARG(uap, ts) == NULL)
615 tsp = NULL;
616 else {
617 error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
618 if (error != 0)
619 return error;
620 tsp = &ts;
621 }
622
623 if (SCARG(uap, unpark) != 0) {
624 error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
625 if (error != 0)
626 return error;
627 }
628
629 return lwp_park(tsp, SCARG(uap, hint));
630 }
631
632 int
633 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
634 register_t *retval)
635 {
636 /* {
637 syscallarg(lwpid_t) target;
638 syscallarg(const void *) hint;
639 } */
640
641 return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
642 }
643
644 int
645 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
646 register_t *retval)
647 {
648 /* {
649 syscallarg(const lwpid_t *) targets;
650 syscallarg(size_t) ntargets;
651 syscallarg(const void *) hint;
652 } */
653 struct proc *p;
654 struct lwp *t;
655 sleepq_t *sq;
656 wchan_t wchan;
657 lwpid_t targets[32], *tp, *tpp, *tmax, target;
658 int error;
659 kmutex_t *mp;
660 u_int ntargets;
661 size_t sz;
662
663 p = l->l_proc;
664 ntargets = SCARG(uap, ntargets);
665
666 if (SCARG(uap, targets) == NULL) {
667 /*
668 * Let the caller know how much we are willing to do, and
669 * let it unpark the LWPs in blocks.
670 */
671 *retval = LWP_UNPARK_MAX;
672 return 0;
673 }
674 if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
675 return EINVAL;
676
677 /*
678 * Copy in the target array. If it's a small number of LWPs, then
679 * place the numbers on the stack.
680 */
681 sz = sizeof(target) * ntargets;
682 if (sz <= sizeof(targets))
683 tp = targets;
684 else {
685 tp = kmem_alloc(sz, KM_SLEEP);
686 if (tp == NULL)
687 return ENOMEM;
688 }
689 error = copyin(SCARG(uap, targets), tp, sz);
690 if (error != 0) {
691 if (tp != targets) {
692 kmem_free(tp, sz);
693 }
694 return error;
695 }
696
697 wchan = lwp_park_wchan(p, SCARG(uap, hint));
698 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
699
700 for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
701 target = *tpp;
702
703 /*
704 * Easy case: search for the LWP on the sleep queue. If
705 * it's parked, remove it from the queue and set running.
706 */
707 TAILQ_FOREACH(t, sq, l_sleepchain)
708 if (t->l_proc == p && t->l_lid == target)
709 break;
710
711 if (t != NULL) {
712 sleepq_remove(sq, t);
713 continue;
714 }
715
716 /*
717 * The LWP hasn't parked yet. Take the hit and
718 * mark the operation as pending.
719 */
720 mutex_spin_exit(mp);
721 mutex_enter(p->p_lock);
722 if ((t = lwp_find(p, target)) == NULL) {
723 mutex_exit(p->p_lock);
724 mutex_spin_enter(mp);
725 continue;
726 }
727 lwp_lock(t);
728
729 /*
730 * It may not have parked yet, we may have raced, or
731 * it is parked on a different user sync object.
732 */
733 if (t->l_syncobj == &lwp_park_sobj) {
734 /* Releases the LWP lock. */
735 lwp_unsleep(t, true);
736 } else {
737 /*
738 * Set the operation pending. The next call to
739 * _lwp_park will return early.
740 */
741 t->l_flag |= LW_UNPARKED;
742 lwp_unlock(t);
743 }
744
745 mutex_exit(p->p_lock);
746 mutex_spin_enter(mp);
747 }
748
749 mutex_spin_exit(mp);
750 if (tp != targets)
751 kmem_free(tp, sz);
752
753 return 0;
754 }
755
756 int
757 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
758 register_t *retval)
759 {
760 /* {
761 syscallarg(lwpid_t) target;
762 syscallarg(const char *) name;
763 } */
764 char *name, *oname;
765 lwpid_t target;
766 proc_t *p;
767 lwp_t *t;
768 int error;
769
770 if ((target = SCARG(uap, target)) == 0)
771 target = l->l_lid;
772
773 name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
774 if (name == NULL)
775 return ENOMEM;
776 error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
777 switch (error) {
778 case ENAMETOOLONG:
779 case 0:
780 name[MAXCOMLEN - 1] = '\0';
781 break;
782 default:
783 kmem_free(name, MAXCOMLEN);
784 return error;
785 }
786
787 p = curproc;
788 mutex_enter(p->p_lock);
789 if ((t = lwp_find(p, target)) == NULL) {
790 mutex_exit(p->p_lock);
791 kmem_free(name, MAXCOMLEN);
792 return ESRCH;
793 }
794 lwp_lock(t);
795 oname = t->l_name;
796 t->l_name = name;
797 lwp_unlock(t);
798 mutex_exit(p->p_lock);
799
800 if (oname != NULL)
801 kmem_free(oname, MAXCOMLEN);
802
803 return 0;
804 }
805
806 int
807 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
808 register_t *retval)
809 {
810 /* {
811 syscallarg(lwpid_t) target;
812 syscallarg(char *) name;
813 syscallarg(size_t) len;
814 } */
815 char name[MAXCOMLEN];
816 lwpid_t target;
817 proc_t *p;
818 lwp_t *t;
819
820 if ((target = SCARG(uap, target)) == 0)
821 target = l->l_lid;
822
823 p = curproc;
824 mutex_enter(p->p_lock);
825 if ((t = lwp_find(p, target)) == NULL) {
826 mutex_exit(p->p_lock);
827 return ESRCH;
828 }
829 lwp_lock(t);
830 if (t->l_name == NULL)
831 name[0] = '\0';
832 else
833 strcpy(name, t->l_name);
834 lwp_unlock(t);
835 mutex_exit(p->p_lock);
836
837 return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
838 }
839
840 int
841 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
842 register_t *retval)
843 {
844 /* {
845 syscallarg(int) features;
846 syscallarg(struct lwpctl **) address;
847 } */
848 int error, features;
849 vaddr_t vaddr;
850
851 features = SCARG(uap, features);
852 features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
853 if (features != 0)
854 return ENODEV;
855 if ((error = lwp_ctl_alloc(&vaddr)) != 0)
856 return error;
857 return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
858 }
859