sys_lwp.c revision 1.51 1 /* $NetBSD: sys_lwp.c,v 1.51 2010/06/13 04:13:32 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Lightweight process (LWP) system calls. See kern_lwp.c for a description
34 * of LWPs.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.51 2010/06/13 04:13:32 yamt Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/pool.h>
43 #include <sys/proc.h>
44 #include <sys/types.h>
45 #include <sys/syscallargs.h>
46 #include <sys/kauth.h>
47 #include <sys/kmem.h>
48 #include <sys/sleepq.h>
49 #include <sys/lwpctl.h>
50 #include <sys/cpu.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include "opt_sa.h"
55
56 #define LWP_UNPARK_MAX 1024
57
58 static syncobj_t lwp_park_sobj = {
59 SOBJ_SLEEPQ_LIFO,
60 sleepq_unsleep,
61 sleepq_changepri,
62 sleepq_lendpri,
63 syncobj_noowner,
64 };
65
66 static sleeptab_t lwp_park_tab;
67
68 void
69 lwp_sys_init(void)
70 {
71 sleeptab_init(&lwp_park_tab);
72 }
73
74 int
75 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
76 register_t *retval)
77 {
78 /* {
79 syscallarg(const ucontext_t *) ucp;
80 syscallarg(u_long) flags;
81 syscallarg(lwpid_t *) new_lwp;
82 } */
83 struct proc *p = l->l_proc;
84 struct lwp *l2;
85 struct schedstate_percpu *spc;
86 vaddr_t uaddr;
87 ucontext_t *newuc;
88 int error, lid;
89
90 #ifdef KERN_SA
91 mutex_enter(p->p_lock);
92 if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) {
93 mutex_exit(p->p_lock);
94 return EINVAL;
95 }
96 mutex_exit(p->p_lock);
97 #endif
98
99 newuc = kmem_alloc(sizeof(ucontext_t), KM_SLEEP);
100 error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
101 if (error) {
102 kmem_free(newuc, sizeof(ucontext_t));
103 return error;
104 }
105
106 /* XXX check against resource limits */
107
108 uaddr = uvm_uarea_alloc();
109 if (__predict_false(uaddr == 0)) {
110 kmem_free(newuc, sizeof(ucontext_t));
111 return ENOMEM;
112 }
113
114 error = lwp_create(l, p, uaddr, SCARG(uap, flags) & LWP_DETACHED,
115 NULL, 0, p->p_emul->e_startlwp, newuc, &l2, l->l_class);
116 if (__predict_false(error)) {
117 uvm_uarea_free(uaddr);
118 kmem_free(newuc, sizeof(ucontext_t));
119 return error;
120 }
121
122 lid = l2->l_lid;
123 error = copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
124 if (error) {
125 lwp_exit(l2);
126 kmem_free(newuc, sizeof(ucontext_t));
127 return error;
128 }
129
130 /*
131 * Set the new LWP running, unless the caller has requested that
132 * it be created in suspended state. If the process is stopping,
133 * then the LWP is created stopped.
134 */
135 mutex_enter(p->p_lock);
136 lwp_lock(l2);
137 spc = &l2->l_cpu->ci_schedstate;
138 if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0 &&
139 (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
140 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
141 KASSERT(l2->l_wchan == NULL);
142 l2->l_stat = LSSTOP;
143 p->p_nrlwps--;
144 lwp_unlock_to(l2, spc->spc_lwplock);
145 } else {
146 KASSERT(lwp_locked(l2, spc->spc_mutex));
147 l2->l_stat = LSRUN;
148 sched_enqueue(l2, false);
149 lwp_unlock(l2);
150 }
151 } else {
152 l2->l_stat = LSSUSPENDED;
153 p->p_nrlwps--;
154 lwp_unlock_to(l2, spc->spc_lwplock);
155 }
156 mutex_exit(p->p_lock);
157
158 return 0;
159 }
160
161 int
162 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
163 {
164
165 lwp_exit(l);
166 return 0;
167 }
168
169 int
170 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
171 {
172
173 *retval = l->l_lid;
174 return 0;
175 }
176
177 int
178 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
179 {
180
181 *retval = (uintptr_t)l->l_private;
182 return 0;
183 }
184
185 int
186 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
187 register_t *retval)
188 {
189 /* {
190 syscallarg(void *) ptr;
191 } */
192
193 l->l_private = SCARG(uap, ptr);
194 #ifdef __HAVE_CPU_LWP_SETPRIVATE
195 cpu_lwp_setprivate(l, SCARG(uap, ptr));
196 #endif
197
198 return 0;
199 }
200
201 int
202 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
203 register_t *retval)
204 {
205 /* {
206 syscallarg(lwpid_t) target;
207 } */
208 struct proc *p = l->l_proc;
209 struct lwp *t;
210 int error;
211
212 mutex_enter(p->p_lock);
213
214 #ifdef KERN_SA
215 if ((p->p_sflag & PS_SA) != 0 || p->p_sa != NULL) {
216 mutex_exit(p->p_lock);
217 return EINVAL;
218 }
219 #endif
220
221 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
222 mutex_exit(p->p_lock);
223 return ESRCH;
224 }
225
226 /*
227 * Check for deadlock, which is only possible when we're suspending
228 * ourself. XXX There is a short race here, as p_nrlwps is only
229 * incremented when an LWP suspends itself on the kernel/user
230 * boundary. It's still possible to kill -9 the process so we
231 * don't bother checking further.
232 */
233 lwp_lock(t);
234 if ((t == l && p->p_nrlwps == 1) ||
235 (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
236 lwp_unlock(t);
237 mutex_exit(p->p_lock);
238 return EDEADLK;
239 }
240
241 /*
242 * Suspend the LWP. XXX If it's on a different CPU, we should wait
243 * for it to be preempted, where it will put itself to sleep.
244 *
245 * Suspension of the current LWP will happen on return to userspace.
246 */
247 error = lwp_suspend(l, t);
248 if (error) {
249 mutex_exit(p->p_lock);
250 return error;
251 }
252
253 /*
254 * Wait for:
255 * o process exiting
256 * o target LWP suspended
257 * o target LWP not suspended and L_WSUSPEND clear
258 * o target LWP exited
259 */
260 for (;;) {
261 error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
262 if (error) {
263 error = ERESTART;
264 break;
265 }
266 if (lwp_find(p, SCARG(uap, target)) == NULL) {
267 error = ESRCH;
268 break;
269 }
270 if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
271 error = ERESTART;
272 break;
273 }
274 if (t->l_stat == LSSUSPENDED ||
275 (t->l_flag & LW_WSUSPEND) == 0)
276 break;
277 }
278 mutex_exit(p->p_lock);
279
280 return error;
281 }
282
283 int
284 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
285 register_t *retval)
286 {
287 /* {
288 syscallarg(lwpid_t) target;
289 } */
290 int error;
291 struct proc *p = l->l_proc;
292 struct lwp *t;
293
294 error = 0;
295
296 mutex_enter(p->p_lock);
297 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
298 mutex_exit(p->p_lock);
299 return ESRCH;
300 }
301
302 lwp_lock(t);
303 lwp_continue(t);
304 mutex_exit(p->p_lock);
305
306 return error;
307 }
308
309 int
310 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
311 register_t *retval)
312 {
313 /* {
314 syscallarg(lwpid_t) target;
315 } */
316 struct lwp *t;
317 struct proc *p;
318 int error;
319
320 p = l->l_proc;
321 mutex_enter(p->p_lock);
322
323 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
324 mutex_exit(p->p_lock);
325 return ESRCH;
326 }
327
328 lwp_lock(t);
329 t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
330
331 if (t->l_stat != LSSLEEP) {
332 lwp_unlock(t);
333 error = ENODEV;
334 } else if ((t->l_flag & LW_SINTR) == 0) {
335 lwp_unlock(t);
336 error = EBUSY;
337 } else {
338 /* Wake it up. lwp_unsleep() will release the LWP lock. */
339 lwp_unsleep(t, true);
340 error = 0;
341 }
342
343 mutex_exit(p->p_lock);
344
345 return error;
346 }
347
348 int
349 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
350 register_t *retval)
351 {
352 /* {
353 syscallarg(lwpid_t) wait_for;
354 syscallarg(lwpid_t *) departed;
355 } */
356 struct proc *p = l->l_proc;
357 int error;
358 lwpid_t dep;
359
360 mutex_enter(p->p_lock);
361 error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0);
362 mutex_exit(p->p_lock);
363
364 if (error)
365 return error;
366
367 if (SCARG(uap, departed)) {
368 error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
369 if (error)
370 return error;
371 }
372
373 return 0;
374 }
375
376 int
377 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
378 register_t *retval)
379 {
380 /* {
381 syscallarg(lwpid_t) target;
382 syscallarg(int) signo;
383 } */
384 struct proc *p = l->l_proc;
385 struct lwp *t;
386 ksiginfo_t ksi;
387 int signo = SCARG(uap, signo);
388 int error = 0;
389
390 if ((u_int)signo >= NSIG)
391 return EINVAL;
392
393 KSI_INIT(&ksi);
394 ksi.ksi_signo = signo;
395 ksi.ksi_code = SI_LWP;
396 ksi.ksi_pid = p->p_pid;
397 ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
398 ksi.ksi_lid = SCARG(uap, target);
399
400 mutex_enter(proc_lock);
401 mutex_enter(p->p_lock);
402 if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
403 error = ESRCH;
404 else if (signo != 0)
405 kpsignal2(p, &ksi);
406 mutex_exit(p->p_lock);
407 mutex_exit(proc_lock);
408
409 return error;
410 }
411
412 int
413 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
414 register_t *retval)
415 {
416 /* {
417 syscallarg(lwpid_t) target;
418 } */
419 struct proc *p;
420 struct lwp *t;
421 lwpid_t target;
422 int error;
423
424 target = SCARG(uap, target);
425 p = l->l_proc;
426
427 mutex_enter(p->p_lock);
428
429 if (l->l_lid == target)
430 t = l;
431 else {
432 /*
433 * We can't use lwp_find() here because the target might
434 * be a zombie.
435 */
436 LIST_FOREACH(t, &p->p_lwps, l_sibling)
437 if (t->l_lid == target)
438 break;
439 }
440
441 /*
442 * If the LWP is already detached, there's nothing to do.
443 * If it's a zombie, we need to clean up after it. LSZOMB
444 * is visible with the proc mutex held.
445 *
446 * After we have detached or released the LWP, kick any
447 * other LWPs that may be sitting in _lwp_wait(), waiting
448 * for the target LWP to exit.
449 */
450 if (t != NULL && t->l_stat != LSIDL) {
451 if ((t->l_prflag & LPR_DETACHED) == 0) {
452 p->p_ndlwps++;
453 t->l_prflag |= LPR_DETACHED;
454 if (t->l_stat == LSZOMB) {
455 /* Releases proc mutex. */
456 lwp_free(t, false, false);
457 return 0;
458 }
459 error = 0;
460
461 /*
462 * Have any LWPs sleeping in lwp_wait() recheck
463 * for deadlock.
464 */
465 cv_broadcast(&p->p_lwpcv);
466 } else
467 error = EINVAL;
468 } else
469 error = ESRCH;
470
471 mutex_exit(p->p_lock);
472
473 return error;
474 }
475
476 static inline wchan_t
477 lwp_park_wchan(struct proc *p, const void *hint)
478 {
479
480 return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
481 }
482
483 int
484 lwp_unpark(lwpid_t target, const void *hint)
485 {
486 sleepq_t *sq;
487 wchan_t wchan;
488 kmutex_t *mp;
489 proc_t *p;
490 lwp_t *t;
491
492 /*
493 * Easy case: search for the LWP on the sleep queue. If
494 * it's parked, remove it from the queue and set running.
495 */
496 p = curproc;
497 wchan = lwp_park_wchan(p, hint);
498 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
499
500 TAILQ_FOREACH(t, sq, l_sleepchain)
501 if (t->l_proc == p && t->l_lid == target)
502 break;
503
504 if (__predict_true(t != NULL)) {
505 sleepq_remove(sq, t);
506 mutex_spin_exit(mp);
507 return 0;
508 }
509
510 /*
511 * The LWP hasn't parked yet. Take the hit and mark the
512 * operation as pending.
513 */
514 mutex_spin_exit(mp);
515
516 mutex_enter(p->p_lock);
517 if ((t = lwp_find(p, target)) == NULL) {
518 mutex_exit(p->p_lock);
519 return ESRCH;
520 }
521
522 /*
523 * It may not have parked yet, we may have raced, or it
524 * is parked on a different user sync object.
525 */
526 lwp_lock(t);
527 if (t->l_syncobj == &lwp_park_sobj) {
528 /* Releases the LWP lock. */
529 lwp_unsleep(t, true);
530 } else {
531 /*
532 * Set the operation pending. The next call to _lwp_park
533 * will return early.
534 */
535 t->l_flag |= LW_UNPARKED;
536 lwp_unlock(t);
537 }
538
539 mutex_exit(p->p_lock);
540 return 0;
541 }
542
543 int
544 lwp_park(struct timespec *ts, const void *hint)
545 {
546 sleepq_t *sq;
547 kmutex_t *mp;
548 wchan_t wchan;
549 int timo, error;
550 lwp_t *l;
551
552 /* Fix up the given timeout value. */
553 if (ts != NULL) {
554 error = abstimeout2timo(ts, &timo);
555 if (error) {
556 return error;
557 }
558 KASSERT(timo != 0);
559 } else {
560 timo = 0;
561 }
562
563 /* Find and lock the sleep queue. */
564 l = curlwp;
565 wchan = lwp_park_wchan(l->l_proc, hint);
566 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
567
568 /*
569 * Before going the full route and blocking, check to see if an
570 * unpark op is pending.
571 */
572 lwp_lock(l);
573 if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
574 l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
575 lwp_unlock(l);
576 mutex_spin_exit(mp);
577 return EALREADY;
578 }
579 lwp_unlock_to(l, mp);
580 l->l_biglocks = 0;
581 sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
582 error = sleepq_block(timo, true);
583 switch (error) {
584 case EWOULDBLOCK:
585 error = ETIMEDOUT;
586 break;
587 case ERESTART:
588 error = EINTR;
589 break;
590 default:
591 /* nothing */
592 break;
593 }
594 return error;
595 }
596
597 /*
598 * 'park' an LWP waiting on a user-level synchronisation object. The LWP
599 * will remain parked until another LWP in the same process calls in and
600 * requests that it be unparked.
601 */
602 int
603 sys____lwp_park50(struct lwp *l, const struct sys____lwp_park50_args *uap,
604 register_t *retval)
605 {
606 /* {
607 syscallarg(const struct timespec *) ts;
608 syscallarg(lwpid_t) unpark;
609 syscallarg(const void *) hint;
610 syscallarg(const void *) unparkhint;
611 } */
612 struct timespec ts, *tsp;
613 int error;
614
615 if (SCARG(uap, ts) == NULL)
616 tsp = NULL;
617 else {
618 error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
619 if (error != 0)
620 return error;
621 tsp = &ts;
622 }
623
624 if (SCARG(uap, unpark) != 0) {
625 error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
626 if (error != 0)
627 return error;
628 }
629
630 return lwp_park(tsp, SCARG(uap, hint));
631 }
632
633 int
634 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
635 register_t *retval)
636 {
637 /* {
638 syscallarg(lwpid_t) target;
639 syscallarg(const void *) hint;
640 } */
641
642 return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
643 }
644
645 int
646 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
647 register_t *retval)
648 {
649 /* {
650 syscallarg(const lwpid_t *) targets;
651 syscallarg(size_t) ntargets;
652 syscallarg(const void *) hint;
653 } */
654 struct proc *p;
655 struct lwp *t;
656 sleepq_t *sq;
657 wchan_t wchan;
658 lwpid_t targets[32], *tp, *tpp, *tmax, target;
659 int error;
660 kmutex_t *mp;
661 u_int ntargets;
662 size_t sz;
663
664 p = l->l_proc;
665 ntargets = SCARG(uap, ntargets);
666
667 if (SCARG(uap, targets) == NULL) {
668 /*
669 * Let the caller know how much we are willing to do, and
670 * let it unpark the LWPs in blocks.
671 */
672 *retval = LWP_UNPARK_MAX;
673 return 0;
674 }
675 if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
676 return EINVAL;
677
678 /*
679 * Copy in the target array. If it's a small number of LWPs, then
680 * place the numbers on the stack.
681 */
682 sz = sizeof(target) * ntargets;
683 if (sz <= sizeof(targets))
684 tp = targets;
685 else {
686 tp = kmem_alloc(sz, KM_SLEEP);
687 if (tp == NULL)
688 return ENOMEM;
689 }
690 error = copyin(SCARG(uap, targets), tp, sz);
691 if (error != 0) {
692 if (tp != targets) {
693 kmem_free(tp, sz);
694 }
695 return error;
696 }
697
698 wchan = lwp_park_wchan(p, SCARG(uap, hint));
699 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
700
701 for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
702 target = *tpp;
703
704 /*
705 * Easy case: search for the LWP on the sleep queue. If
706 * it's parked, remove it from the queue and set running.
707 */
708 TAILQ_FOREACH(t, sq, l_sleepchain)
709 if (t->l_proc == p && t->l_lid == target)
710 break;
711
712 if (t != NULL) {
713 sleepq_remove(sq, t);
714 continue;
715 }
716
717 /*
718 * The LWP hasn't parked yet. Take the hit and
719 * mark the operation as pending.
720 */
721 mutex_spin_exit(mp);
722 mutex_enter(p->p_lock);
723 if ((t = lwp_find(p, target)) == NULL) {
724 mutex_exit(p->p_lock);
725 mutex_spin_enter(mp);
726 continue;
727 }
728 lwp_lock(t);
729
730 /*
731 * It may not have parked yet, we may have raced, or
732 * it is parked on a different user sync object.
733 */
734 if (t->l_syncobj == &lwp_park_sobj) {
735 /* Releases the LWP lock. */
736 lwp_unsleep(t, true);
737 } else {
738 /*
739 * Set the operation pending. The next call to
740 * _lwp_park will return early.
741 */
742 t->l_flag |= LW_UNPARKED;
743 lwp_unlock(t);
744 }
745
746 mutex_exit(p->p_lock);
747 mutex_spin_enter(mp);
748 }
749
750 mutex_spin_exit(mp);
751 if (tp != targets)
752 kmem_free(tp, sz);
753
754 return 0;
755 }
756
757 int
758 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
759 register_t *retval)
760 {
761 /* {
762 syscallarg(lwpid_t) target;
763 syscallarg(const char *) name;
764 } */
765 char *name, *oname;
766 lwpid_t target;
767 proc_t *p;
768 lwp_t *t;
769 int error;
770
771 if ((target = SCARG(uap, target)) == 0)
772 target = l->l_lid;
773
774 name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
775 if (name == NULL)
776 return ENOMEM;
777 error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
778 switch (error) {
779 case ENAMETOOLONG:
780 case 0:
781 name[MAXCOMLEN - 1] = '\0';
782 break;
783 default:
784 kmem_free(name, MAXCOMLEN);
785 return error;
786 }
787
788 p = curproc;
789 mutex_enter(p->p_lock);
790 if ((t = lwp_find(p, target)) == NULL) {
791 mutex_exit(p->p_lock);
792 kmem_free(name, MAXCOMLEN);
793 return ESRCH;
794 }
795 lwp_lock(t);
796 oname = t->l_name;
797 t->l_name = name;
798 lwp_unlock(t);
799 mutex_exit(p->p_lock);
800
801 if (oname != NULL)
802 kmem_free(oname, MAXCOMLEN);
803
804 return 0;
805 }
806
807 int
808 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
809 register_t *retval)
810 {
811 /* {
812 syscallarg(lwpid_t) target;
813 syscallarg(char *) name;
814 syscallarg(size_t) len;
815 } */
816 char name[MAXCOMLEN];
817 lwpid_t target;
818 proc_t *p;
819 lwp_t *t;
820
821 if ((target = SCARG(uap, target)) == 0)
822 target = l->l_lid;
823
824 p = curproc;
825 mutex_enter(p->p_lock);
826 if ((t = lwp_find(p, target)) == NULL) {
827 mutex_exit(p->p_lock);
828 return ESRCH;
829 }
830 lwp_lock(t);
831 if (t->l_name == NULL)
832 name[0] = '\0';
833 else
834 strcpy(name, t->l_name);
835 lwp_unlock(t);
836 mutex_exit(p->p_lock);
837
838 return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
839 }
840
841 int
842 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
843 register_t *retval)
844 {
845 /* {
846 syscallarg(int) features;
847 syscallarg(struct lwpctl **) address;
848 } */
849 int error, features;
850 vaddr_t vaddr;
851
852 features = SCARG(uap, features);
853 features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
854 if (features != 0)
855 return ENODEV;
856 if ((error = lwp_ctl_alloc(&vaddr)) != 0)
857 return error;
858 return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
859 }
860