Home | History | Annotate | Line # | Download | only in kern
sys_lwp.c revision 1.51
      1 /*	$NetBSD: sys_lwp.c,v 1.51 2010/06/13 04:13:32 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Lightweight process (LWP) system calls.  See kern_lwp.c for a description
     34  * of LWPs.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.51 2010/06/13 04:13:32 yamt Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/pool.h>
     43 #include <sys/proc.h>
     44 #include <sys/types.h>
     45 #include <sys/syscallargs.h>
     46 #include <sys/kauth.h>
     47 #include <sys/kmem.h>
     48 #include <sys/sleepq.h>
     49 #include <sys/lwpctl.h>
     50 #include <sys/cpu.h>
     51 
     52 #include <uvm/uvm_extern.h>
     53 
     54 #include "opt_sa.h"
     55 
     56 #define	LWP_UNPARK_MAX		1024
     57 
     58 static syncobj_t lwp_park_sobj = {
     59 	SOBJ_SLEEPQ_LIFO,
     60 	sleepq_unsleep,
     61 	sleepq_changepri,
     62 	sleepq_lendpri,
     63 	syncobj_noowner,
     64 };
     65 
     66 static sleeptab_t	lwp_park_tab;
     67 
     68 void
     69 lwp_sys_init(void)
     70 {
     71 	sleeptab_init(&lwp_park_tab);
     72 }
     73 
     74 int
     75 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
     76     register_t *retval)
     77 {
     78 	/* {
     79 		syscallarg(const ucontext_t *) ucp;
     80 		syscallarg(u_long) flags;
     81 		syscallarg(lwpid_t *) new_lwp;
     82 	} */
     83 	struct proc *p = l->l_proc;
     84 	struct lwp *l2;
     85 	struct schedstate_percpu *spc;
     86 	vaddr_t uaddr;
     87 	ucontext_t *newuc;
     88 	int error, lid;
     89 
     90 #ifdef KERN_SA
     91 	mutex_enter(p->p_lock);
     92 	if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) {
     93 		mutex_exit(p->p_lock);
     94 		return EINVAL;
     95 	}
     96 	mutex_exit(p->p_lock);
     97 #endif
     98 
     99 	newuc = kmem_alloc(sizeof(ucontext_t), KM_SLEEP);
    100 	error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
    101 	if (error) {
    102 		kmem_free(newuc, sizeof(ucontext_t));
    103 		return error;
    104 	}
    105 
    106 	/* XXX check against resource limits */
    107 
    108 	uaddr = uvm_uarea_alloc();
    109 	if (__predict_false(uaddr == 0)) {
    110 		kmem_free(newuc, sizeof(ucontext_t));
    111 		return ENOMEM;
    112 	}
    113 
    114 	error = lwp_create(l, p, uaddr, SCARG(uap, flags) & LWP_DETACHED,
    115 	    NULL, 0, p->p_emul->e_startlwp, newuc, &l2, l->l_class);
    116 	if (__predict_false(error)) {
    117 		uvm_uarea_free(uaddr);
    118 		kmem_free(newuc, sizeof(ucontext_t));
    119 		return error;
    120 	}
    121 
    122 	lid = l2->l_lid;
    123 	error = copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
    124 	if (error) {
    125 		lwp_exit(l2);
    126 		kmem_free(newuc, sizeof(ucontext_t));
    127 		return error;
    128 	}
    129 
    130 	/*
    131 	 * Set the new LWP running, unless the caller has requested that
    132 	 * it be created in suspended state.  If the process is stopping,
    133 	 * then the LWP is created stopped.
    134 	 */
    135 	mutex_enter(p->p_lock);
    136 	lwp_lock(l2);
    137 	spc = &l2->l_cpu->ci_schedstate;
    138 	if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0 &&
    139 	    (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
    140 	    	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
    141 			KASSERT(l2->l_wchan == NULL);
    142 	    		l2->l_stat = LSSTOP;
    143 			p->p_nrlwps--;
    144 			lwp_unlock_to(l2, spc->spc_lwplock);
    145 		} else {
    146 			KASSERT(lwp_locked(l2, spc->spc_mutex));
    147 			l2->l_stat = LSRUN;
    148 			sched_enqueue(l2, false);
    149 			lwp_unlock(l2);
    150 		}
    151 	} else {
    152 		l2->l_stat = LSSUSPENDED;
    153 		p->p_nrlwps--;
    154 		lwp_unlock_to(l2, spc->spc_lwplock);
    155 	}
    156 	mutex_exit(p->p_lock);
    157 
    158 	return 0;
    159 }
    160 
    161 int
    162 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
    163 {
    164 
    165 	lwp_exit(l);
    166 	return 0;
    167 }
    168 
    169 int
    170 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
    171 {
    172 
    173 	*retval = l->l_lid;
    174 	return 0;
    175 }
    176 
    177 int
    178 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
    179 {
    180 
    181 	*retval = (uintptr_t)l->l_private;
    182 	return 0;
    183 }
    184 
    185 int
    186 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
    187     register_t *retval)
    188 {
    189 	/* {
    190 		syscallarg(void *) ptr;
    191 	} */
    192 
    193 	l->l_private = SCARG(uap, ptr);
    194 #ifdef __HAVE_CPU_LWP_SETPRIVATE
    195 	cpu_lwp_setprivate(l, SCARG(uap, ptr));
    196 #endif
    197 
    198 	return 0;
    199 }
    200 
    201 int
    202 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
    203     register_t *retval)
    204 {
    205 	/* {
    206 		syscallarg(lwpid_t) target;
    207 	} */
    208 	struct proc *p = l->l_proc;
    209 	struct lwp *t;
    210 	int error;
    211 
    212 	mutex_enter(p->p_lock);
    213 
    214 #ifdef KERN_SA
    215 	if ((p->p_sflag & PS_SA) != 0 || p->p_sa != NULL) {
    216 		mutex_exit(p->p_lock);
    217 		return EINVAL;
    218 	}
    219 #endif
    220 
    221 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
    222 		mutex_exit(p->p_lock);
    223 		return ESRCH;
    224 	}
    225 
    226 	/*
    227 	 * Check for deadlock, which is only possible when we're suspending
    228 	 * ourself.  XXX There is a short race here, as p_nrlwps is only
    229 	 * incremented when an LWP suspends itself on the kernel/user
    230 	 * boundary.  It's still possible to kill -9 the process so we
    231 	 * don't bother checking further.
    232 	 */
    233 	lwp_lock(t);
    234 	if ((t == l && p->p_nrlwps == 1) ||
    235 	    (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
    236 		lwp_unlock(t);
    237 		mutex_exit(p->p_lock);
    238 		return EDEADLK;
    239 	}
    240 
    241 	/*
    242 	 * Suspend the LWP.  XXX If it's on a different CPU, we should wait
    243 	 * for it to be preempted, where it will put itself to sleep.
    244 	 *
    245 	 * Suspension of the current LWP will happen on return to userspace.
    246 	 */
    247 	error = lwp_suspend(l, t);
    248 	if (error) {
    249 		mutex_exit(p->p_lock);
    250 		return error;
    251 	}
    252 
    253 	/*
    254 	 * Wait for:
    255 	 *  o process exiting
    256 	 *  o target LWP suspended
    257 	 *  o target LWP not suspended and L_WSUSPEND clear
    258 	 *  o target LWP exited
    259 	 */
    260 	for (;;) {
    261 		error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
    262 		if (error) {
    263 			error = ERESTART;
    264 			break;
    265 		}
    266 		if (lwp_find(p, SCARG(uap, target)) == NULL) {
    267 			error = ESRCH;
    268 			break;
    269 		}
    270 		if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
    271 			error = ERESTART;
    272 			break;
    273 		}
    274 		if (t->l_stat == LSSUSPENDED ||
    275 		    (t->l_flag & LW_WSUSPEND) == 0)
    276 			break;
    277 	}
    278 	mutex_exit(p->p_lock);
    279 
    280 	return error;
    281 }
    282 
    283 int
    284 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
    285     register_t *retval)
    286 {
    287 	/* {
    288 		syscallarg(lwpid_t) target;
    289 	} */
    290 	int error;
    291 	struct proc *p = l->l_proc;
    292 	struct lwp *t;
    293 
    294 	error = 0;
    295 
    296 	mutex_enter(p->p_lock);
    297 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
    298 		mutex_exit(p->p_lock);
    299 		return ESRCH;
    300 	}
    301 
    302 	lwp_lock(t);
    303 	lwp_continue(t);
    304 	mutex_exit(p->p_lock);
    305 
    306 	return error;
    307 }
    308 
    309 int
    310 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
    311     register_t *retval)
    312 {
    313 	/* {
    314 		syscallarg(lwpid_t) target;
    315 	} */
    316 	struct lwp *t;
    317 	struct proc *p;
    318 	int error;
    319 
    320 	p = l->l_proc;
    321 	mutex_enter(p->p_lock);
    322 
    323 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
    324 		mutex_exit(p->p_lock);
    325 		return ESRCH;
    326 	}
    327 
    328 	lwp_lock(t);
    329 	t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
    330 
    331 	if (t->l_stat != LSSLEEP) {
    332 		lwp_unlock(t);
    333 		error = ENODEV;
    334 	} else if ((t->l_flag & LW_SINTR) == 0) {
    335 		lwp_unlock(t);
    336 		error = EBUSY;
    337 	} else {
    338 		/* Wake it up.  lwp_unsleep() will release the LWP lock. */
    339 		lwp_unsleep(t, true);
    340 		error = 0;
    341 	}
    342 
    343 	mutex_exit(p->p_lock);
    344 
    345 	return error;
    346 }
    347 
    348 int
    349 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
    350     register_t *retval)
    351 {
    352 	/* {
    353 		syscallarg(lwpid_t) wait_for;
    354 		syscallarg(lwpid_t *) departed;
    355 	} */
    356 	struct proc *p = l->l_proc;
    357 	int error;
    358 	lwpid_t dep;
    359 
    360 	mutex_enter(p->p_lock);
    361 	error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0);
    362 	mutex_exit(p->p_lock);
    363 
    364 	if (error)
    365 		return error;
    366 
    367 	if (SCARG(uap, departed)) {
    368 		error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
    369 		if (error)
    370 			return error;
    371 	}
    372 
    373 	return 0;
    374 }
    375 
    376 int
    377 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
    378     register_t *retval)
    379 {
    380 	/* {
    381 		syscallarg(lwpid_t)	target;
    382 		syscallarg(int)		signo;
    383 	} */
    384 	struct proc *p = l->l_proc;
    385 	struct lwp *t;
    386 	ksiginfo_t ksi;
    387 	int signo = SCARG(uap, signo);
    388 	int error = 0;
    389 
    390 	if ((u_int)signo >= NSIG)
    391 		return EINVAL;
    392 
    393 	KSI_INIT(&ksi);
    394 	ksi.ksi_signo = signo;
    395 	ksi.ksi_code = SI_LWP;
    396 	ksi.ksi_pid = p->p_pid;
    397 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
    398 	ksi.ksi_lid = SCARG(uap, target);
    399 
    400 	mutex_enter(proc_lock);
    401 	mutex_enter(p->p_lock);
    402 	if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
    403 		error = ESRCH;
    404 	else if (signo != 0)
    405 		kpsignal2(p, &ksi);
    406 	mutex_exit(p->p_lock);
    407 	mutex_exit(proc_lock);
    408 
    409 	return error;
    410 }
    411 
    412 int
    413 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
    414     register_t *retval)
    415 {
    416 	/* {
    417 		syscallarg(lwpid_t)	target;
    418 	} */
    419 	struct proc *p;
    420 	struct lwp *t;
    421 	lwpid_t target;
    422 	int error;
    423 
    424 	target = SCARG(uap, target);
    425 	p = l->l_proc;
    426 
    427 	mutex_enter(p->p_lock);
    428 
    429 	if (l->l_lid == target)
    430 		t = l;
    431 	else {
    432 		/*
    433 		 * We can't use lwp_find() here because the target might
    434 		 * be a zombie.
    435 		 */
    436 		LIST_FOREACH(t, &p->p_lwps, l_sibling)
    437 			if (t->l_lid == target)
    438 				break;
    439 	}
    440 
    441 	/*
    442 	 * If the LWP is already detached, there's nothing to do.
    443 	 * If it's a zombie, we need to clean up after it.  LSZOMB
    444 	 * is visible with the proc mutex held.
    445 	 *
    446 	 * After we have detached or released the LWP, kick any
    447 	 * other LWPs that may be sitting in _lwp_wait(), waiting
    448 	 * for the target LWP to exit.
    449 	 */
    450 	if (t != NULL && t->l_stat != LSIDL) {
    451 		if ((t->l_prflag & LPR_DETACHED) == 0) {
    452 			p->p_ndlwps++;
    453 			t->l_prflag |= LPR_DETACHED;
    454 			if (t->l_stat == LSZOMB) {
    455 				/* Releases proc mutex. */
    456 				lwp_free(t, false, false);
    457 				return 0;
    458 			}
    459 			error = 0;
    460 
    461 			/*
    462 			 * Have any LWPs sleeping in lwp_wait() recheck
    463 			 * for deadlock.
    464 			 */
    465 			cv_broadcast(&p->p_lwpcv);
    466 		} else
    467 			error = EINVAL;
    468 	} else
    469 		error = ESRCH;
    470 
    471 	mutex_exit(p->p_lock);
    472 
    473 	return error;
    474 }
    475 
    476 static inline wchan_t
    477 lwp_park_wchan(struct proc *p, const void *hint)
    478 {
    479 
    480 	return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
    481 }
    482 
    483 int
    484 lwp_unpark(lwpid_t target, const void *hint)
    485 {
    486 	sleepq_t *sq;
    487 	wchan_t wchan;
    488 	kmutex_t *mp;
    489 	proc_t *p;
    490 	lwp_t *t;
    491 
    492 	/*
    493 	 * Easy case: search for the LWP on the sleep queue.  If
    494 	 * it's parked, remove it from the queue and set running.
    495 	 */
    496 	p = curproc;
    497 	wchan = lwp_park_wchan(p, hint);
    498 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
    499 
    500 	TAILQ_FOREACH(t, sq, l_sleepchain)
    501 		if (t->l_proc == p && t->l_lid == target)
    502 			break;
    503 
    504 	if (__predict_true(t != NULL)) {
    505 		sleepq_remove(sq, t);
    506 		mutex_spin_exit(mp);
    507 		return 0;
    508 	}
    509 
    510 	/*
    511 	 * The LWP hasn't parked yet.  Take the hit and mark the
    512 	 * operation as pending.
    513 	 */
    514 	mutex_spin_exit(mp);
    515 
    516 	mutex_enter(p->p_lock);
    517 	if ((t = lwp_find(p, target)) == NULL) {
    518 		mutex_exit(p->p_lock);
    519 		return ESRCH;
    520 	}
    521 
    522 	/*
    523 	 * It may not have parked yet, we may have raced, or it
    524 	 * is parked on a different user sync object.
    525 	 */
    526 	lwp_lock(t);
    527 	if (t->l_syncobj == &lwp_park_sobj) {
    528 		/* Releases the LWP lock. */
    529 		lwp_unsleep(t, true);
    530 	} else {
    531 		/*
    532 		 * Set the operation pending.  The next call to _lwp_park
    533 		 * will return early.
    534 		 */
    535 		t->l_flag |= LW_UNPARKED;
    536 		lwp_unlock(t);
    537 	}
    538 
    539 	mutex_exit(p->p_lock);
    540 	return 0;
    541 }
    542 
    543 int
    544 lwp_park(struct timespec *ts, const void *hint)
    545 {
    546 	sleepq_t *sq;
    547 	kmutex_t *mp;
    548 	wchan_t wchan;
    549 	int timo, error;
    550 	lwp_t *l;
    551 
    552 	/* Fix up the given timeout value. */
    553 	if (ts != NULL) {
    554 		error = abstimeout2timo(ts, &timo);
    555 		if (error) {
    556 			return error;
    557 		}
    558 		KASSERT(timo != 0);
    559 	} else {
    560 		timo = 0;
    561 	}
    562 
    563 	/* Find and lock the sleep queue. */
    564 	l = curlwp;
    565 	wchan = lwp_park_wchan(l->l_proc, hint);
    566 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
    567 
    568 	/*
    569 	 * Before going the full route and blocking, check to see if an
    570 	 * unpark op is pending.
    571 	 */
    572 	lwp_lock(l);
    573 	if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
    574 		l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
    575 		lwp_unlock(l);
    576 		mutex_spin_exit(mp);
    577 		return EALREADY;
    578 	}
    579 	lwp_unlock_to(l, mp);
    580 	l->l_biglocks = 0;
    581 	sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
    582 	error = sleepq_block(timo, true);
    583 	switch (error) {
    584 	case EWOULDBLOCK:
    585 		error = ETIMEDOUT;
    586 		break;
    587 	case ERESTART:
    588 		error = EINTR;
    589 		break;
    590 	default:
    591 		/* nothing */
    592 		break;
    593 	}
    594 	return error;
    595 }
    596 
    597 /*
    598  * 'park' an LWP waiting on a user-level synchronisation object.  The LWP
    599  * will remain parked until another LWP in the same process calls in and
    600  * requests that it be unparked.
    601  */
    602 int
    603 sys____lwp_park50(struct lwp *l, const struct sys____lwp_park50_args *uap,
    604     register_t *retval)
    605 {
    606 	/* {
    607 		syscallarg(const struct timespec *)	ts;
    608 		syscallarg(lwpid_t)			unpark;
    609 		syscallarg(const void *)		hint;
    610 		syscallarg(const void *)		unparkhint;
    611 	} */
    612 	struct timespec ts, *tsp;
    613 	int error;
    614 
    615 	if (SCARG(uap, ts) == NULL)
    616 		tsp = NULL;
    617 	else {
    618 		error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
    619 		if (error != 0)
    620 			return error;
    621 		tsp = &ts;
    622 	}
    623 
    624 	if (SCARG(uap, unpark) != 0) {
    625 		error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
    626 		if (error != 0)
    627 			return error;
    628 	}
    629 
    630 	return lwp_park(tsp, SCARG(uap, hint));
    631 }
    632 
    633 int
    634 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
    635     register_t *retval)
    636 {
    637 	/* {
    638 		syscallarg(lwpid_t)		target;
    639 		syscallarg(const void *)	hint;
    640 	} */
    641 
    642 	return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
    643 }
    644 
    645 int
    646 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
    647     register_t *retval)
    648 {
    649 	/* {
    650 		syscallarg(const lwpid_t *)	targets;
    651 		syscallarg(size_t)		ntargets;
    652 		syscallarg(const void *)	hint;
    653 	} */
    654 	struct proc *p;
    655 	struct lwp *t;
    656 	sleepq_t *sq;
    657 	wchan_t wchan;
    658 	lwpid_t targets[32], *tp, *tpp, *tmax, target;
    659 	int error;
    660 	kmutex_t *mp;
    661 	u_int ntargets;
    662 	size_t sz;
    663 
    664 	p = l->l_proc;
    665 	ntargets = SCARG(uap, ntargets);
    666 
    667 	if (SCARG(uap, targets) == NULL) {
    668 		/*
    669 		 * Let the caller know how much we are willing to do, and
    670 		 * let it unpark the LWPs in blocks.
    671 		 */
    672 		*retval = LWP_UNPARK_MAX;
    673 		return 0;
    674 	}
    675 	if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
    676 		return EINVAL;
    677 
    678 	/*
    679 	 * Copy in the target array.  If it's a small number of LWPs, then
    680 	 * place the numbers on the stack.
    681 	 */
    682 	sz = sizeof(target) * ntargets;
    683 	if (sz <= sizeof(targets))
    684 		tp = targets;
    685 	else {
    686 		tp = kmem_alloc(sz, KM_SLEEP);
    687 		if (tp == NULL)
    688 			return ENOMEM;
    689 	}
    690 	error = copyin(SCARG(uap, targets), tp, sz);
    691 	if (error != 0) {
    692 		if (tp != targets) {
    693 			kmem_free(tp, sz);
    694 		}
    695 		return error;
    696 	}
    697 
    698 	wchan = lwp_park_wchan(p, SCARG(uap, hint));
    699 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
    700 
    701 	for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
    702 		target = *tpp;
    703 
    704 		/*
    705 		 * Easy case: search for the LWP on the sleep queue.  If
    706 		 * it's parked, remove it from the queue and set running.
    707 		 */
    708 		TAILQ_FOREACH(t, sq, l_sleepchain)
    709 			if (t->l_proc == p && t->l_lid == target)
    710 				break;
    711 
    712 		if (t != NULL) {
    713 			sleepq_remove(sq, t);
    714 			continue;
    715 		}
    716 
    717 		/*
    718 		 * The LWP hasn't parked yet.  Take the hit and
    719 		 * mark the operation as pending.
    720 		 */
    721 		mutex_spin_exit(mp);
    722 		mutex_enter(p->p_lock);
    723 		if ((t = lwp_find(p, target)) == NULL) {
    724 			mutex_exit(p->p_lock);
    725 			mutex_spin_enter(mp);
    726 			continue;
    727 		}
    728 		lwp_lock(t);
    729 
    730 		/*
    731 		 * It may not have parked yet, we may have raced, or
    732 		 * it is parked on a different user sync object.
    733 		 */
    734 		if (t->l_syncobj == &lwp_park_sobj) {
    735 			/* Releases the LWP lock. */
    736 			lwp_unsleep(t, true);
    737 		} else {
    738 			/*
    739 			 * Set the operation pending.  The next call to
    740 			 * _lwp_park will return early.
    741 			 */
    742 			t->l_flag |= LW_UNPARKED;
    743 			lwp_unlock(t);
    744 		}
    745 
    746 		mutex_exit(p->p_lock);
    747 		mutex_spin_enter(mp);
    748 	}
    749 
    750 	mutex_spin_exit(mp);
    751 	if (tp != targets)
    752 		kmem_free(tp, sz);
    753 
    754 	return 0;
    755 }
    756 
    757 int
    758 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
    759     register_t *retval)
    760 {
    761 	/* {
    762 		syscallarg(lwpid_t)		target;
    763 		syscallarg(const char *)	name;
    764 	} */
    765 	char *name, *oname;
    766 	lwpid_t target;
    767 	proc_t *p;
    768 	lwp_t *t;
    769 	int error;
    770 
    771 	if ((target = SCARG(uap, target)) == 0)
    772 		target = l->l_lid;
    773 
    774 	name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
    775 	if (name == NULL)
    776 		return ENOMEM;
    777 	error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
    778 	switch (error) {
    779 	case ENAMETOOLONG:
    780 	case 0:
    781 		name[MAXCOMLEN - 1] = '\0';
    782 		break;
    783 	default:
    784 		kmem_free(name, MAXCOMLEN);
    785 		return error;
    786 	}
    787 
    788 	p = curproc;
    789 	mutex_enter(p->p_lock);
    790 	if ((t = lwp_find(p, target)) == NULL) {
    791 		mutex_exit(p->p_lock);
    792 		kmem_free(name, MAXCOMLEN);
    793 		return ESRCH;
    794 	}
    795 	lwp_lock(t);
    796 	oname = t->l_name;
    797 	t->l_name = name;
    798 	lwp_unlock(t);
    799 	mutex_exit(p->p_lock);
    800 
    801 	if (oname != NULL)
    802 		kmem_free(oname, MAXCOMLEN);
    803 
    804 	return 0;
    805 }
    806 
    807 int
    808 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
    809     register_t *retval)
    810 {
    811 	/* {
    812 		syscallarg(lwpid_t)		target;
    813 		syscallarg(char *)		name;
    814 		syscallarg(size_t)		len;
    815 	} */
    816 	char name[MAXCOMLEN];
    817 	lwpid_t target;
    818 	proc_t *p;
    819 	lwp_t *t;
    820 
    821 	if ((target = SCARG(uap, target)) == 0)
    822 		target = l->l_lid;
    823 
    824 	p = curproc;
    825 	mutex_enter(p->p_lock);
    826 	if ((t = lwp_find(p, target)) == NULL) {
    827 		mutex_exit(p->p_lock);
    828 		return ESRCH;
    829 	}
    830 	lwp_lock(t);
    831 	if (t->l_name == NULL)
    832 		name[0] = '\0';
    833 	else
    834 		strcpy(name, t->l_name);
    835 	lwp_unlock(t);
    836 	mutex_exit(p->p_lock);
    837 
    838 	return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
    839 }
    840 
    841 int
    842 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
    843     register_t *retval)
    844 {
    845 	/* {
    846 		syscallarg(int)			features;
    847 		syscallarg(struct lwpctl **)	address;
    848 	} */
    849 	int error, features;
    850 	vaddr_t vaddr;
    851 
    852 	features = SCARG(uap, features);
    853 	features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
    854 	if (features != 0)
    855 		return ENODEV;
    856 	if ((error = lwp_ctl_alloc(&vaddr)) != 0)
    857 		return error;
    858 	return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
    859 }
    860