sys_lwp.c revision 1.61 1 /* $NetBSD: sys_lwp.c,v 1.61 2017/06/01 02:45:13 chs Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Lightweight process (LWP) system calls. See kern_lwp.c for a description
34 * of LWPs.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.61 2017/06/01 02:45:13 chs Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/pool.h>
43 #include <sys/proc.h>
44 #include <sys/types.h>
45 #include <sys/syscallargs.h>
46 #include <sys/kauth.h>
47 #include <sys/kmem.h>
48 #include <sys/sleepq.h>
49 #include <sys/lwpctl.h>
50 #include <sys/cpu.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #define LWP_UNPARK_MAX 1024
55
56 static syncobj_t lwp_park_sobj = {
57 SOBJ_SLEEPQ_LIFO,
58 sleepq_unsleep,
59 sleepq_changepri,
60 sleepq_lendpri,
61 syncobj_noowner,
62 };
63
64 static sleeptab_t lwp_park_tab;
65
66 void
67 lwp_sys_init(void)
68 {
69 sleeptab_init(&lwp_park_tab);
70 }
71
72 int
73 do_lwp_create(lwp_t *l, void *arg, u_long flags, lwpid_t *new_lwp,
74 const sigset_t *sigmask, const stack_t *sigstk)
75 {
76 struct proc *p = l->l_proc;
77 struct lwp *l2;
78 struct schedstate_percpu *spc;
79 vaddr_t uaddr;
80 int error;
81
82 /* XXX check against resource limits */
83
84 uaddr = uvm_uarea_alloc();
85 if (__predict_false(uaddr == 0))
86 return ENOMEM;
87
88 error = lwp_create(l, p, uaddr, flags & LWP_DETACHED, NULL, 0,
89 p->p_emul->e_startlwp, arg, &l2, l->l_class, sigmask, &SS_INIT);
90 if (__predict_false(error)) {
91 uvm_uarea_free(uaddr);
92 return error;
93 }
94
95 *new_lwp = l2->l_lid;
96
97 /*
98 * Set the new LWP running, unless the caller has requested that
99 * it be created in suspended state. If the process is stopping,
100 * then the LWP is created stopped.
101 */
102 mutex_enter(p->p_lock);
103 lwp_lock(l2);
104 spc = &l2->l_cpu->ci_schedstate;
105 if ((flags & LWP_SUSPENDED) == 0 &&
106 (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
107 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
108 KASSERT(l2->l_wchan == NULL);
109 l2->l_stat = LSSTOP;
110 p->p_nrlwps--;
111 lwp_unlock_to(l2, spc->spc_lwplock);
112 } else {
113 KASSERT(lwp_locked(l2, spc->spc_mutex));
114 l2->l_stat = LSRUN;
115 sched_enqueue(l2, false);
116 lwp_unlock(l2);
117 }
118 } else {
119 l2->l_stat = LSSUSPENDED;
120 p->p_nrlwps--;
121 lwp_unlock_to(l2, spc->spc_lwplock);
122 }
123 mutex_exit(p->p_lock);
124
125 return 0;
126 }
127
128 int
129 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
130 register_t *retval)
131 {
132 /* {
133 syscallarg(const ucontext_t *) ucp;
134 syscallarg(u_long) flags;
135 syscallarg(lwpid_t *) new_lwp;
136 } */
137 struct proc *p = l->l_proc;
138 ucontext_t *newuc;
139 lwpid_t lid;
140 int error;
141
142 newuc = kmem_alloc(sizeof(ucontext_t), KM_SLEEP);
143 error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
144 if (error)
145 goto fail;
146
147 /* validate the ucontext */
148 if ((newuc->uc_flags & _UC_CPU) == 0) {
149 error = EINVAL;
150 goto fail;
151 }
152 error = cpu_mcontext_validate(l, &newuc->uc_mcontext);
153 if (error)
154 goto fail;
155
156 const sigset_t *sigmask = newuc->uc_flags & _UC_SIGMASK ?
157 &newuc->uc_sigmask : &l->l_sigmask;
158 error = do_lwp_create(l, newuc, SCARG(uap, flags), &lid, sigmask,
159 &SS_INIT);
160 if (error)
161 goto fail;
162
163 /*
164 * do not free ucontext in case of an error here,
165 * the lwp will actually run and access it
166 */
167 return copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
168
169 fail:
170 kmem_free(newuc, sizeof(ucontext_t));
171 return error;
172 }
173
174 int
175 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
176 {
177
178 lwp_exit(l);
179 return 0;
180 }
181
182 int
183 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
184 {
185
186 *retval = l->l_lid;
187 return 0;
188 }
189
190 int
191 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
192 {
193
194 *retval = (uintptr_t)l->l_private;
195 return 0;
196 }
197
198 int
199 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
200 register_t *retval)
201 {
202 /* {
203 syscallarg(void *) ptr;
204 } */
205
206 return lwp_setprivate(l, SCARG(uap, ptr));
207 }
208
209 int
210 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
211 register_t *retval)
212 {
213 /* {
214 syscallarg(lwpid_t) target;
215 } */
216 struct proc *p = l->l_proc;
217 struct lwp *t;
218 int error;
219
220 mutex_enter(p->p_lock);
221 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
222 mutex_exit(p->p_lock);
223 return ESRCH;
224 }
225
226 /*
227 * Check for deadlock, which is only possible when we're suspending
228 * ourself. XXX There is a short race here, as p_nrlwps is only
229 * incremented when an LWP suspends itself on the kernel/user
230 * boundary. It's still possible to kill -9 the process so we
231 * don't bother checking further.
232 */
233 lwp_lock(t);
234 if ((t == l && p->p_nrlwps == 1) ||
235 (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
236 lwp_unlock(t);
237 mutex_exit(p->p_lock);
238 return EDEADLK;
239 }
240
241 /*
242 * Suspend the LWP. XXX If it's on a different CPU, we should wait
243 * for it to be preempted, where it will put itself to sleep.
244 *
245 * Suspension of the current LWP will happen on return to userspace.
246 */
247 error = lwp_suspend(l, t);
248 if (error) {
249 mutex_exit(p->p_lock);
250 return error;
251 }
252
253 /*
254 * Wait for:
255 * o process exiting
256 * o target LWP suspended
257 * o target LWP not suspended and L_WSUSPEND clear
258 * o target LWP exited
259 */
260 for (;;) {
261 error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
262 if (error) {
263 error = ERESTART;
264 break;
265 }
266 if (lwp_find(p, SCARG(uap, target)) == NULL) {
267 error = ESRCH;
268 break;
269 }
270 if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
271 error = ERESTART;
272 break;
273 }
274 if (t->l_stat == LSSUSPENDED ||
275 (t->l_flag & LW_WSUSPEND) == 0)
276 break;
277 }
278 mutex_exit(p->p_lock);
279
280 return error;
281 }
282
283 int
284 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
285 register_t *retval)
286 {
287 /* {
288 syscallarg(lwpid_t) target;
289 } */
290 int error;
291 struct proc *p = l->l_proc;
292 struct lwp *t;
293
294 error = 0;
295
296 mutex_enter(p->p_lock);
297 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
298 mutex_exit(p->p_lock);
299 return ESRCH;
300 }
301
302 lwp_lock(t);
303 lwp_continue(t);
304 mutex_exit(p->p_lock);
305
306 return error;
307 }
308
309 int
310 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
311 register_t *retval)
312 {
313 /* {
314 syscallarg(lwpid_t) target;
315 } */
316 struct lwp *t;
317 struct proc *p;
318 int error;
319
320 p = l->l_proc;
321 mutex_enter(p->p_lock);
322
323 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
324 mutex_exit(p->p_lock);
325 return ESRCH;
326 }
327
328 lwp_lock(t);
329 t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
330
331 if (t->l_stat != LSSLEEP) {
332 lwp_unlock(t);
333 error = ENODEV;
334 } else if ((t->l_flag & LW_SINTR) == 0) {
335 lwp_unlock(t);
336 error = EBUSY;
337 } else {
338 /* Wake it up. lwp_unsleep() will release the LWP lock. */
339 lwp_unsleep(t, true);
340 error = 0;
341 }
342
343 mutex_exit(p->p_lock);
344
345 return error;
346 }
347
348 int
349 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
350 register_t *retval)
351 {
352 /* {
353 syscallarg(lwpid_t) wait_for;
354 syscallarg(lwpid_t *) departed;
355 } */
356 struct proc *p = l->l_proc;
357 int error;
358 lwpid_t dep;
359
360 mutex_enter(p->p_lock);
361 error = lwp_wait(l, SCARG(uap, wait_for), &dep, false);
362 mutex_exit(p->p_lock);
363
364 if (!error && SCARG(uap, departed)) {
365 error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
366 }
367
368 return error;
369 }
370
371 int
372 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
373 register_t *retval)
374 {
375 /* {
376 syscallarg(lwpid_t) target;
377 syscallarg(int) signo;
378 } */
379 struct proc *p = l->l_proc;
380 struct lwp *t;
381 ksiginfo_t ksi;
382 int signo = SCARG(uap, signo);
383 int error = 0;
384
385 if ((u_int)signo >= NSIG)
386 return EINVAL;
387
388 KSI_INIT(&ksi);
389 ksi.ksi_signo = signo;
390 ksi.ksi_code = SI_LWP;
391 ksi.ksi_pid = p->p_pid;
392 ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
393 ksi.ksi_lid = SCARG(uap, target);
394
395 mutex_enter(proc_lock);
396 mutex_enter(p->p_lock);
397 if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
398 error = ESRCH;
399 else if (signo != 0)
400 kpsignal2(p, &ksi);
401 mutex_exit(p->p_lock);
402 mutex_exit(proc_lock);
403
404 return error;
405 }
406
407 int
408 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
409 register_t *retval)
410 {
411 /* {
412 syscallarg(lwpid_t) target;
413 } */
414 struct proc *p;
415 struct lwp *t;
416 lwpid_t target;
417 int error;
418
419 target = SCARG(uap, target);
420 p = l->l_proc;
421
422 mutex_enter(p->p_lock);
423
424 if (l->l_lid == target)
425 t = l;
426 else {
427 /*
428 * We can't use lwp_find() here because the target might
429 * be a zombie.
430 */
431 LIST_FOREACH(t, &p->p_lwps, l_sibling)
432 if (t->l_lid == target)
433 break;
434 }
435
436 /*
437 * If the LWP is already detached, there's nothing to do.
438 * If it's a zombie, we need to clean up after it. LSZOMB
439 * is visible with the proc mutex held.
440 *
441 * After we have detached or released the LWP, kick any
442 * other LWPs that may be sitting in _lwp_wait(), waiting
443 * for the target LWP to exit.
444 */
445 if (t != NULL && t->l_stat != LSIDL) {
446 if ((t->l_prflag & LPR_DETACHED) == 0) {
447 p->p_ndlwps++;
448 t->l_prflag |= LPR_DETACHED;
449 if (t->l_stat == LSZOMB) {
450 /* Releases proc mutex. */
451 lwp_free(t, false, false);
452 return 0;
453 }
454 error = 0;
455
456 /*
457 * Have any LWPs sleeping in lwp_wait() recheck
458 * for deadlock.
459 */
460 cv_broadcast(&p->p_lwpcv);
461 } else
462 error = EINVAL;
463 } else
464 error = ESRCH;
465
466 mutex_exit(p->p_lock);
467
468 return error;
469 }
470
471 static inline wchan_t
472 lwp_park_wchan(struct proc *p, const void *hint)
473 {
474
475 return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
476 }
477
478 int
479 lwp_unpark(lwpid_t target, const void *hint)
480 {
481 sleepq_t *sq;
482 wchan_t wchan;
483 kmutex_t *mp;
484 proc_t *p;
485 lwp_t *t;
486
487 /*
488 * Easy case: search for the LWP on the sleep queue. If
489 * it's parked, remove it from the queue and set running.
490 */
491 p = curproc;
492 wchan = lwp_park_wchan(p, hint);
493 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
494
495 TAILQ_FOREACH(t, sq, l_sleepchain)
496 if (t->l_proc == p && t->l_lid == target)
497 break;
498
499 if (__predict_true(t != NULL)) {
500 sleepq_remove(sq, t);
501 mutex_spin_exit(mp);
502 return 0;
503 }
504
505 /*
506 * The LWP hasn't parked yet. Take the hit and mark the
507 * operation as pending.
508 */
509 mutex_spin_exit(mp);
510
511 mutex_enter(p->p_lock);
512 if ((t = lwp_find(p, target)) == NULL) {
513 mutex_exit(p->p_lock);
514 return ESRCH;
515 }
516
517 /*
518 * It may not have parked yet, we may have raced, or it
519 * is parked on a different user sync object.
520 */
521 lwp_lock(t);
522 if (t->l_syncobj == &lwp_park_sobj) {
523 /* Releases the LWP lock. */
524 lwp_unsleep(t, true);
525 } else {
526 /*
527 * Set the operation pending. The next call to _lwp_park
528 * will return early.
529 */
530 t->l_flag |= LW_UNPARKED;
531 lwp_unlock(t);
532 }
533
534 mutex_exit(p->p_lock);
535 return 0;
536 }
537
538 int
539 lwp_park(clockid_t clock_id, int flags, struct timespec *ts, const void *hint)
540 {
541 sleepq_t *sq;
542 kmutex_t *mp;
543 wchan_t wchan;
544 int timo, error;
545 lwp_t *l;
546
547 if (ts != NULL) {
548 if ((error = ts2timo(clock_id, flags, ts, &timo, NULL)) != 0)
549 return error;
550 KASSERT(timo != 0);
551 } else {
552 timo = 0;
553 }
554
555 /* Find and lock the sleep queue. */
556 l = curlwp;
557 wchan = lwp_park_wchan(l->l_proc, hint);
558 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
559
560 /*
561 * Before going the full route and blocking, check to see if an
562 * unpark op is pending.
563 */
564 lwp_lock(l);
565 if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
566 l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
567 lwp_unlock(l);
568 mutex_spin_exit(mp);
569 return EALREADY;
570 }
571 lwp_unlock_to(l, mp);
572 l->l_biglocks = 0;
573 sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
574 error = sleepq_block(timo, true);
575 switch (error) {
576 case EWOULDBLOCK:
577 error = ETIMEDOUT;
578 break;
579 case ERESTART:
580 error = EINTR;
581 break;
582 default:
583 /* nothing */
584 break;
585 }
586 return error;
587 }
588
589 /*
590 * 'park' an LWP waiting on a user-level synchronisation object. The LWP
591 * will remain parked until another LWP in the same process calls in and
592 * requests that it be unparked.
593 */
594 int
595 sys____lwp_park60(struct lwp *l, const struct sys____lwp_park60_args *uap,
596 register_t *retval)
597 {
598 /* {
599 syscallarg(clockid_t) clock_id;
600 syscallarg(int) flags;
601 syscallarg(const struct timespec *) ts;
602 syscallarg(lwpid_t) unpark;
603 syscallarg(const void *) hint;
604 syscallarg(const void *) unparkhint;
605 } */
606 struct timespec ts, *tsp;
607 int error;
608
609 if (SCARG(uap, ts) == NULL)
610 tsp = NULL;
611 else {
612 error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
613 if (error != 0)
614 return error;
615 tsp = &ts;
616 }
617
618 if (SCARG(uap, unpark) != 0) {
619 error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
620 if (error != 0)
621 return error;
622 }
623
624 return lwp_park(SCARG(uap, clock_id), SCARG(uap, flags), tsp,
625 SCARG(uap, hint));
626 }
627
628 int
629 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
630 register_t *retval)
631 {
632 /* {
633 syscallarg(lwpid_t) target;
634 syscallarg(const void *) hint;
635 } */
636
637 return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
638 }
639
640 int
641 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
642 register_t *retval)
643 {
644 /* {
645 syscallarg(const lwpid_t *) targets;
646 syscallarg(size_t) ntargets;
647 syscallarg(const void *) hint;
648 } */
649 struct proc *p;
650 struct lwp *t;
651 sleepq_t *sq;
652 wchan_t wchan;
653 lwpid_t targets[32], *tp, *tpp, *tmax, target;
654 int error;
655 kmutex_t *mp;
656 u_int ntargets;
657 size_t sz;
658
659 p = l->l_proc;
660 ntargets = SCARG(uap, ntargets);
661
662 if (SCARG(uap, targets) == NULL) {
663 /*
664 * Let the caller know how much we are willing to do, and
665 * let it unpark the LWPs in blocks.
666 */
667 *retval = LWP_UNPARK_MAX;
668 return 0;
669 }
670 if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
671 return EINVAL;
672
673 /*
674 * Copy in the target array. If it's a small number of LWPs, then
675 * place the numbers on the stack.
676 */
677 sz = sizeof(target) * ntargets;
678 if (sz <= sizeof(targets))
679 tp = targets;
680 else
681 tp = kmem_alloc(sz, KM_SLEEP);
682 error = copyin(SCARG(uap, targets), tp, sz);
683 if (error != 0) {
684 if (tp != targets) {
685 kmem_free(tp, sz);
686 }
687 return error;
688 }
689
690 wchan = lwp_park_wchan(p, SCARG(uap, hint));
691 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
692
693 for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
694 target = *tpp;
695
696 /*
697 * Easy case: search for the LWP on the sleep queue. If
698 * it's parked, remove it from the queue and set running.
699 */
700 TAILQ_FOREACH(t, sq, l_sleepchain)
701 if (t->l_proc == p && t->l_lid == target)
702 break;
703
704 if (t != NULL) {
705 sleepq_remove(sq, t);
706 continue;
707 }
708
709 /*
710 * The LWP hasn't parked yet. Take the hit and
711 * mark the operation as pending.
712 */
713 mutex_spin_exit(mp);
714 mutex_enter(p->p_lock);
715 if ((t = lwp_find(p, target)) == NULL) {
716 mutex_exit(p->p_lock);
717 mutex_spin_enter(mp);
718 continue;
719 }
720 lwp_lock(t);
721
722 /*
723 * It may not have parked yet, we may have raced, or
724 * it is parked on a different user sync object.
725 */
726 if (t->l_syncobj == &lwp_park_sobj) {
727 /* Releases the LWP lock. */
728 lwp_unsleep(t, true);
729 } else {
730 /*
731 * Set the operation pending. The next call to
732 * _lwp_park will return early.
733 */
734 t->l_flag |= LW_UNPARKED;
735 lwp_unlock(t);
736 }
737
738 mutex_exit(p->p_lock);
739 mutex_spin_enter(mp);
740 }
741
742 mutex_spin_exit(mp);
743 if (tp != targets)
744 kmem_free(tp, sz);
745
746 return 0;
747 }
748
749 int
750 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
751 register_t *retval)
752 {
753 /* {
754 syscallarg(lwpid_t) target;
755 syscallarg(const char *) name;
756 } */
757 char *name, *oname;
758 lwpid_t target;
759 proc_t *p;
760 lwp_t *t;
761 int error;
762
763 if ((target = SCARG(uap, target)) == 0)
764 target = l->l_lid;
765
766 name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
767 error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
768 switch (error) {
769 case ENAMETOOLONG:
770 case 0:
771 name[MAXCOMLEN - 1] = '\0';
772 break;
773 default:
774 kmem_free(name, MAXCOMLEN);
775 return error;
776 }
777
778 p = curproc;
779 mutex_enter(p->p_lock);
780 if ((t = lwp_find(p, target)) == NULL) {
781 mutex_exit(p->p_lock);
782 kmem_free(name, MAXCOMLEN);
783 return ESRCH;
784 }
785 lwp_lock(t);
786 oname = t->l_name;
787 t->l_name = name;
788 lwp_unlock(t);
789 mutex_exit(p->p_lock);
790
791 if (oname != NULL)
792 kmem_free(oname, MAXCOMLEN);
793
794 return 0;
795 }
796
797 int
798 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
799 register_t *retval)
800 {
801 /* {
802 syscallarg(lwpid_t) target;
803 syscallarg(char *) name;
804 syscallarg(size_t) len;
805 } */
806 char name[MAXCOMLEN];
807 lwpid_t target;
808 proc_t *p;
809 lwp_t *t;
810
811 if ((target = SCARG(uap, target)) == 0)
812 target = l->l_lid;
813
814 p = curproc;
815 mutex_enter(p->p_lock);
816 if ((t = lwp_find(p, target)) == NULL) {
817 mutex_exit(p->p_lock);
818 return ESRCH;
819 }
820 lwp_lock(t);
821 if (t->l_name == NULL)
822 name[0] = '\0';
823 else
824 strlcpy(name, t->l_name, sizeof(name));
825 lwp_unlock(t);
826 mutex_exit(p->p_lock);
827
828 return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
829 }
830
831 int
832 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
833 register_t *retval)
834 {
835 /* {
836 syscallarg(int) features;
837 syscallarg(struct lwpctl **) address;
838 } */
839 int error, features;
840 vaddr_t vaddr;
841
842 features = SCARG(uap, features);
843 features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
844 if (features != 0)
845 return ENODEV;
846 if ((error = lwp_ctl_alloc(&vaddr)) != 0)
847 return error;
848 return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
849 }
850