sys_lwp.c revision 1.64 1 /* $NetBSD: sys_lwp.c,v 1.64 2019/05/01 21:57:34 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Lightweight process (LWP) system calls. See kern_lwp.c for a description
34 * of LWPs.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.64 2019/05/01 21:57:34 kamil Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/pool.h>
43 #include <sys/proc.h>
44 #include <sys/types.h>
45 #include <sys/syscallargs.h>
46 #include <sys/kauth.h>
47 #include <sys/kmem.h>
48 #include <sys/sleepq.h>
49 #include <sys/lwpctl.h>
50 #include <sys/cpu.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #define LWP_UNPARK_MAX 1024
55
56 static syncobj_t lwp_park_sobj = {
57 .sobj_flag = SOBJ_SLEEPQ_LIFO,
58 .sobj_unsleep = sleepq_unsleep,
59 .sobj_changepri = sleepq_changepri,
60 .sobj_lendpri = sleepq_lendpri,
61 .sobj_owner = syncobj_noowner,
62 };
63
64 static sleeptab_t lwp_park_tab;
65
66 void
67 lwp_sys_init(void)
68 {
69 sleeptab_init(&lwp_park_tab);
70 }
71
72 static void
73 mi_startlwp(void *arg)
74 {
75 struct lwp *l = curlwp;
76 struct proc *p = l->l_proc;
77
78 /* If the process is traced, report lwp creation to a debugger */
79 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_CREATE|PSL_SYSCALL)) ==
80 (PSL_TRACED|PSL_TRACELWP_CREATE)) {
81 /* Paranoid check */
82 mutex_enter(proc_lock);
83 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_CREATE|PSL_SYSCALL)) !=
84 (PSL_TRACED|PSL_TRACELWP_CREATE)) {
85 mutex_exit(proc_lock);
86 goto my_tracer_is_gone;
87 }
88
89 mutex_enter(p->p_lock);
90 p->p_lwp_created = l->l_lid;
91 eventswitch(SIGTRAP, TRAP_LWP);
92 // XXX ktrpoint(KTR_PSIG)
93 mutex_exit(p->p_lock);
94 }
95
96 my_tracer_is_gone:
97 (p->p_emul->e_startlwp)(arg);
98 }
99
100 int
101 do_lwp_create(lwp_t *l, void *arg, u_long flags, lwpid_t *new_lwp,
102 const sigset_t *sigmask, const stack_t *sigstk)
103 {
104 struct proc *p = l->l_proc;
105 struct lwp *l2;
106 struct schedstate_percpu *spc;
107 vaddr_t uaddr;
108 int error;
109
110 /* XXX check against resource limits */
111
112 uaddr = uvm_uarea_alloc();
113 if (__predict_false(uaddr == 0))
114 return ENOMEM;
115
116 error = lwp_create(l, p, uaddr, flags & LWP_DETACHED, NULL, 0,
117 mi_startlwp, arg, &l2, l->l_class, sigmask, &SS_INIT);
118 if (__predict_false(error)) {
119 uvm_uarea_free(uaddr);
120 return error;
121 }
122
123 *new_lwp = l2->l_lid;
124
125 /*
126 * Set the new LWP running, unless the caller has requested that
127 * it be created in suspended state. If the process is stopping,
128 * then the LWP is created stopped.
129 */
130 mutex_enter(p->p_lock);
131 lwp_lock(l2);
132 spc = &l2->l_cpu->ci_schedstate;
133 if ((flags & LWP_SUSPENDED) == 0 &&
134 (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
135 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
136 KASSERT(l2->l_wchan == NULL);
137 l2->l_stat = LSSTOP;
138 p->p_nrlwps--;
139 lwp_unlock_to(l2, spc->spc_lwplock);
140 } else {
141 KASSERT(lwp_locked(l2, spc->spc_mutex));
142 l2->l_stat = LSRUN;
143 sched_enqueue(l2, false);
144 lwp_unlock(l2);
145 }
146 } else {
147 l2->l_stat = LSSUSPENDED;
148 p->p_nrlwps--;
149 lwp_unlock_to(l2, spc->spc_lwplock);
150 }
151 mutex_exit(p->p_lock);
152
153 return 0;
154 }
155
156 int
157 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
158 register_t *retval)
159 {
160 /* {
161 syscallarg(const ucontext_t *) ucp;
162 syscallarg(u_long) flags;
163 syscallarg(lwpid_t *) new_lwp;
164 } */
165 struct proc *p = l->l_proc;
166 ucontext_t *newuc;
167 lwpid_t lid;
168 int error;
169
170 newuc = kmem_alloc(sizeof(ucontext_t), KM_SLEEP);
171 error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
172 if (error)
173 goto fail;
174
175 /* validate the ucontext */
176 if ((newuc->uc_flags & _UC_CPU) == 0) {
177 error = EINVAL;
178 goto fail;
179 }
180 error = cpu_mcontext_validate(l, &newuc->uc_mcontext);
181 if (error)
182 goto fail;
183
184 const sigset_t *sigmask = newuc->uc_flags & _UC_SIGMASK ?
185 &newuc->uc_sigmask : &l->l_sigmask;
186 error = do_lwp_create(l, newuc, SCARG(uap, flags), &lid, sigmask,
187 &SS_INIT);
188 if (error)
189 goto fail;
190
191 /*
192 * do not free ucontext in case of an error here,
193 * the lwp will actually run and access it
194 */
195 return copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
196
197 fail:
198 kmem_free(newuc, sizeof(ucontext_t));
199 return error;
200 }
201
202 int
203 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
204 {
205
206 lwp_exit(l);
207 return 0;
208 }
209
210 int
211 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
212 {
213
214 *retval = l->l_lid;
215 return 0;
216 }
217
218 int
219 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
220 {
221
222 *retval = (uintptr_t)l->l_private;
223 return 0;
224 }
225
226 int
227 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
228 register_t *retval)
229 {
230 /* {
231 syscallarg(void *) ptr;
232 } */
233
234 return lwp_setprivate(l, SCARG(uap, ptr));
235 }
236
237 int
238 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
239 register_t *retval)
240 {
241 /* {
242 syscallarg(lwpid_t) target;
243 } */
244 struct proc *p = l->l_proc;
245 struct lwp *t;
246 int error;
247
248 mutex_enter(p->p_lock);
249 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
250 mutex_exit(p->p_lock);
251 return ESRCH;
252 }
253
254 /*
255 * Check for deadlock, which is only possible when we're suspending
256 * ourself. XXX There is a short race here, as p_nrlwps is only
257 * incremented when an LWP suspends itself on the kernel/user
258 * boundary. It's still possible to kill -9 the process so we
259 * don't bother checking further.
260 */
261 lwp_lock(t);
262 if ((t == l && p->p_nrlwps == 1) ||
263 (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
264 lwp_unlock(t);
265 mutex_exit(p->p_lock);
266 return EDEADLK;
267 }
268
269 /*
270 * Suspend the LWP. XXX If it's on a different CPU, we should wait
271 * for it to be preempted, where it will put itself to sleep.
272 *
273 * Suspension of the current LWP will happen on return to userspace.
274 */
275 error = lwp_suspend(l, t);
276 if (error) {
277 mutex_exit(p->p_lock);
278 return error;
279 }
280
281 /*
282 * Wait for:
283 * o process exiting
284 * o target LWP suspended
285 * o target LWP not suspended and L_WSUSPEND clear
286 * o target LWP exited
287 */
288 for (;;) {
289 error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
290 if (error) {
291 error = ERESTART;
292 break;
293 }
294 if (lwp_find(p, SCARG(uap, target)) == NULL) {
295 error = ESRCH;
296 break;
297 }
298 if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
299 error = ERESTART;
300 break;
301 }
302 if (t->l_stat == LSSUSPENDED ||
303 (t->l_flag & LW_WSUSPEND) == 0)
304 break;
305 }
306 mutex_exit(p->p_lock);
307
308 return error;
309 }
310
311 int
312 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
313 register_t *retval)
314 {
315 /* {
316 syscallarg(lwpid_t) target;
317 } */
318 int error;
319 struct proc *p = l->l_proc;
320 struct lwp *t;
321
322 error = 0;
323
324 mutex_enter(p->p_lock);
325 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
326 mutex_exit(p->p_lock);
327 return ESRCH;
328 }
329
330 lwp_lock(t);
331 lwp_continue(t);
332 mutex_exit(p->p_lock);
333
334 return error;
335 }
336
337 int
338 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
339 register_t *retval)
340 {
341 /* {
342 syscallarg(lwpid_t) target;
343 } */
344 struct lwp *t;
345 struct proc *p;
346 int error;
347
348 p = l->l_proc;
349 mutex_enter(p->p_lock);
350
351 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
352 mutex_exit(p->p_lock);
353 return ESRCH;
354 }
355
356 lwp_lock(t);
357 t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
358
359 if (t->l_stat != LSSLEEP) {
360 lwp_unlock(t);
361 error = ENODEV;
362 } else if ((t->l_flag & LW_SINTR) == 0) {
363 lwp_unlock(t);
364 error = EBUSY;
365 } else {
366 /* Wake it up. lwp_unsleep() will release the LWP lock. */
367 lwp_unsleep(t, true);
368 error = 0;
369 }
370
371 mutex_exit(p->p_lock);
372
373 return error;
374 }
375
376 int
377 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
378 register_t *retval)
379 {
380 /* {
381 syscallarg(lwpid_t) wait_for;
382 syscallarg(lwpid_t *) departed;
383 } */
384 struct proc *p = l->l_proc;
385 int error;
386 lwpid_t dep;
387
388 mutex_enter(p->p_lock);
389 error = lwp_wait(l, SCARG(uap, wait_for), &dep, false);
390 mutex_exit(p->p_lock);
391
392 if (!error && SCARG(uap, departed)) {
393 error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
394 }
395
396 return error;
397 }
398
399 int
400 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
401 register_t *retval)
402 {
403 /* {
404 syscallarg(lwpid_t) target;
405 syscallarg(int) signo;
406 } */
407 struct proc *p = l->l_proc;
408 struct lwp *t;
409 ksiginfo_t ksi;
410 int signo = SCARG(uap, signo);
411 int error = 0;
412
413 if ((u_int)signo >= NSIG)
414 return EINVAL;
415
416 KSI_INIT(&ksi);
417 ksi.ksi_signo = signo;
418 ksi.ksi_code = SI_LWP;
419 ksi.ksi_pid = p->p_pid;
420 ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
421 ksi.ksi_lid = SCARG(uap, target);
422
423 mutex_enter(proc_lock);
424 mutex_enter(p->p_lock);
425 if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
426 error = ESRCH;
427 else if (signo != 0)
428 kpsignal2(p, &ksi);
429 mutex_exit(p->p_lock);
430 mutex_exit(proc_lock);
431
432 return error;
433 }
434
435 int
436 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
437 register_t *retval)
438 {
439 /* {
440 syscallarg(lwpid_t) target;
441 } */
442 struct proc *p;
443 struct lwp *t;
444 lwpid_t target;
445 int error;
446
447 target = SCARG(uap, target);
448 p = l->l_proc;
449
450 mutex_enter(p->p_lock);
451
452 if (l->l_lid == target)
453 t = l;
454 else {
455 /*
456 * We can't use lwp_find() here because the target might
457 * be a zombie.
458 */
459 LIST_FOREACH(t, &p->p_lwps, l_sibling)
460 if (t->l_lid == target)
461 break;
462 }
463
464 /*
465 * If the LWP is already detached, there's nothing to do.
466 * If it's a zombie, we need to clean up after it. LSZOMB
467 * is visible with the proc mutex held.
468 *
469 * After we have detached or released the LWP, kick any
470 * other LWPs that may be sitting in _lwp_wait(), waiting
471 * for the target LWP to exit.
472 */
473 if (t != NULL && t->l_stat != LSIDL) {
474 if ((t->l_prflag & LPR_DETACHED) == 0) {
475 p->p_ndlwps++;
476 t->l_prflag |= LPR_DETACHED;
477 if (t->l_stat == LSZOMB) {
478 /* Releases proc mutex. */
479 lwp_free(t, false, false);
480 return 0;
481 }
482 error = 0;
483
484 /*
485 * Have any LWPs sleeping in lwp_wait() recheck
486 * for deadlock.
487 */
488 cv_broadcast(&p->p_lwpcv);
489 } else
490 error = EINVAL;
491 } else
492 error = ESRCH;
493
494 mutex_exit(p->p_lock);
495
496 return error;
497 }
498
499 static inline wchan_t
500 lwp_park_wchan(struct proc *p, const void *hint)
501 {
502
503 return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
504 }
505
506 int
507 lwp_unpark(lwpid_t target, const void *hint)
508 {
509 sleepq_t *sq;
510 wchan_t wchan;
511 kmutex_t *mp;
512 proc_t *p;
513 lwp_t *t;
514
515 /*
516 * Easy case: search for the LWP on the sleep queue. If
517 * it's parked, remove it from the queue and set running.
518 */
519 p = curproc;
520 wchan = lwp_park_wchan(p, hint);
521 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
522
523 TAILQ_FOREACH(t, sq, l_sleepchain)
524 if (t->l_proc == p && t->l_lid == target)
525 break;
526
527 if (__predict_true(t != NULL)) {
528 sleepq_remove(sq, t);
529 mutex_spin_exit(mp);
530 return 0;
531 }
532
533 /*
534 * The LWP hasn't parked yet. Take the hit and mark the
535 * operation as pending.
536 */
537 mutex_spin_exit(mp);
538
539 mutex_enter(p->p_lock);
540 if ((t = lwp_find(p, target)) == NULL) {
541 mutex_exit(p->p_lock);
542 return ESRCH;
543 }
544
545 /*
546 * It may not have parked yet, we may have raced, or it
547 * is parked on a different user sync object.
548 */
549 lwp_lock(t);
550 if (t->l_syncobj == &lwp_park_sobj) {
551 /* Releases the LWP lock. */
552 lwp_unsleep(t, true);
553 } else {
554 /*
555 * Set the operation pending. The next call to _lwp_park
556 * will return early.
557 */
558 t->l_flag |= LW_UNPARKED;
559 lwp_unlock(t);
560 }
561
562 mutex_exit(p->p_lock);
563 return 0;
564 }
565
566 int
567 lwp_park(clockid_t clock_id, int flags, struct timespec *ts, const void *hint)
568 {
569 sleepq_t *sq;
570 kmutex_t *mp;
571 wchan_t wchan;
572 int timo, error;
573 struct timespec start;
574 lwp_t *l;
575 bool timeremain = !(flags & TIMER_ABSTIME) && ts;
576
577 if (ts != NULL) {
578 if ((error = ts2timo(clock_id, flags, ts, &timo,
579 timeremain ? &start : NULL)) != 0)
580 return error;
581 KASSERT(timo != 0);
582 } else {
583 timo = 0;
584 }
585
586 /* Find and lock the sleep queue. */
587 l = curlwp;
588 wchan = lwp_park_wchan(l->l_proc, hint);
589 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
590
591 /*
592 * Before going the full route and blocking, check to see if an
593 * unpark op is pending.
594 */
595 lwp_lock(l);
596 if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
597 l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
598 lwp_unlock(l);
599 mutex_spin_exit(mp);
600 return EALREADY;
601 }
602 lwp_unlock_to(l, mp);
603 l->l_biglocks = 0;
604 sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
605 error = sleepq_block(timo, true);
606 switch (error) {
607 case EWOULDBLOCK:
608 error = ETIMEDOUT;
609 if (timeremain)
610 memset(ts, 0, sizeof(*ts));
611 break;
612 case ERESTART:
613 error = EINTR;
614 /*FALLTHROUGH*/
615 default:
616 if (timeremain)
617 clock_timeleft(clock_id, ts, &start);
618 break;
619 }
620 return error;
621 }
622
623 /*
624 * 'park' an LWP waiting on a user-level synchronisation object. The LWP
625 * will remain parked until another LWP in the same process calls in and
626 * requests that it be unparked.
627 */
628 int
629 sys____lwp_park60(struct lwp *l, const struct sys____lwp_park60_args *uap,
630 register_t *retval)
631 {
632 /* {
633 syscallarg(clockid_t) clock_id;
634 syscallarg(int) flags;
635 syscallarg(struct timespec *) ts;
636 syscallarg(lwpid_t) unpark;
637 syscallarg(const void *) hint;
638 syscallarg(const void *) unparkhint;
639 } */
640 struct timespec ts, *tsp;
641 int error;
642
643 if (SCARG(uap, ts) == NULL)
644 tsp = NULL;
645 else {
646 error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
647 if (error != 0)
648 return error;
649 tsp = &ts;
650 }
651
652 if (SCARG(uap, unpark) != 0) {
653 error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
654 if (error != 0)
655 return error;
656 }
657
658 error = lwp_park(SCARG(uap, clock_id), SCARG(uap, flags), tsp,
659 SCARG(uap, hint));
660 if (SCARG(uap, ts) != NULL && (SCARG(uap, flags) & TIMER_ABSTIME) == 0)
661 (void)copyout(tsp, SCARG(uap, ts), sizeof(*tsp));
662 return error;
663 }
664
665 int
666 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
667 register_t *retval)
668 {
669 /* {
670 syscallarg(lwpid_t) target;
671 syscallarg(const void *) hint;
672 } */
673
674 return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
675 }
676
677 int
678 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
679 register_t *retval)
680 {
681 /* {
682 syscallarg(const lwpid_t *) targets;
683 syscallarg(size_t) ntargets;
684 syscallarg(const void *) hint;
685 } */
686 struct proc *p;
687 struct lwp *t;
688 sleepq_t *sq;
689 wchan_t wchan;
690 lwpid_t targets[32], *tp, *tpp, *tmax, target;
691 int error;
692 kmutex_t *mp;
693 u_int ntargets;
694 size_t sz;
695
696 p = l->l_proc;
697 ntargets = SCARG(uap, ntargets);
698
699 if (SCARG(uap, targets) == NULL) {
700 /*
701 * Let the caller know how much we are willing to do, and
702 * let it unpark the LWPs in blocks.
703 */
704 *retval = LWP_UNPARK_MAX;
705 return 0;
706 }
707 if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
708 return EINVAL;
709
710 /*
711 * Copy in the target array. If it's a small number of LWPs, then
712 * place the numbers on the stack.
713 */
714 sz = sizeof(target) * ntargets;
715 if (sz <= sizeof(targets))
716 tp = targets;
717 else
718 tp = kmem_alloc(sz, KM_SLEEP);
719 error = copyin(SCARG(uap, targets), tp, sz);
720 if (error != 0) {
721 if (tp != targets) {
722 kmem_free(tp, sz);
723 }
724 return error;
725 }
726
727 wchan = lwp_park_wchan(p, SCARG(uap, hint));
728 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
729
730 for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
731 target = *tpp;
732
733 /*
734 * Easy case: search for the LWP on the sleep queue. If
735 * it's parked, remove it from the queue and set running.
736 */
737 TAILQ_FOREACH(t, sq, l_sleepchain)
738 if (t->l_proc == p && t->l_lid == target)
739 break;
740
741 if (t != NULL) {
742 sleepq_remove(sq, t);
743 continue;
744 }
745
746 /*
747 * The LWP hasn't parked yet. Take the hit and
748 * mark the operation as pending.
749 */
750 mutex_spin_exit(mp);
751 mutex_enter(p->p_lock);
752 if ((t = lwp_find(p, target)) == NULL) {
753 mutex_exit(p->p_lock);
754 mutex_spin_enter(mp);
755 continue;
756 }
757 lwp_lock(t);
758
759 /*
760 * It may not have parked yet, we may have raced, or
761 * it is parked on a different user sync object.
762 */
763 if (t->l_syncobj == &lwp_park_sobj) {
764 /* Releases the LWP lock. */
765 lwp_unsleep(t, true);
766 } else {
767 /*
768 * Set the operation pending. The next call to
769 * _lwp_park will return early.
770 */
771 t->l_flag |= LW_UNPARKED;
772 lwp_unlock(t);
773 }
774
775 mutex_exit(p->p_lock);
776 mutex_spin_enter(mp);
777 }
778
779 mutex_spin_exit(mp);
780 if (tp != targets)
781 kmem_free(tp, sz);
782
783 return 0;
784 }
785
786 int
787 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
788 register_t *retval)
789 {
790 /* {
791 syscallarg(lwpid_t) target;
792 syscallarg(const char *) name;
793 } */
794 char *name, *oname;
795 lwpid_t target;
796 proc_t *p;
797 lwp_t *t;
798 int error;
799
800 if ((target = SCARG(uap, target)) == 0)
801 target = l->l_lid;
802
803 name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
804 error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
805 switch (error) {
806 case ENAMETOOLONG:
807 case 0:
808 name[MAXCOMLEN - 1] = '\0';
809 break;
810 default:
811 kmem_free(name, MAXCOMLEN);
812 return error;
813 }
814
815 p = curproc;
816 mutex_enter(p->p_lock);
817 if ((t = lwp_find(p, target)) == NULL) {
818 mutex_exit(p->p_lock);
819 kmem_free(name, MAXCOMLEN);
820 return ESRCH;
821 }
822 lwp_lock(t);
823 oname = t->l_name;
824 t->l_name = name;
825 lwp_unlock(t);
826 mutex_exit(p->p_lock);
827
828 if (oname != NULL)
829 kmem_free(oname, MAXCOMLEN);
830
831 return 0;
832 }
833
834 int
835 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
836 register_t *retval)
837 {
838 /* {
839 syscallarg(lwpid_t) target;
840 syscallarg(char *) name;
841 syscallarg(size_t) len;
842 } */
843 char name[MAXCOMLEN];
844 lwpid_t target;
845 proc_t *p;
846 lwp_t *t;
847
848 if ((target = SCARG(uap, target)) == 0)
849 target = l->l_lid;
850
851 p = curproc;
852 mutex_enter(p->p_lock);
853 if ((t = lwp_find(p, target)) == NULL) {
854 mutex_exit(p->p_lock);
855 return ESRCH;
856 }
857 lwp_lock(t);
858 if (t->l_name == NULL)
859 name[0] = '\0';
860 else
861 strlcpy(name, t->l_name, sizeof(name));
862 lwp_unlock(t);
863 mutex_exit(p->p_lock);
864
865 return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
866 }
867
868 int
869 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
870 register_t *retval)
871 {
872 /* {
873 syscallarg(int) features;
874 syscallarg(struct lwpctl **) address;
875 } */
876 int error, features;
877 vaddr_t vaddr;
878
879 features = SCARG(uap, features);
880 features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
881 if (features != 0)
882 return ENODEV;
883 if ((error = lwp_ctl_alloc(&vaddr)) != 0)
884 return error;
885 return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
886 }
887