Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.1
      1 /*
      2  * Copyright (c) 1996 John S. Dyson
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice immediately at the beginning of the file, without modification,
     10  *    this list of conditions, and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. Absolutely no warranty of function or purpose is made by the author
     15  *    John S. Dyson.
     16  * 4. Modifications may be freely made to this file if the above conditions
     17  *    are met.
     18  *
     19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.82 2001/06/15 20:45:01 jlemon Exp $
     20  */
     21 
     22 /*
     23  * This file contains a high-performance replacement for the socket-based
     24  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
     25  * all features of sockets, but does do everything that pipes normally
     26  * do.
     27  */
     28 
     29 /*
     30  * This code has two modes of operation, a small write mode and a large
     31  * write mode.  The small write mode acts like conventional pipes with
     32  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     33  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     34  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
     35  * the receiving process can copy it directly from the pages in the sending
     36  * process.
     37  *
     38  * If the sending process receives a signal, it is possible that it will
     39  * go away, and certainly its address space can change, because control
     40  * is returned back to the user-mode side.  In that case, the pipe code
     41  * arranges to copy the buffer supplied by the user process, to a pageable
     42  * kernel buffer, and the receiving process will grab the data from the
     43  * pageable kernel buffer.  Since signals don't happen all that often,
     44  * the copy operation is normally eliminated.
     45  *
     46  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     47  * happen for small transfers so that the system will not spend all of
     48  * its time context switching.  PIPE_SIZE is constrained by the
     49  * amount of kernel virtual memory.
     50  */
     51 
     52 #include <sys/param.h>
     53 #include <sys/systm.h>
     54 #include <sys/fcntl.h>
     55 #include <sys/file.h>
     56 #include <sys/filedesc.h>
     57 #include <sys/filio.h>
     58 #include <sys/lock.h>
     59 #include <sys/mutex.h>
     60 #include <sys/ttycom.h>
     61 #include <sys/stat.h>
     62 #include <sys/poll.h>
     63 #include <sys/selinfo.h>
     64 #include <sys/signalvar.h>
     65 #include <sys/sysproto.h>
     66 #include <sys/pipe.h>
     67 #include <sys/proc.h>
     68 #include <sys/vnode.h>
     69 #include <sys/uio.h>
     70 #include <sys/event.h>
     71 
     72 #include <vm/vm.h>
     73 #include <vm/vm_param.h>
     74 #include <vm/vm_object.h>
     75 #include <vm/vm_kern.h>
     76 #include <vm/vm_extern.h>
     77 #include <vm/pmap.h>
     78 #include <vm/vm_map.h>
     79 #include <vm/vm_page.h>
     80 #include <vm/vm_zone.h>
     81 
     82 /*
     83  * Use this define if you want to disable *fancy* VM things.  Expect an
     84  * approx 30% decrease in transfer rate.  This could be useful for
     85  * NetBSD or OpenBSD.
     86  */
     87 /* #define PIPE_NODIRECT */
     88 
     89 /*
     90  * interfaces to the outside world
     91  */
     92 static int pipe_read __P((struct file *fp, struct uio *uio,
     93 		struct ucred *cred, int flags, struct proc *p));
     94 static int pipe_write __P((struct file *fp, struct uio *uio,
     95 		struct ucred *cred, int flags, struct proc *p));
     96 static int pipe_close __P((struct file *fp, struct proc *p));
     97 static int pipe_poll __P((struct file *fp, int events, struct ucred *cred,
     98 		struct proc *p));
     99 static int pipe_kqfilter __P((struct file *fp, struct knote *kn));
    100 static int pipe_stat __P((struct file *fp, struct stat *sb, struct proc *p));
    101 static int pipe_ioctl __P((struct file *fp, u_long cmd, caddr_t data, struct proc *p));
    102 
    103 static struct fileops pipeops = {
    104 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
    105 	pipe_stat, pipe_close
    106 };
    107 
    108 static void	filt_pipedetach(struct knote *kn);
    109 static int	filt_piperead(struct knote *kn, long hint);
    110 static int	filt_pipewrite(struct knote *kn, long hint);
    111 
    112 static struct filterops pipe_rfiltops =
    113 	{ 1, NULL, filt_pipedetach, filt_piperead };
    114 static struct filterops pipe_wfiltops =
    115 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
    116 
    117 
    118 /*
    119  * Default pipe buffer size(s), this can be kind-of large now because pipe
    120  * space is pageable.  The pipe code will try to maintain locality of
    121  * reference for performance reasons, so small amounts of outstanding I/O
    122  * will not wipe the cache.
    123  */
    124 #define MINPIPESIZE (PIPE_SIZE/3)
    125 #define MAXPIPESIZE (2*PIPE_SIZE/3)
    126 
    127 /*
    128  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    129  * is there so that on large systems, we don't exhaust it.
    130  */
    131 #define MAXPIPEKVA (8*1024*1024)
    132 
    133 /*
    134  * Limit for direct transfers, we cannot, of course limit
    135  * the amount of kva for pipes in general though.
    136  */
    137 #define LIMITPIPEKVA (16*1024*1024)
    138 
    139 /*
    140  * Limit the number of "big" pipes
    141  */
    142 #define LIMITBIGPIPES	32
    143 static int nbigpipe;
    144 
    145 static int amountpipekva;
    146 
    147 static void pipeclose __P((struct pipe *cpipe));
    148 static void pipe_free_kmem __P((struct pipe *cpipe));
    149 static int pipe_create __P((struct pipe **cpipep));
    150 static __inline int pipelock __P((struct pipe *cpipe, int catch));
    151 static __inline void pipeunlock __P((struct pipe *cpipe));
    152 static __inline void pipeselwakeup __P((struct pipe *cpipe));
    153 #ifndef PIPE_NODIRECT
    154 static int pipe_build_write_buffer __P((struct pipe *wpipe, struct uio *uio));
    155 static void pipe_destroy_write_buffer __P((struct pipe *wpipe));
    156 static int pipe_direct_write __P((struct pipe *wpipe, struct uio *uio));
    157 static void pipe_clone_write_buffer __P((struct pipe *wpipe));
    158 #endif
    159 static int pipespace __P((struct pipe *cpipe, int size));
    160 
    161 static vm_zone_t pipe_zone;
    162 
    163 /*
    164  * The pipe system call for the DTYPE_PIPE type of pipes
    165  */
    166 
    167 /* ARGSUSED */
    168 int
    169 pipe(p, uap)
    170 	struct proc *p;
    171 	struct pipe_args /* {
    172 		int	dummy;
    173 	} */ *uap;
    174 {
    175 	struct filedesc *fdp = p->p_fd;
    176 	struct file *rf, *wf;
    177 	struct pipe *rpipe, *wpipe;
    178 	int fd, error;
    179 
    180 	if (pipe_zone == NULL)
    181 		pipe_zone = zinit("PIPE", sizeof(struct pipe), 0, 0, 4);
    182 
    183 	rpipe = wpipe = NULL;
    184 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
    185 		pipeclose(rpipe);
    186 		pipeclose(wpipe);
    187 		return (ENFILE);
    188 	}
    189 
    190 	rpipe->pipe_state |= PIPE_DIRECTOK;
    191 	wpipe->pipe_state |= PIPE_DIRECTOK;
    192 
    193 	error = falloc(p, &rf, &fd);
    194 	if (error) {
    195 		pipeclose(rpipe);
    196 		pipeclose(wpipe);
    197 		return (error);
    198 	}
    199 	fhold(rf);
    200 	p->p_retval[0] = fd;
    201 
    202 	/*
    203 	 * Warning: once we've gotten past allocation of the fd for the
    204 	 * read-side, we can only drop the read side via fdrop() in order
    205 	 * to avoid races against processes which manage to dup() the read
    206 	 * side while we are blocked trying to allocate the write side.
    207 	 */
    208 	rf->f_flag = FREAD | FWRITE;
    209 	rf->f_type = DTYPE_PIPE;
    210 	rf->f_data = (caddr_t)rpipe;
    211 	rf->f_ops = &pipeops;
    212 	error = falloc(p, &wf, &fd);
    213 	if (error) {
    214 		if (fdp->fd_ofiles[p->p_retval[0]] == rf) {
    215 			fdp->fd_ofiles[p->p_retval[0]] = NULL;
    216 			fdrop(rf, p);
    217 		}
    218 		fdrop(rf, p);
    219 		/* rpipe has been closed by fdrop(). */
    220 		pipeclose(wpipe);
    221 		return (error);
    222 	}
    223 	wf->f_flag = FREAD | FWRITE;
    224 	wf->f_type = DTYPE_PIPE;
    225 	wf->f_data = (caddr_t)wpipe;
    226 	wf->f_ops = &pipeops;
    227 	p->p_retval[1] = fd;
    228 
    229 	rpipe->pipe_peer = wpipe;
    230 	wpipe->pipe_peer = rpipe;
    231 	fdrop(rf, p);
    232 
    233 	return (0);
    234 }
    235 
    236 /*
    237  * Allocate kva for pipe circular buffer, the space is pageable
    238  * This routine will 'realloc' the size of a pipe safely, if it fails
    239  * it will retain the old buffer.
    240  * If it fails it will return ENOMEM.
    241  */
    242 static int
    243 pipespace(cpipe, size)
    244 	struct pipe *cpipe;
    245 	int size;
    246 {
    247 	struct vm_object *object;
    248 	caddr_t buffer;
    249 	int npages, error;
    250 
    251 	npages = round_page(size)/PAGE_SIZE;
    252 	/*
    253 	 * Create an object, I don't like the idea of paging to/from
    254 	 * kernel_object.
    255 	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
    256 	 */
    257 	mtx_lock(&vm_mtx);
    258 	object = vm_object_allocate(OBJT_DEFAULT, npages);
    259 	buffer = (caddr_t) vm_map_min(kernel_map);
    260 
    261 	/*
    262 	 * Insert the object into the kernel map, and allocate kva for it.
    263 	 * The map entry is, by default, pageable.
    264 	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
    265 	 */
    266 	error = vm_map_find(kernel_map, object, 0,
    267 		(vm_offset_t *) &buffer, size, 1,
    268 		VM_PROT_ALL, VM_PROT_ALL, 0);
    269 
    270 	if (error != KERN_SUCCESS) {
    271 		vm_object_deallocate(object);
    272 		mtx_unlock(&vm_mtx);
    273 		return (ENOMEM);
    274 	}
    275 
    276 	/* free old resources if we're resizing */
    277 	pipe_free_kmem(cpipe);
    278 	mtx_unlock(&vm_mtx);
    279 	cpipe->pipe_buffer.object = object;
    280 	cpipe->pipe_buffer.buffer = buffer;
    281 	cpipe->pipe_buffer.size = size;
    282 	cpipe->pipe_buffer.in = 0;
    283 	cpipe->pipe_buffer.out = 0;
    284 	cpipe->pipe_buffer.cnt = 0;
    285 	amountpipekva += cpipe->pipe_buffer.size;
    286 	return (0);
    287 }
    288 
    289 /*
    290  * initialize and allocate VM and memory for pipe
    291  */
    292 static int
    293 pipe_create(cpipep)
    294 	struct pipe **cpipep;
    295 {
    296 	struct pipe *cpipe;
    297 	int error;
    298 
    299 	*cpipep = zalloc(pipe_zone);
    300 	if (*cpipep == NULL)
    301 		return (ENOMEM);
    302 
    303 	cpipe = *cpipep;
    304 
    305 	/* so pipespace()->pipe_free_kmem() doesn't follow junk pointer */
    306 	cpipe->pipe_buffer.object = NULL;
    307 #ifndef PIPE_NODIRECT
    308 	cpipe->pipe_map.kva = NULL;
    309 #endif
    310 	/*
    311 	 * protect so pipeclose() doesn't follow a junk pointer
    312 	 * if pipespace() fails.
    313 	 */
    314 	bzero(&cpipe->pipe_sel, sizeof(cpipe->pipe_sel));
    315 	cpipe->pipe_state = 0;
    316 	cpipe->pipe_peer = NULL;
    317 	cpipe->pipe_busy = 0;
    318 
    319 #ifndef PIPE_NODIRECT
    320 	/*
    321 	 * pipe data structure initializations to support direct pipe I/O
    322 	 */
    323 	cpipe->pipe_map.cnt = 0;
    324 	cpipe->pipe_map.kva = 0;
    325 	cpipe->pipe_map.pos = 0;
    326 	cpipe->pipe_map.npages = 0;
    327 	/* cpipe->pipe_map.ms[] = invalid */
    328 #endif
    329 
    330 	error = pipespace(cpipe, PIPE_SIZE);
    331 	if (error)
    332 		return (error);
    333 
    334 	vfs_timestamp(&cpipe->pipe_ctime);
    335 	cpipe->pipe_atime = cpipe->pipe_ctime;
    336 	cpipe->pipe_mtime = cpipe->pipe_ctime;
    337 
    338 	return (0);
    339 }
    340 
    341 
    342 /*
    343  * lock a pipe for I/O, blocking other access
    344  */
    345 static __inline int
    346 pipelock(cpipe, catch)
    347 	struct pipe *cpipe;
    348 	int catch;
    349 {
    350 	int error;
    351 
    352 	while (cpipe->pipe_state & PIPE_LOCK) {
    353 		cpipe->pipe_state |= PIPE_LWANT;
    354 		error = tsleep(cpipe, catch ? (PRIBIO | PCATCH) : PRIBIO,
    355 		    "pipelk", 0);
    356 		if (error != 0)
    357 			return (error);
    358 	}
    359 	cpipe->pipe_state |= PIPE_LOCK;
    360 	return (0);
    361 }
    362 
    363 /*
    364  * unlock a pipe I/O lock
    365  */
    366 static __inline void
    367 pipeunlock(cpipe)
    368 	struct pipe *cpipe;
    369 {
    370 
    371 	cpipe->pipe_state &= ~PIPE_LOCK;
    372 	if (cpipe->pipe_state & PIPE_LWANT) {
    373 		cpipe->pipe_state &= ~PIPE_LWANT;
    374 		wakeup(cpipe);
    375 	}
    376 }
    377 
    378 static __inline void
    379 pipeselwakeup(cpipe)
    380 	struct pipe *cpipe;
    381 {
    382 
    383 	if (cpipe->pipe_state & PIPE_SEL) {
    384 		cpipe->pipe_state &= ~PIPE_SEL;
    385 		selwakeup(&cpipe->pipe_sel);
    386 	}
    387 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
    388 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
    389 	KNOTE(&cpipe->pipe_sel.si_note, 0);
    390 }
    391 
    392 /* ARGSUSED */
    393 static int
    394 pipe_read(fp, uio, cred, flags, p)
    395 	struct file *fp;
    396 	struct uio *uio;
    397 	struct ucred *cred;
    398 	struct proc *p;
    399 	int flags;
    400 {
    401 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    402 	int error;
    403 	int nread = 0;
    404 	u_int size;
    405 
    406 	++rpipe->pipe_busy;
    407 	error = pipelock(rpipe, 1);
    408 	if (error)
    409 		goto unlocked_error;
    410 
    411 	while (uio->uio_resid) {
    412 		/*
    413 		 * normal pipe buffer receive
    414 		 */
    415 		if (rpipe->pipe_buffer.cnt > 0) {
    416 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
    417 			if (size > rpipe->pipe_buffer.cnt)
    418 				size = rpipe->pipe_buffer.cnt;
    419 			if (size > (u_int) uio->uio_resid)
    420 				size = (u_int) uio->uio_resid;
    421 
    422 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
    423 					size, uio);
    424 			if (error)
    425 				break;
    426 
    427 			rpipe->pipe_buffer.out += size;
    428 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
    429 				rpipe->pipe_buffer.out = 0;
    430 
    431 			rpipe->pipe_buffer.cnt -= size;
    432 
    433 			/*
    434 			 * If there is no more to read in the pipe, reset
    435 			 * its pointers to the beginning.  This improves
    436 			 * cache hit stats.
    437 			 */
    438 			if (rpipe->pipe_buffer.cnt == 0) {
    439 				rpipe->pipe_buffer.in = 0;
    440 				rpipe->pipe_buffer.out = 0;
    441 			}
    442 			nread += size;
    443 #ifndef PIPE_NODIRECT
    444 		/*
    445 		 * Direct copy, bypassing a kernel buffer.
    446 		 */
    447 		} else if ((size = rpipe->pipe_map.cnt) &&
    448 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
    449 			caddr_t	va;
    450 			if (size > (u_int) uio->uio_resid)
    451 				size = (u_int) uio->uio_resid;
    452 
    453 			va = (caddr_t) rpipe->pipe_map.kva +
    454 			    rpipe->pipe_map.pos;
    455 			error = uiomove(va, size, uio);
    456 			if (error)
    457 				break;
    458 			nread += size;
    459 			rpipe->pipe_map.pos += size;
    460 			rpipe->pipe_map.cnt -= size;
    461 			if (rpipe->pipe_map.cnt == 0) {
    462 				rpipe->pipe_state &= ~PIPE_DIRECTW;
    463 				wakeup(rpipe);
    464 			}
    465 #endif
    466 		} else {
    467 			/*
    468 			 * detect EOF condition
    469 			 * read returns 0 on EOF, no need to set error
    470 			 */
    471 			if (rpipe->pipe_state & PIPE_EOF)
    472 				break;
    473 
    474 			/*
    475 			 * If the "write-side" has been blocked, wake it up now.
    476 			 */
    477 			if (rpipe->pipe_state & PIPE_WANTW) {
    478 				rpipe->pipe_state &= ~PIPE_WANTW;
    479 				wakeup(rpipe);
    480 			}
    481 
    482 			/*
    483 			 * Break if some data was read.
    484 			 */
    485 			if (nread > 0)
    486 				break;
    487 
    488 			/*
    489 			 * Unlock the pipe buffer for our remaining processing.  We
    490 			 * will either break out with an error or we will sleep and
    491 			 * relock to loop.
    492 			 */
    493 			pipeunlock(rpipe);
    494 
    495 			/*
    496 			 * Handle non-blocking mode operation or
    497 			 * wait for more data.
    498 			 */
    499 			if (fp->f_flag & FNONBLOCK) {
    500 				error = EAGAIN;
    501 			} else {
    502 				rpipe->pipe_state |= PIPE_WANTR;
    503 				if ((error = tsleep(rpipe, PRIBIO | PCATCH,
    504 				    "piperd", 0)) == 0)
    505 					error = pipelock(rpipe, 1);
    506 			}
    507 			if (error)
    508 				goto unlocked_error;
    509 		}
    510 	}
    511 	pipeunlock(rpipe);
    512 
    513 	if (error == 0)
    514 		vfs_timestamp(&rpipe->pipe_atime);
    515 unlocked_error:
    516 	--rpipe->pipe_busy;
    517 
    518 	/*
    519 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
    520 	 */
    521 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
    522 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
    523 		wakeup(rpipe);
    524 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
    525 		/*
    526 		 * Handle write blocking hysteresis.
    527 		 */
    528 		if (rpipe->pipe_state & PIPE_WANTW) {
    529 			rpipe->pipe_state &= ~PIPE_WANTW;
    530 			wakeup(rpipe);
    531 		}
    532 	}
    533 
    534 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
    535 		pipeselwakeup(rpipe);
    536 
    537 	return (error);
    538 }
    539 
    540 #ifndef PIPE_NODIRECT
    541 /*
    542  * Map the sending processes' buffer into kernel space and wire it.
    543  * This is similar to a physical write operation.
    544  */
    545 static int
    546 pipe_build_write_buffer(wpipe, uio)
    547 	struct pipe *wpipe;
    548 	struct uio *uio;
    549 {
    550 	u_int size;
    551 	int i;
    552 	vm_offset_t addr, endaddr, paddr;
    553 
    554 	size = (u_int) uio->uio_iov->iov_len;
    555 	if (size > wpipe->pipe_buffer.size)
    556 		size = wpipe->pipe_buffer.size;
    557 
    558 	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
    559 	mtx_lock(&vm_mtx);
    560 	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
    561 	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
    562 		vm_page_t m;
    563 
    564 		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
    565 		    (paddr = pmap_kextract(addr)) == 0) {
    566 			int j;
    567 
    568 			for (j = 0; j < i; j++)
    569 				vm_page_unwire(wpipe->pipe_map.ms[j], 1);
    570 			mtx_unlock(&vm_mtx);
    571 			return (EFAULT);
    572 		}
    573 
    574 		m = PHYS_TO_VM_PAGE(paddr);
    575 		vm_page_wire(m);
    576 		wpipe->pipe_map.ms[i] = m;
    577 	}
    578 
    579 /*
    580  * set up the control block
    581  */
    582 	wpipe->pipe_map.npages = i;
    583 	wpipe->pipe_map.pos =
    584 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
    585 	wpipe->pipe_map.cnt = size;
    586 
    587 /*
    588  * and map the buffer
    589  */
    590 	if (wpipe->pipe_map.kva == 0) {
    591 		/*
    592 		 * We need to allocate space for an extra page because the
    593 		 * address range might (will) span pages at times.
    594 		 */
    595 		wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
    596 			wpipe->pipe_buffer.size + PAGE_SIZE);
    597 		amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE;
    598 	}
    599 	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
    600 		wpipe->pipe_map.npages);
    601 
    602 	mtx_unlock(&vm_mtx);
    603 /*
    604  * and update the uio data
    605  */
    606 
    607 	uio->uio_iov->iov_len -= size;
    608 	uio->uio_iov->iov_base += size;
    609 	if (uio->uio_iov->iov_len == 0)
    610 		uio->uio_iov++;
    611 	uio->uio_resid -= size;
    612 	uio->uio_offset += size;
    613 	return (0);
    614 }
    615 
    616 /*
    617  * unmap and unwire the process buffer
    618  */
    619 static void
    620 pipe_destroy_write_buffer(wpipe)
    621 	struct pipe *wpipe;
    622 {
    623 	int i;
    624 
    625 	mtx_lock(&vm_mtx);
    626 	if (wpipe->pipe_map.kva) {
    627 		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
    628 
    629 		if (amountpipekva > MAXPIPEKVA) {
    630 			vm_offset_t kva = wpipe->pipe_map.kva;
    631 			wpipe->pipe_map.kva = 0;
    632 			kmem_free(kernel_map, kva,
    633 				wpipe->pipe_buffer.size + PAGE_SIZE);
    634 			amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
    635 		}
    636 	}
    637 	for (i = 0; i < wpipe->pipe_map.npages; i++)
    638 		vm_page_unwire(wpipe->pipe_map.ms[i], 1);
    639 	mtx_unlock(&vm_mtx);
    640 }
    641 
    642 /*
    643  * In the case of a signal, the writing process might go away.  This
    644  * code copies the data into the circular buffer so that the source
    645  * pages can be freed without loss of data.
    646  */
    647 static void
    648 pipe_clone_write_buffer(wpipe)
    649 	struct pipe *wpipe;
    650 {
    651 	int size;
    652 	int pos;
    653 
    654 	size = wpipe->pipe_map.cnt;
    655 	pos = wpipe->pipe_map.pos;
    656 	bcopy((caddr_t) wpipe->pipe_map.kva + pos,
    657 	    (caddr_t) wpipe->pipe_buffer.buffer, size);
    658 
    659 	wpipe->pipe_buffer.in = size;
    660 	wpipe->pipe_buffer.out = 0;
    661 	wpipe->pipe_buffer.cnt = size;
    662 	wpipe->pipe_state &= ~PIPE_DIRECTW;
    663 
    664 	pipe_destroy_write_buffer(wpipe);
    665 }
    666 
    667 /*
    668  * This implements the pipe buffer write mechanism.  Note that only
    669  * a direct write OR a normal pipe write can be pending at any given time.
    670  * If there are any characters in the pipe buffer, the direct write will
    671  * be deferred until the receiving process grabs all of the bytes from
    672  * the pipe buffer.  Then the direct mapping write is set-up.
    673  */
    674 static int
    675 pipe_direct_write(wpipe, uio)
    676 	struct pipe *wpipe;
    677 	struct uio *uio;
    678 {
    679 	int error;
    680 
    681 retry:
    682 	while (wpipe->pipe_state & PIPE_DIRECTW) {
    683 		if (wpipe->pipe_state & PIPE_WANTR) {
    684 			wpipe->pipe_state &= ~PIPE_WANTR;
    685 			wakeup(wpipe);
    686 		}
    687 		wpipe->pipe_state |= PIPE_WANTW;
    688 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdww", 0);
    689 		if (error)
    690 			goto error1;
    691 		if (wpipe->pipe_state & PIPE_EOF) {
    692 			error = EPIPE;
    693 			goto error1;
    694 		}
    695 	}
    696 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
    697 	if (wpipe->pipe_buffer.cnt > 0) {
    698 		if (wpipe->pipe_state & PIPE_WANTR) {
    699 			wpipe->pipe_state &= ~PIPE_WANTR;
    700 			wakeup(wpipe);
    701 		}
    702 
    703 		wpipe->pipe_state |= PIPE_WANTW;
    704 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0);
    705 		if (error)
    706 			goto error1;
    707 		if (wpipe->pipe_state & PIPE_EOF) {
    708 			error = EPIPE;
    709 			goto error1;
    710 		}
    711 		goto retry;
    712 	}
    713 
    714 	wpipe->pipe_state |= PIPE_DIRECTW;
    715 
    716 	error = pipe_build_write_buffer(wpipe, uio);
    717 	if (error) {
    718 		wpipe->pipe_state &= ~PIPE_DIRECTW;
    719 		goto error1;
    720 	}
    721 
    722 	error = 0;
    723 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
    724 		if (wpipe->pipe_state & PIPE_EOF) {
    725 			pipelock(wpipe, 0);
    726 			pipe_destroy_write_buffer(wpipe);
    727 			pipeunlock(wpipe);
    728 			pipeselwakeup(wpipe);
    729 			error = EPIPE;
    730 			goto error1;
    731 		}
    732 		if (wpipe->pipe_state & PIPE_WANTR) {
    733 			wpipe->pipe_state &= ~PIPE_WANTR;
    734 			wakeup(wpipe);
    735 		}
    736 		pipeselwakeup(wpipe);
    737 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0);
    738 	}
    739 
    740 	pipelock(wpipe,0);
    741 	if (wpipe->pipe_state & PIPE_DIRECTW) {
    742 		/*
    743 		 * this bit of trickery substitutes a kernel buffer for
    744 		 * the process that might be going away.
    745 		 */
    746 		pipe_clone_write_buffer(wpipe);
    747 	} else {
    748 		pipe_destroy_write_buffer(wpipe);
    749 	}
    750 	pipeunlock(wpipe);
    751 	return (error);
    752 
    753 error1:
    754 	wakeup(wpipe);
    755 	return (error);
    756 }
    757 #endif
    758 
    759 static int
    760 pipe_write(fp, uio, cred, flags, p)
    761 	struct file *fp;
    762 	struct uio *uio;
    763 	struct ucred *cred;
    764 	struct proc *p;
    765 	int flags;
    766 {
    767 	int error = 0;
    768 	int orig_resid;
    769 	struct pipe *wpipe, *rpipe;
    770 
    771 	rpipe = (struct pipe *) fp->f_data;
    772 	wpipe = rpipe->pipe_peer;
    773 
    774 	/*
    775 	 * detect loss of pipe read side, issue SIGPIPE if lost.
    776 	 */
    777 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
    778 		return (EPIPE);
    779 	}
    780 	++wpipe->pipe_busy;
    781 
    782 	/*
    783 	 * If it is advantageous to resize the pipe buffer, do
    784 	 * so.
    785 	 */
    786 	if ((uio->uio_resid > PIPE_SIZE) &&
    787 		(nbigpipe < LIMITBIGPIPES) &&
    788 		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    789 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
    790 		(wpipe->pipe_buffer.cnt == 0)) {
    791 
    792 		if ((error = pipelock(wpipe,1)) == 0) {
    793 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    794 				nbigpipe++;
    795 			pipeunlock(wpipe);
    796 		}
    797 	}
    798 
    799 	/*
    800 	 * If an early error occured unbusy and return, waking up any pending
    801 	 * readers.
    802 	 */
    803 	if (error) {
    804 		--wpipe->pipe_busy;
    805 		if ((wpipe->pipe_busy == 0) &&
    806 		    (wpipe->pipe_state & PIPE_WANT)) {
    807 			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
    808 			wakeup(wpipe);
    809 		}
    810 		return(error);
    811 	}
    812 
    813 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
    814 
    815 	orig_resid = uio->uio_resid;
    816 
    817 	while (uio->uio_resid) {
    818 		int space;
    819 
    820 #ifndef PIPE_NODIRECT
    821 		/*
    822 		 * If the transfer is large, we can gain performance if
    823 		 * we do process-to-process copies directly.
    824 		 * If the write is non-blocking, we don't use the
    825 		 * direct write mechanism.
    826 		 *
    827 		 * The direct write mechanism will detect the reader going
    828 		 * away on us.
    829 		 */
    830 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    831 		    (fp->f_flag & FNONBLOCK) == 0 &&
    832 			(wpipe->pipe_map.kva || (amountpipekva < LIMITPIPEKVA)) &&
    833 			(uio->uio_iov->iov_len >= PIPE_MINDIRECT)) {
    834 			error = pipe_direct_write( wpipe, uio);
    835 			if (error)
    836 				break;
    837 			continue;
    838 		}
    839 #endif
    840 
    841 		/*
    842 		 * Pipe buffered writes cannot be coincidental with
    843 		 * direct writes.  We wait until the currently executing
    844 		 * direct write is completed before we start filling the
    845 		 * pipe buffer.  We break out if a signal occurs or the
    846 		 * reader goes away.
    847 		 */
    848 	retrywrite:
    849 		while (wpipe->pipe_state & PIPE_DIRECTW) {
    850 			if (wpipe->pipe_state & PIPE_WANTR) {
    851 				wpipe->pipe_state &= ~PIPE_WANTR;
    852 				wakeup(wpipe);
    853 			}
    854 			error = tsleep(wpipe, PRIBIO | PCATCH, "pipbww", 0);
    855 			if (wpipe->pipe_state & PIPE_EOF)
    856 				break;
    857 			if (error)
    858 				break;
    859 		}
    860 		if (wpipe->pipe_state & PIPE_EOF) {
    861 			error = EPIPE;
    862 			break;
    863 		}
    864 
    865 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
    866 
    867 		/* Writes of size <= PIPE_BUF must be atomic. */
    868 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
    869 			space = 0;
    870 
    871 		if (space > 0 && (wpipe->pipe_buffer.cnt < PIPE_SIZE)) {
    872 			if ((error = pipelock(wpipe,1)) == 0) {
    873 				int size;	/* Transfer size */
    874 				int segsize;	/* first segment to transfer */
    875 
    876 				/*
    877 				 * It is possible for a direct write to
    878 				 * slip in on us... handle it here...
    879 				 */
    880 				if (wpipe->pipe_state & PIPE_DIRECTW) {
    881 					pipeunlock(wpipe);
    882 					goto retrywrite;
    883 				}
    884 				/*
    885 				 * If a process blocked in uiomove, our
    886 				 * value for space might be bad.
    887 				 *
    888 				 * XXX will we be ok if the reader has gone
    889 				 * away here?
    890 				 */
    891 				if (space > wpipe->pipe_buffer.size -
    892 				    wpipe->pipe_buffer.cnt) {
    893 					pipeunlock(wpipe);
    894 					goto retrywrite;
    895 				}
    896 
    897 				/*
    898 				 * Transfer size is minimum of uio transfer
    899 				 * and free space in pipe buffer.
    900 				 */
    901 				if (space > uio->uio_resid)
    902 					size = uio->uio_resid;
    903 				else
    904 					size = space;
    905 				/*
    906 				 * First segment to transfer is minimum of
    907 				 * transfer size and contiguous space in
    908 				 * pipe buffer.  If first segment to transfer
    909 				 * is less than the transfer size, we've got
    910 				 * a wraparound in the buffer.
    911 				 */
    912 				segsize = wpipe->pipe_buffer.size -
    913 					wpipe->pipe_buffer.in;
    914 				if (segsize > size)
    915 					segsize = size;
    916 
    917 				/* Transfer first segment */
    918 
    919 				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
    920 						segsize, uio);
    921 
    922 				if (error == 0 && segsize < size) {
    923 					/*
    924 					 * Transfer remaining part now, to
    925 					 * support atomic writes.  Wraparound
    926 					 * happened.
    927 					 */
    928 					if (wpipe->pipe_buffer.in + segsize !=
    929 					    wpipe->pipe_buffer.size)
    930 						panic("Expected pipe buffer wraparound disappeared");
    931 
    932 					error = uiomove(&wpipe->pipe_buffer.buffer[0],
    933 							size - segsize, uio);
    934 				}
    935 				if (error == 0) {
    936 					wpipe->pipe_buffer.in += size;
    937 					if (wpipe->pipe_buffer.in >=
    938 					    wpipe->pipe_buffer.size) {
    939 						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
    940 							panic("Expected wraparound bad");
    941 						wpipe->pipe_buffer.in = size - segsize;
    942 					}
    943 
    944 					wpipe->pipe_buffer.cnt += size;
    945 					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
    946 						panic("Pipe buffer overflow");
    947 
    948 				}
    949 				pipeunlock(wpipe);
    950 			}
    951 			if (error)
    952 				break;
    953 
    954 		} else {
    955 			/*
    956 			 * If the "read-side" has been blocked, wake it up now.
    957 			 */
    958 			if (wpipe->pipe_state & PIPE_WANTR) {
    959 				wpipe->pipe_state &= ~PIPE_WANTR;
    960 				wakeup(wpipe);
    961 			}
    962 
    963 			/*
    964 			 * don't block on non-blocking I/O
    965 			 */
    966 			if (fp->f_flag & FNONBLOCK) {
    967 				error = EAGAIN;
    968 				break;
    969 			}
    970 
    971 			/*
    972 			 * We have no more space and have something to offer,
    973 			 * wake up select/poll.
    974 			 */
    975 			pipeselwakeup(wpipe);
    976 
    977 			wpipe->pipe_state |= PIPE_WANTW;
    978 			error = tsleep(wpipe, PRIBIO | PCATCH, "pipewr", 0);
    979 			if (error != 0)
    980 				break;
    981 			/*
    982 			 * If read side wants to go away, we just issue a signal
    983 			 * to ourselves.
    984 			 */
    985 			if (wpipe->pipe_state & PIPE_EOF) {
    986 				error = EPIPE;
    987 				break;
    988 			}
    989 		}
    990 	}
    991 
    992 	--wpipe->pipe_busy;
    993 
    994 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
    995 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
    996 		wakeup(wpipe);
    997 	} else if (wpipe->pipe_buffer.cnt > 0) {
    998 		/*
    999 		 * If we have put any characters in the buffer, we wake up
   1000 		 * the reader.
   1001 		 */
   1002 		if (wpipe->pipe_state & PIPE_WANTR) {
   1003 			wpipe->pipe_state &= ~PIPE_WANTR;
   1004 			wakeup(wpipe);
   1005 		}
   1006 	}
   1007 
   1008 	/*
   1009 	 * Don't return EPIPE if I/O was successful
   1010 	 */
   1011 	if ((wpipe->pipe_buffer.cnt == 0) &&
   1012 	    (uio->uio_resid == 0) &&
   1013 	    (error == EPIPE)) {
   1014 		error = 0;
   1015 	}
   1016 
   1017 	if (error == 0)
   1018 		vfs_timestamp(&wpipe->pipe_mtime);
   1019 
   1020 	/*
   1021 	 * We have something to offer,
   1022 	 * wake up select/poll.
   1023 	 */
   1024 	if (wpipe->pipe_buffer.cnt)
   1025 		pipeselwakeup(wpipe);
   1026 
   1027 	return (error);
   1028 }
   1029 
   1030 /*
   1031  * we implement a very minimal set of ioctls for compatibility with sockets.
   1032  */
   1033 int
   1034 pipe_ioctl(fp, cmd, data, p)
   1035 	struct file *fp;
   1036 	u_long cmd;
   1037 	caddr_t data;
   1038 	struct proc *p;
   1039 {
   1040 	struct pipe *mpipe = (struct pipe *)fp->f_data;
   1041 
   1042 	switch (cmd) {
   1043 
   1044 	case FIONBIO:
   1045 		return (0);
   1046 
   1047 	case FIOASYNC:
   1048 		if (*(int *)data) {
   1049 			mpipe->pipe_state |= PIPE_ASYNC;
   1050 		} else {
   1051 			mpipe->pipe_state &= ~PIPE_ASYNC;
   1052 		}
   1053 		return (0);
   1054 
   1055 	case FIONREAD:
   1056 		if (mpipe->pipe_state & PIPE_DIRECTW)
   1057 			*(int *)data = mpipe->pipe_map.cnt;
   1058 		else
   1059 			*(int *)data = mpipe->pipe_buffer.cnt;
   1060 		return (0);
   1061 
   1062 	case FIOSETOWN:
   1063 		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
   1064 
   1065 	case FIOGETOWN:
   1066 		*(int *)data = fgetown(mpipe->pipe_sigio);
   1067 		return (0);
   1068 
   1069 	/* This is deprecated, FIOSETOWN should be used instead. */
   1070 	case TIOCSPGRP:
   1071 		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
   1072 
   1073 	/* This is deprecated, FIOGETOWN should be used instead. */
   1074 	case TIOCGPGRP:
   1075 		*(int *)data = -fgetown(mpipe->pipe_sigio);
   1076 		return (0);
   1077 
   1078 	}
   1079 	return (ENOTTY);
   1080 }
   1081 
   1082 int
   1083 pipe_poll(fp, events, cred, p)
   1084 	struct file *fp;
   1085 	int events;
   1086 	struct ucred *cred;
   1087 	struct proc *p;
   1088 {
   1089 	struct pipe *rpipe = (struct pipe *)fp->f_data;
   1090 	struct pipe *wpipe;
   1091 	int revents = 0;
   1092 
   1093 	wpipe = rpipe->pipe_peer;
   1094 	if (events & (POLLIN | POLLRDNORM))
   1095 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
   1096 		    (rpipe->pipe_buffer.cnt > 0) ||
   1097 		    (rpipe->pipe_state & PIPE_EOF))
   1098 			revents |= events & (POLLIN | POLLRDNORM);
   1099 
   1100 	if (events & (POLLOUT | POLLWRNORM))
   1101 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
   1102 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
   1103 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1104 			revents |= events & (POLLOUT | POLLWRNORM);
   1105 
   1106 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1107 	    (wpipe == NULL) ||
   1108 	    (wpipe->pipe_state & PIPE_EOF))
   1109 		revents |= POLLHUP;
   1110 
   1111 	if (revents == 0) {
   1112 		if (events & (POLLIN | POLLRDNORM)) {
   1113 			selrecord(p, &rpipe->pipe_sel);
   1114 			rpipe->pipe_state |= PIPE_SEL;
   1115 		}
   1116 
   1117 		if (events & (POLLOUT | POLLWRNORM)) {
   1118 			selrecord(p, &wpipe->pipe_sel);
   1119 			wpipe->pipe_state |= PIPE_SEL;
   1120 		}
   1121 	}
   1122 
   1123 	return (revents);
   1124 }
   1125 
   1126 static int
   1127 pipe_stat(fp, ub, p)
   1128 	struct file *fp;
   1129 	struct stat *ub;
   1130 	struct proc *p;
   1131 {
   1132 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1133 
   1134 	bzero((caddr_t)ub, sizeof(*ub));
   1135 	ub->st_mode = S_IFIFO;
   1136 	ub->st_blksize = pipe->pipe_buffer.size;
   1137 	ub->st_size = pipe->pipe_buffer.cnt;
   1138 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
   1139 	ub->st_atimespec = pipe->pipe_atime;
   1140 	ub->st_mtimespec = pipe->pipe_mtime;
   1141 	ub->st_ctimespec = pipe->pipe_ctime;
   1142 	ub->st_uid = fp->f_cred->cr_uid;
   1143 	ub->st_gid = fp->f_cred->cr_gid;
   1144 	/*
   1145 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1146 	 * XXX (st_dev, st_ino) should be unique.
   1147 	 */
   1148 	return (0);
   1149 }
   1150 
   1151 /* ARGSUSED */
   1152 static int
   1153 pipe_close(fp, p)
   1154 	struct file *fp;
   1155 	struct proc *p;
   1156 {
   1157 	struct pipe *cpipe = (struct pipe *)fp->f_data;
   1158 
   1159 	fp->f_ops = &badfileops;
   1160 	fp->f_data = NULL;
   1161 	funsetown(cpipe->pipe_sigio);
   1162 	pipeclose(cpipe);
   1163 	return (0);
   1164 }
   1165 
   1166 static void
   1167 pipe_free_kmem(cpipe)
   1168 	struct pipe *cpipe;
   1169 {
   1170 
   1171 	mtx_assert(&vm_mtx, MA_OWNED);
   1172 	if (cpipe->pipe_buffer.buffer != NULL) {
   1173 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
   1174 			--nbigpipe;
   1175 		amountpipekva -= cpipe->pipe_buffer.size;
   1176 		kmem_free(kernel_map,
   1177 			(vm_offset_t)cpipe->pipe_buffer.buffer,
   1178 			cpipe->pipe_buffer.size);
   1179 		cpipe->pipe_buffer.buffer = NULL;
   1180 	}
   1181 #ifndef PIPE_NODIRECT
   1182 	if (cpipe->pipe_map.kva != NULL) {
   1183 		amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE;
   1184 		kmem_free(kernel_map,
   1185 			cpipe->pipe_map.kva,
   1186 			cpipe->pipe_buffer.size + PAGE_SIZE);
   1187 		cpipe->pipe_map.cnt = 0;
   1188 		cpipe->pipe_map.kva = 0;
   1189 		cpipe->pipe_map.pos = 0;
   1190 		cpipe->pipe_map.npages = 0;
   1191 	}
   1192 #endif
   1193 }
   1194 
   1195 /*
   1196  * shutdown the pipe
   1197  */
   1198 static void
   1199 pipeclose(cpipe)
   1200 	struct pipe *cpipe;
   1201 {
   1202 	struct pipe *ppipe;
   1203 
   1204 	if (cpipe) {
   1205 
   1206 		pipeselwakeup(cpipe);
   1207 
   1208 		/*
   1209 		 * If the other side is blocked, wake it up saying that
   1210 		 * we want to close it down.
   1211 		 */
   1212 		while (cpipe->pipe_busy) {
   1213 			wakeup(cpipe);
   1214 			cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
   1215 			tsleep(cpipe, PRIBIO, "pipecl", 0);
   1216 		}
   1217 
   1218 		/*
   1219 		 * Disconnect from peer
   1220 		 */
   1221 		if ((ppipe = cpipe->pipe_peer) != NULL) {
   1222 			pipeselwakeup(ppipe);
   1223 
   1224 			ppipe->pipe_state |= PIPE_EOF;
   1225 			wakeup(ppipe);
   1226 			ppipe->pipe_peer = NULL;
   1227 		}
   1228 		/*
   1229 		 * free resources
   1230 		 */
   1231 		mtx_lock(&vm_mtx);
   1232 		pipe_free_kmem(cpipe);
   1233 		/* XXX: erm, doesn't zalloc already have its own locks and
   1234 		 * not need the giant vm lock?
   1235 		 */
   1236 		zfree(pipe_zone, cpipe);
   1237 		mtx_unlock(&vm_mtx);
   1238 	}
   1239 }
   1240 
   1241 /*ARGSUSED*/
   1242 static int
   1243 pipe_kqfilter(struct file *fp, struct knote *kn)
   1244 {
   1245 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
   1246 
   1247 	switch (kn->kn_filter) {
   1248 	case EVFILT_READ:
   1249 		kn->kn_fop = &pipe_rfiltops;
   1250 		break;
   1251 	case EVFILT_WRITE:
   1252 		kn->kn_fop = &pipe_wfiltops;
   1253 		cpipe = cpipe->pipe_peer;
   1254 		break;
   1255 	default:
   1256 		return (1);
   1257 	}
   1258 	kn->kn_hook = (caddr_t)cpipe;
   1259 
   1260 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
   1261 	return (0);
   1262 }
   1263 
   1264 static void
   1265 filt_pipedetach(struct knote *kn)
   1266 {
   1267 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
   1268 
   1269 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
   1270 }
   1271 
   1272 /*ARGSUSED*/
   1273 static int
   1274 filt_piperead(struct knote *kn, long hint)
   1275 {
   1276 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1277 	struct pipe *wpipe = rpipe->pipe_peer;
   1278 
   1279 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1280 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1281 		kn->kn_data = rpipe->pipe_map.cnt;
   1282 
   1283 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1284 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1285 		kn->kn_flags |= EV_EOF;
   1286 		return (1);
   1287 	}
   1288 	return (kn->kn_data > 0);
   1289 }
   1290 
   1291 /*ARGSUSED*/
   1292 static int
   1293 filt_pipewrite(struct knote *kn, long hint)
   1294 {
   1295 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1296 	struct pipe *wpipe = rpipe->pipe_peer;
   1297 
   1298 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1299 		kn->kn_data = 0;
   1300 		kn->kn_flags |= EV_EOF;
   1301 		return (1);
   1302 	}
   1303 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1304 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1305 		kn->kn_data = 0;
   1306 
   1307 	return (kn->kn_data >= PIPE_BUF);
   1308 }
   1309