sys_pipe.c revision 1.100 1 /* $NetBSD: sys_pipe.c,v 1.100 2008/03/27 18:30:15 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.100 2008/03/27 18:30:15 ad Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/ttycom.h>
97 #include <sys/stat.h>
98 #include <sys/malloc.h>
99 #include <sys/poll.h>
100 #include <sys/signalvar.h>
101 #include <sys/vnode.h>
102 #include <sys/uio.h>
103 #include <sys/select.h>
104 #include <sys/mount.h>
105 #include <sys/syscallargs.h>
106 #include <sys/sysctl.h>
107 #include <sys/kauth.h>
108 #include <sys/atomic.h>
109 #include <sys/pipe.h>
110
111 #include <uvm/uvm.h>
112
113 /*
114 * Use this define if you want to disable *fancy* VM things. Expect an
115 * approx 30% decrease in transfer rate.
116 */
117 /* #define PIPE_NODIRECT */
118
119 /*
120 * interfaces to the outside world
121 */
122 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
123 kauth_cred_t cred, int flags);
124 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
125 kauth_cred_t cred, int flags);
126 static int pipe_close(struct file *fp);
127 static int pipe_poll(struct file *fp, int events);
128 static int pipe_kqfilter(struct file *fp, struct knote *kn);
129 static int pipe_stat(struct file *fp, struct stat *sb);
130 static int pipe_ioctl(struct file *fp, u_long cmd, void *data);
131
132 static const struct fileops pipeops = {
133 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
134 pipe_stat, pipe_close, pipe_kqfilter
135 };
136
137 /*
138 * Single mutex shared between both ends of the pipe.
139 */
140
141 struct pipe_mutex {
142 kmutex_t pm_mutex;
143 u_int pm_refcnt;
144 };
145
146 /*
147 * Default pipe buffer size(s), this can be kind-of large now because pipe
148 * space is pageable. The pipe code will try to maintain locality of
149 * reference for performance reasons, so small amounts of outstanding I/O
150 * will not wipe the cache.
151 */
152 #define MINPIPESIZE (PIPE_SIZE/3)
153 #define MAXPIPESIZE (2*PIPE_SIZE/3)
154
155 /*
156 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
157 * is there so that on large systems, we don't exhaust it.
158 */
159 #define MAXPIPEKVA (8*1024*1024)
160 static u_int maxpipekva = MAXPIPEKVA;
161
162 /*
163 * Limit for direct transfers, we cannot, of course limit
164 * the amount of kva for pipes in general though.
165 */
166 #define LIMITPIPEKVA (16*1024*1024)
167 static u_int limitpipekva = LIMITPIPEKVA;
168
169 /*
170 * Limit the number of "big" pipes
171 */
172 #define LIMITBIGPIPES 32
173 static u_int maxbigpipes = LIMITBIGPIPES;
174 static u_int nbigpipe = 0;
175
176 /*
177 * Amount of KVA consumed by pipe buffers.
178 */
179 static u_int amountpipekva = 0;
180
181 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
182
183 static void pipeclose(struct file *fp, struct pipe *pipe);
184 static void pipe_free_kmem(struct pipe *pipe);
185 static int pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *);
186 static int pipelock(struct pipe *pipe, int catch);
187 static inline void pipeunlock(struct pipe *pipe);
188 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
189 #ifndef PIPE_NODIRECT
190 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
191 struct uio *uio);
192 #endif
193 static int pipespace(struct pipe *pipe, int size);
194
195 #ifndef PIPE_NODIRECT
196 static int pipe_loan_alloc(struct pipe *, int);
197 static void pipe_loan_free(struct pipe *);
198 #endif /* PIPE_NODIRECT */
199
200 static int pipe_mutex_ctor(void *, void *, int);
201 static void pipe_mutex_dtor(void *, void *);
202
203 static pool_cache_t pipe_cache;
204 static pool_cache_t pipe_mutex_cache;
205
206 void
207 pipe_init(void)
208 {
209
210 pipe_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipepl",
211 NULL, IPL_NONE, NULL, NULL, NULL);
212 KASSERT(pipe_cache != NULL);
213
214 pipe_mutex_cache = pool_cache_init(sizeof(struct pipe_mutex),
215 coherency_unit, 0, 0, "pipemtxpl", NULL, IPL_NONE, pipe_mutex_ctor,
216 pipe_mutex_dtor, NULL);
217 KASSERT(pipe_cache != NULL);
218 }
219
220 static int
221 pipe_mutex_ctor(void *arg, void *obj, int flag)
222 {
223 struct pipe_mutex *pm = obj;
224
225 mutex_init(&pm->pm_mutex, MUTEX_DEFAULT, IPL_NONE);
226 pm->pm_refcnt = 0;
227
228 return 0;
229 }
230
231 static void
232 pipe_mutex_dtor(void *arg, void *obj)
233 {
234 struct pipe_mutex *pm = obj;
235
236 KASSERT(pm->pm_refcnt == 0);
237
238 mutex_destroy(&pm->pm_mutex);
239 }
240
241 /*
242 * The pipe system call for the DTYPE_PIPE type of pipes
243 */
244
245 /* ARGSUSED */
246 int
247 sys_pipe(struct lwp *l, const void *v, register_t *retval)
248 {
249 struct file *rf, *wf;
250 struct pipe *rpipe, *wpipe;
251 struct pipe_mutex *mutex;
252 int fd, error;
253 proc_t *p;
254
255 p = curproc;
256 rpipe = wpipe = NULL;
257 mutex = pool_cache_get(pipe_mutex_cache, PR_WAITOK);
258 if (mutex == NULL)
259 return (ENOMEM);
260 if (pipe_create(&rpipe, 1, mutex) || pipe_create(&wpipe, 0, mutex)) {
261 pipeclose(NULL, rpipe);
262 pipeclose(NULL, wpipe);
263 return (ENFILE);
264 }
265
266 error = fd_allocfile(&rf, &fd);
267 if (error)
268 goto free2;
269 retval[0] = fd;
270 rf->f_flag = FREAD;
271 rf->f_type = DTYPE_PIPE;
272 rf->f_data = (void *)rpipe;
273 rf->f_ops = &pipeops;
274
275 error = fd_allocfile(&wf, &fd);
276 if (error)
277 goto free3;
278 retval[1] = fd;
279 wf->f_flag = FWRITE;
280 wf->f_type = DTYPE_PIPE;
281 wf->f_data = (void *)wpipe;
282 wf->f_ops = &pipeops;
283
284 rpipe->pipe_peer = wpipe;
285 wpipe->pipe_peer = rpipe;
286
287 fd_affix(p, rf, (int)retval[0]);
288 fd_affix(p, wf, (int)retval[1]);
289 return (0);
290 free3:
291 fd_abort(p, rf, (int)retval[0]);
292 free2:
293 pipeclose(NULL, wpipe);
294 pipeclose(NULL, rpipe);
295
296 return (error);
297 }
298
299 /*
300 * Allocate kva for pipe circular buffer, the space is pageable
301 * This routine will 'realloc' the size of a pipe safely, if it fails
302 * it will retain the old buffer.
303 * If it fails it will return ENOMEM.
304 */
305 static int
306 pipespace(struct pipe *pipe, int size)
307 {
308 void *buffer;
309 /*
310 * Allocate pageable virtual address space. Physical memory is
311 * allocated on demand.
312 */
313 buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
314 UVM_KMF_PAGEABLE);
315 if (buffer == NULL)
316 return (ENOMEM);
317
318 /* free old resources if we're resizing */
319 pipe_free_kmem(pipe);
320 pipe->pipe_buffer.buffer = buffer;
321 pipe->pipe_buffer.size = size;
322 pipe->pipe_buffer.in = 0;
323 pipe->pipe_buffer.out = 0;
324 pipe->pipe_buffer.cnt = 0;
325 atomic_add_int(&amountpipekva, pipe->pipe_buffer.size);
326 return (0);
327 }
328
329 /*
330 * Initialize and allocate VM and memory for pipe.
331 */
332 static int
333 pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *mutex)
334 {
335 struct pipe *pipe;
336 int error;
337
338 pipe = *pipep = pool_cache_get(pipe_cache, PR_WAITOK);
339 mutex->pm_refcnt++;
340
341 /* Initialize */
342 memset(pipe, 0, sizeof(struct pipe));
343 pipe->pipe_state = PIPE_SIGNALR;
344
345 getmicrotime(&pipe->pipe_ctime);
346 pipe->pipe_atime = pipe->pipe_ctime;
347 pipe->pipe_mtime = pipe->pipe_ctime;
348 pipe->pipe_lock = &mutex->pm_mutex;
349 cv_init(&pipe->pipe_rcv, "piperd");
350 cv_init(&pipe->pipe_wcv, "pipewr");
351 cv_init(&pipe->pipe_draincv, "pipedrain");
352 cv_init(&pipe->pipe_lkcv, "pipelk");
353 selinit(&pipe->pipe_sel);
354
355 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
356 return (error);
357
358 return (0);
359 }
360
361
362 /*
363 * Lock a pipe for I/O, blocking other access
364 * Called with pipe spin lock held.
365 * Return with pipe spin lock released on success.
366 */
367 static int
368 pipelock(struct pipe *pipe, int catch)
369 {
370 int error;
371
372 KASSERT(mutex_owned(pipe->pipe_lock));
373
374 while (pipe->pipe_state & PIPE_LOCKFL) {
375 pipe->pipe_state |= PIPE_LWANT;
376 if (catch) {
377 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
378 if (error != 0)
379 return error;
380 } else
381 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
382 }
383
384 pipe->pipe_state |= PIPE_LOCKFL;
385
386 return 0;
387 }
388
389 /*
390 * unlock a pipe I/O lock
391 */
392 static inline void
393 pipeunlock(struct pipe *pipe)
394 {
395
396 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
397
398 pipe->pipe_state &= ~PIPE_LOCKFL;
399 if (pipe->pipe_state & PIPE_LWANT) {
400 pipe->pipe_state &= ~PIPE_LWANT;
401 cv_broadcast(&pipe->pipe_lkcv);
402 }
403 }
404
405 /*
406 * Select/poll wakup. This also sends SIGIO to peer connected to
407 * 'sigpipe' side of pipe.
408 */
409 static void
410 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
411 {
412 int band;
413
414 switch (code) {
415 case POLL_IN:
416 band = POLLIN|POLLRDNORM;
417 break;
418 case POLL_OUT:
419 band = POLLOUT|POLLWRNORM;
420 break;
421 case POLL_HUP:
422 band = POLLHUP;
423 break;
424 #if POLL_HUP != POLL_ERR
425 case POLL_ERR:
426 band = POLLERR;
427 break;
428 #endif
429 default:
430 band = 0;
431 #ifdef DIAGNOSTIC
432 printf("bad siginfo code %d in pipe notification.\n", code);
433 #endif
434 break;
435 }
436
437 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
438
439 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
440 return;
441
442 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
443 }
444
445 /* ARGSUSED */
446 static int
447 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
448 int flags)
449 {
450 struct pipe *rpipe = (struct pipe *) fp->f_data;
451 struct pipebuf *bp = &rpipe->pipe_buffer;
452 kmutex_t *lock = rpipe->pipe_lock;
453 int error;
454 size_t nread = 0;
455 size_t size;
456 size_t ocnt;
457
458 mutex_enter(lock);
459 ++rpipe->pipe_busy;
460 ocnt = bp->cnt;
461
462 again:
463 error = pipelock(rpipe, 1);
464 if (error)
465 goto unlocked_error;
466
467 while (uio->uio_resid) {
468 /*
469 * normal pipe buffer receive
470 */
471 if (bp->cnt > 0) {
472 size = bp->size - bp->out;
473 if (size > bp->cnt)
474 size = bp->cnt;
475 if (size > uio->uio_resid)
476 size = uio->uio_resid;
477
478 mutex_exit(lock);
479 error = uiomove((char *)bp->buffer + bp->out, size, uio);
480 mutex_enter(lock);
481 if (error)
482 break;
483
484 bp->out += size;
485 if (bp->out >= bp->size)
486 bp->out = 0;
487
488 bp->cnt -= size;
489
490 /*
491 * If there is no more to read in the pipe, reset
492 * its pointers to the beginning. This improves
493 * cache hit stats.
494 */
495 if (bp->cnt == 0) {
496 bp->in = 0;
497 bp->out = 0;
498 }
499 nread += size;
500 continue;
501 }
502
503 #ifndef PIPE_NODIRECT
504 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
505 /*
506 * Direct copy, bypassing a kernel buffer.
507 */
508 void * va;
509
510 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
511
512 size = rpipe->pipe_map.cnt;
513 if (size > uio->uio_resid)
514 size = uio->uio_resid;
515
516 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
517 mutex_exit(lock);
518 error = uiomove(va, size, uio);
519 mutex_enter(lock);
520 if (error)
521 break;
522 nread += size;
523 rpipe->pipe_map.pos += size;
524 rpipe->pipe_map.cnt -= size;
525 if (rpipe->pipe_map.cnt == 0) {
526 rpipe->pipe_state &= ~PIPE_DIRECTR;
527 cv_broadcast(&rpipe->pipe_wcv);
528 }
529 continue;
530 }
531 #endif
532 /*
533 * Break if some data was read.
534 */
535 if (nread > 0)
536 break;
537
538 /*
539 * detect EOF condition
540 * read returns 0 on EOF, no need to set error
541 */
542 if (rpipe->pipe_state & PIPE_EOF)
543 break;
544
545 /*
546 * don't block on non-blocking I/O
547 */
548 if (fp->f_flag & FNONBLOCK) {
549 error = EAGAIN;
550 break;
551 }
552
553 /*
554 * Unlock the pipe buffer for our remaining processing.
555 * We will either break out with an error or we will
556 * sleep and relock to loop.
557 */
558 pipeunlock(rpipe);
559
560 /*
561 * Re-check to see if more direct writes are pending.
562 */
563 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
564 goto again;
565
566 /*
567 * We want to read more, wake up select/poll.
568 */
569 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
570
571 /*
572 * If the "write-side" is blocked, wake it up now.
573 */
574 cv_broadcast(&rpipe->pipe_wcv);
575
576 /* Now wait until the pipe is filled */
577 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
578 if (error != 0)
579 goto unlocked_error;
580 goto again;
581 }
582
583 if (error == 0)
584 getmicrotime(&rpipe->pipe_atime);
585 pipeunlock(rpipe);
586
587 unlocked_error:
588 --rpipe->pipe_busy;
589 if (rpipe->pipe_busy == 0) {
590 cv_broadcast(&rpipe->pipe_draincv);
591 }
592 if (bp->cnt < MINPIPESIZE) {
593 cv_broadcast(&rpipe->pipe_wcv);
594 }
595
596 /*
597 * If anything was read off the buffer, signal to the writer it's
598 * possible to write more data. Also send signal if we are here for the
599 * first time after last write.
600 */
601 if ((bp->size - bp->cnt) >= PIPE_BUF
602 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
603 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
604 rpipe->pipe_state &= ~PIPE_SIGNALR;
605 }
606
607 mutex_exit(lock);
608 return (error);
609 }
610
611 #ifndef PIPE_NODIRECT
612 /*
613 * Allocate structure for loan transfer.
614 */
615 static int
616 pipe_loan_alloc(struct pipe *wpipe, int npages)
617 {
618 vsize_t len;
619
620 len = (vsize_t)npages << PAGE_SHIFT;
621 atomic_add_int(&amountpipekva, len);
622 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
623 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
624 if (wpipe->pipe_map.kva == 0) {
625 atomic_add_int(&amountpipekva, -len);
626 return (ENOMEM);
627 }
628
629 wpipe->pipe_map.npages = npages;
630 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
631 M_WAITOK);
632 return (0);
633 }
634
635 /*
636 * Free resources allocated for loan transfer.
637 */
638 static void
639 pipe_loan_free(struct pipe *wpipe)
640 {
641 vsize_t len;
642
643 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
644 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
645 wpipe->pipe_map.kva = 0;
646 atomic_add_int(&amountpipekva, -len);
647 free(wpipe->pipe_map.pgs, M_PIPE);
648 wpipe->pipe_map.pgs = NULL;
649 }
650
651 /*
652 * NetBSD direct write, using uvm_loan() mechanism.
653 * This implements the pipe buffer write mechanism. Note that only
654 * a direct write OR a normal pipe write can be pending at any given time.
655 * If there are any characters in the pipe buffer, the direct write will
656 * be deferred until the receiving process grabs all of the bytes from
657 * the pipe buffer. Then the direct mapping write is set-up.
658 *
659 * Called with the long-term pipe lock held.
660 */
661 static int
662 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
663 {
664 int error, npages, j;
665 struct vm_page **pgs;
666 vaddr_t bbase, kva, base, bend;
667 vsize_t blen, bcnt;
668 voff_t bpos;
669 kmutex_t *lock = wpipe->pipe_lock;
670
671 KASSERT(mutex_owned(wpipe->pipe_lock));
672 KASSERT(wpipe->pipe_map.cnt == 0);
673
674 mutex_exit(lock);
675
676 /*
677 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
678 * not aligned to PAGE_SIZE.
679 */
680 bbase = (vaddr_t)uio->uio_iov->iov_base;
681 base = trunc_page(bbase);
682 bend = round_page(bbase + uio->uio_iov->iov_len);
683 blen = bend - base;
684 bpos = bbase - base;
685
686 if (blen > PIPE_DIRECT_CHUNK) {
687 blen = PIPE_DIRECT_CHUNK;
688 bend = base + blen;
689 bcnt = PIPE_DIRECT_CHUNK - bpos;
690 } else {
691 bcnt = uio->uio_iov->iov_len;
692 }
693 npages = blen >> PAGE_SHIFT;
694
695 /*
696 * Free the old kva if we need more pages than we have
697 * allocated.
698 */
699 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
700 pipe_loan_free(wpipe);
701
702 /* Allocate new kva. */
703 if (wpipe->pipe_map.kva == 0) {
704 error = pipe_loan_alloc(wpipe, npages);
705 if (error) {
706 mutex_enter(lock);
707 return (error);
708 }
709 }
710
711 /* Loan the write buffer memory from writer process */
712 pgs = wpipe->pipe_map.pgs;
713 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
714 pgs, UVM_LOAN_TOPAGE);
715 if (error) {
716 pipe_loan_free(wpipe);
717 mutex_enter(lock);
718 return (ENOMEM); /* so that caller fallback to ordinary write */
719 }
720
721 /* Enter the loaned pages to kva */
722 kva = wpipe->pipe_map.kva;
723 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
724 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
725 }
726 pmap_update(pmap_kernel());
727
728 /* Now we can put the pipe in direct write mode */
729 wpipe->pipe_map.pos = bpos;
730 wpipe->pipe_map.cnt = bcnt;
731
732 /*
733 * But before we can let someone do a direct read, we
734 * have to wait until the pipe is drained. Release the
735 * pipe lock while we wait.
736 */
737 mutex_enter(lock);
738 wpipe->pipe_state |= PIPE_DIRECTW;
739 pipeunlock(wpipe);
740
741 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
742 cv_broadcast(&wpipe->pipe_rcv);
743 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
744 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
745 error = EPIPE;
746 }
747
748 /* Pipe is drained; next read will off the direct buffer */
749 wpipe->pipe_state |= PIPE_DIRECTR;
750
751 /* Wait until the reader is done */
752 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
753 cv_broadcast(&wpipe->pipe_rcv);
754 pipeselwakeup(wpipe, wpipe, POLL_IN);
755 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
756 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
757 error = EPIPE;
758 }
759
760 /* Take pipe out of direct write mode */
761 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
762
763 /* Acquire the pipe lock and cleanup */
764 (void)pipelock(wpipe, 0);
765 mutex_exit(lock);
766
767 if (pgs != NULL) {
768 pmap_kremove(wpipe->pipe_map.kva, blen);
769 pmap_update(pmap_kernel());
770 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
771 }
772 if (error || amountpipekva > maxpipekva)
773 pipe_loan_free(wpipe);
774
775 mutex_enter(lock);
776 if (error) {
777 pipeselwakeup(wpipe, wpipe, POLL_ERR);
778
779 /*
780 * If nothing was read from what we offered, return error
781 * straight on. Otherwise update uio resid first. Caller
782 * will deal with the error condition, returning short
783 * write, error, or restarting the write(2) as appropriate.
784 */
785 if (wpipe->pipe_map.cnt == bcnt) {
786 wpipe->pipe_map.cnt = 0;
787 cv_broadcast(&wpipe->pipe_wcv);
788 return (error);
789 }
790
791 bcnt -= wpipe->pipe_map.cnt;
792 }
793
794 uio->uio_resid -= bcnt;
795 /* uio_offset not updated, not set/used for write(2) */
796 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
797 uio->uio_iov->iov_len -= bcnt;
798 if (uio->uio_iov->iov_len == 0) {
799 uio->uio_iov++;
800 uio->uio_iovcnt--;
801 }
802
803 wpipe->pipe_map.cnt = 0;
804 return (error);
805 }
806 #endif /* !PIPE_NODIRECT */
807
808 static int
809 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
810 int flags)
811 {
812 struct pipe *wpipe, *rpipe;
813 struct pipebuf *bp;
814 kmutex_t *lock;
815 int error;
816
817 /* We want to write to our peer */
818 rpipe = (struct pipe *) fp->f_data;
819 lock = rpipe->pipe_lock;
820 error = 0;
821
822 mutex_enter(lock);
823 wpipe = rpipe->pipe_peer;
824
825 /*
826 * Detect loss of pipe read side, issue SIGPIPE if lost.
827 */
828 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
829 mutex_exit(lock);
830 return EPIPE;
831 }
832 ++wpipe->pipe_busy;
833
834 /* Aquire the long-term pipe lock */
835 if ((error = pipelock(wpipe, 1)) != 0) {
836 --wpipe->pipe_busy;
837 if (wpipe->pipe_busy == 0) {
838 cv_broadcast(&wpipe->pipe_draincv);
839 }
840 mutex_exit(lock);
841 return (error);
842 }
843
844 bp = &wpipe->pipe_buffer;
845
846 /*
847 * If it is advantageous to resize the pipe buffer, do so.
848 */
849 if ((uio->uio_resid > PIPE_SIZE) &&
850 (nbigpipe < maxbigpipes) &&
851 #ifndef PIPE_NODIRECT
852 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
853 #endif
854 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
855
856 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
857 atomic_inc_uint(&nbigpipe);
858 }
859
860 while (uio->uio_resid) {
861 size_t space;
862
863 #ifndef PIPE_NODIRECT
864 /*
865 * Pipe buffered writes cannot be coincidental with
866 * direct writes. Also, only one direct write can be
867 * in progress at any one time. We wait until the currently
868 * executing direct write is completed before continuing.
869 *
870 * We break out if a signal occurs or the reader goes away.
871 */
872 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
873 cv_broadcast(&wpipe->pipe_rcv);
874 pipeunlock(wpipe);
875 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
876 (void)pipelock(wpipe, 0);
877 if (wpipe->pipe_state & PIPE_EOF)
878 error = EPIPE;
879 }
880 if (error)
881 break;
882
883 /*
884 * If the transfer is large, we can gain performance if
885 * we do process-to-process copies directly.
886 * If the write is non-blocking, we don't use the
887 * direct write mechanism.
888 *
889 * The direct write mechanism will detect the reader going
890 * away on us.
891 */
892 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
893 (fp->f_flag & FNONBLOCK) == 0 &&
894 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
895 error = pipe_direct_write(fp, wpipe, uio);
896
897 /*
898 * Break out if error occurred, unless it's ENOMEM.
899 * ENOMEM means we failed to allocate some resources
900 * for direct write, so we just fallback to ordinary
901 * write. If the direct write was successful,
902 * process rest of data via ordinary write.
903 */
904 if (error == 0)
905 continue;
906
907 if (error != ENOMEM)
908 break;
909 }
910 #endif /* PIPE_NODIRECT */
911
912 space = bp->size - bp->cnt;
913
914 /* Writes of size <= PIPE_BUF must be atomic. */
915 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
916 space = 0;
917
918 if (space > 0) {
919 int size; /* Transfer size */
920 int segsize; /* first segment to transfer */
921
922 /*
923 * Transfer size is minimum of uio transfer
924 * and free space in pipe buffer.
925 */
926 if (space > uio->uio_resid)
927 size = uio->uio_resid;
928 else
929 size = space;
930 /*
931 * First segment to transfer is minimum of
932 * transfer size and contiguous space in
933 * pipe buffer. If first segment to transfer
934 * is less than the transfer size, we've got
935 * a wraparound in the buffer.
936 */
937 segsize = bp->size - bp->in;
938 if (segsize > size)
939 segsize = size;
940
941 /* Transfer first segment */
942 mutex_exit(lock);
943 error = uiomove((char *)bp->buffer + bp->in, segsize,
944 uio);
945
946 if (error == 0 && segsize < size) {
947 /*
948 * Transfer remaining part now, to
949 * support atomic writes. Wraparound
950 * happened.
951 */
952 #ifdef DEBUG
953 if (bp->in + segsize != bp->size)
954 panic("Expected pipe buffer wraparound disappeared");
955 #endif
956
957 error = uiomove(bp->buffer,
958 size - segsize, uio);
959 }
960 mutex_enter(lock);
961 if (error)
962 break;
963
964 bp->in += size;
965 if (bp->in >= bp->size) {
966 #ifdef DEBUG
967 if (bp->in != size - segsize + bp->size)
968 panic("Expected wraparound bad");
969 #endif
970 bp->in = size - segsize;
971 }
972
973 bp->cnt += size;
974 #ifdef DEBUG
975 if (bp->cnt > bp->size)
976 panic("Pipe buffer overflow");
977 #endif
978 } else {
979 /*
980 * If the "read-side" has been blocked, wake it up now.
981 */
982 cv_broadcast(&wpipe->pipe_rcv);
983
984 /*
985 * don't block on non-blocking I/O
986 */
987 if (fp->f_flag & FNONBLOCK) {
988 error = EAGAIN;
989 break;
990 }
991
992 /*
993 * We have no more space and have something to offer,
994 * wake up select/poll.
995 */
996 if (bp->cnt)
997 pipeselwakeup(wpipe, wpipe, POLL_OUT);
998
999 pipeunlock(wpipe);
1000 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1001 (void)pipelock(wpipe, 0);
1002 if (error != 0)
1003 break;
1004 /*
1005 * If read side wants to go away, we just issue a signal
1006 * to ourselves.
1007 */
1008 if (wpipe->pipe_state & PIPE_EOF) {
1009 error = EPIPE;
1010 break;
1011 }
1012 }
1013 }
1014
1015 --wpipe->pipe_busy;
1016 if (wpipe->pipe_busy == 0) {
1017 cv_broadcast(&wpipe->pipe_draincv);
1018 }
1019 if (bp->cnt > 0) {
1020 cv_broadcast(&wpipe->pipe_rcv);
1021 }
1022
1023 /*
1024 * Don't return EPIPE if I/O was successful
1025 */
1026 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1027 error = 0;
1028
1029 if (error == 0)
1030 getmicrotime(&wpipe->pipe_mtime);
1031
1032 /*
1033 * We have something to offer, wake up select/poll.
1034 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1035 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1036 */
1037 if (bp->cnt)
1038 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1039
1040 /*
1041 * Arrange for next read(2) to do a signal.
1042 */
1043 wpipe->pipe_state |= PIPE_SIGNALR;
1044
1045 pipeunlock(wpipe);
1046 mutex_exit(lock);
1047 return (error);
1048 }
1049
1050 /*
1051 * we implement a very minimal set of ioctls for compatibility with sockets.
1052 */
1053 int
1054 pipe_ioctl(struct file *fp, u_long cmd, void *data)
1055 {
1056 struct pipe *pipe = fp->f_data;
1057 kmutex_t *lock = pipe->pipe_lock;
1058
1059 switch (cmd) {
1060
1061 case FIONBIO:
1062 return (0);
1063
1064 case FIOASYNC:
1065 mutex_enter(lock);
1066 if (*(int *)data) {
1067 pipe->pipe_state |= PIPE_ASYNC;
1068 } else {
1069 pipe->pipe_state &= ~PIPE_ASYNC;
1070 }
1071 mutex_exit(lock);
1072 return (0);
1073
1074 case FIONREAD:
1075 mutex_enter(lock);
1076 #ifndef PIPE_NODIRECT
1077 if (pipe->pipe_state & PIPE_DIRECTW)
1078 *(int *)data = pipe->pipe_map.cnt;
1079 else
1080 #endif
1081 *(int *)data = pipe->pipe_buffer.cnt;
1082 mutex_exit(lock);
1083 return (0);
1084
1085 case FIONWRITE:
1086 /* Look at other side */
1087 pipe = pipe->pipe_peer;
1088 mutex_enter(lock);
1089 #ifndef PIPE_NODIRECT
1090 if (pipe->pipe_state & PIPE_DIRECTW)
1091 *(int *)data = pipe->pipe_map.cnt;
1092 else
1093 #endif
1094 *(int *)data = pipe->pipe_buffer.cnt;
1095 mutex_exit(lock);
1096 return (0);
1097
1098 case FIONSPACE:
1099 /* Look at other side */
1100 pipe = pipe->pipe_peer;
1101 mutex_enter(lock);
1102 #ifndef PIPE_NODIRECT
1103 /*
1104 * If we're in direct-mode, we don't really have a
1105 * send queue, and any other write will block. Thus
1106 * zero seems like the best answer.
1107 */
1108 if (pipe->pipe_state & PIPE_DIRECTW)
1109 *(int *)data = 0;
1110 else
1111 #endif
1112 *(int *)data = pipe->pipe_buffer.size -
1113 pipe->pipe_buffer.cnt;
1114 mutex_exit(lock);
1115 return (0);
1116
1117 case TIOCSPGRP:
1118 case FIOSETOWN:
1119 return fsetown(&pipe->pipe_pgid, cmd, data);
1120
1121 case TIOCGPGRP:
1122 case FIOGETOWN:
1123 return fgetown(pipe->pipe_pgid, cmd, data);
1124
1125 }
1126 return (EPASSTHROUGH);
1127 }
1128
1129 int
1130 pipe_poll(struct file *fp, int events)
1131 {
1132 struct pipe *rpipe = fp->f_data;
1133 struct pipe *wpipe;
1134 int eof = 0;
1135 int revents = 0;
1136
1137 mutex_enter(rpipe->pipe_lock);
1138 wpipe = rpipe->pipe_peer;
1139
1140 if (events & (POLLIN | POLLRDNORM))
1141 if ((rpipe->pipe_buffer.cnt > 0) ||
1142 #ifndef PIPE_NODIRECT
1143 (rpipe->pipe_state & PIPE_DIRECTR) ||
1144 #endif
1145 (rpipe->pipe_state & PIPE_EOF))
1146 revents |= events & (POLLIN | POLLRDNORM);
1147
1148 eof |= (rpipe->pipe_state & PIPE_EOF);
1149
1150 if (wpipe == NULL)
1151 revents |= events & (POLLOUT | POLLWRNORM);
1152 else {
1153 if (events & (POLLOUT | POLLWRNORM))
1154 if ((wpipe->pipe_state & PIPE_EOF) || (
1155 #ifndef PIPE_NODIRECT
1156 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1157 #endif
1158 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1159 revents |= events & (POLLOUT | POLLWRNORM);
1160
1161 eof |= (wpipe->pipe_state & PIPE_EOF);
1162 }
1163
1164 if (wpipe == NULL || eof)
1165 revents |= POLLHUP;
1166
1167 if (revents == 0) {
1168 if (events & (POLLIN | POLLRDNORM))
1169 selrecord(curlwp, &rpipe->pipe_sel);
1170
1171 if (events & (POLLOUT | POLLWRNORM))
1172 selrecord(curlwp, &wpipe->pipe_sel);
1173 }
1174 mutex_exit(rpipe->pipe_lock);
1175
1176 return (revents);
1177 }
1178
1179 static int
1180 pipe_stat(struct file *fp, struct stat *ub)
1181 {
1182 struct pipe *pipe = fp->f_data;
1183
1184 memset((void *)ub, 0, sizeof(*ub));
1185 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1186 ub->st_blksize = pipe->pipe_buffer.size;
1187 if (ub->st_blksize == 0 && pipe->pipe_peer)
1188 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1189 ub->st_size = pipe->pipe_buffer.cnt;
1190 ub->st_blocks = (ub->st_size) ? 1 : 0;
1191 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1192 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1193 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1194 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1195 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1196
1197 /*
1198 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1199 * XXX (st_dev, st_ino) should be unique.
1200 */
1201 return (0);
1202 }
1203
1204 /* ARGSUSED */
1205 static int
1206 pipe_close(struct file *fp)
1207 {
1208 struct pipe *pipe = fp->f_data;
1209
1210 fp->f_data = NULL;
1211 pipeclose(fp, pipe);
1212 return (0);
1213 }
1214
1215 static void
1216 pipe_free_kmem(struct pipe *pipe)
1217 {
1218
1219 if (pipe->pipe_buffer.buffer != NULL) {
1220 if (pipe->pipe_buffer.size > PIPE_SIZE)
1221 atomic_dec_uint(&nbigpipe);
1222 uvm_km_free(kernel_map,
1223 (vaddr_t)pipe->pipe_buffer.buffer,
1224 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1225 atomic_add_int(&amountpipekva, -pipe->pipe_buffer.size);
1226 pipe->pipe_buffer.buffer = NULL;
1227 }
1228 #ifndef PIPE_NODIRECT
1229 if (pipe->pipe_map.kva != 0) {
1230 pipe_loan_free(pipe);
1231 pipe->pipe_map.cnt = 0;
1232 pipe->pipe_map.kva = 0;
1233 pipe->pipe_map.pos = 0;
1234 pipe->pipe_map.npages = 0;
1235 }
1236 #endif /* !PIPE_NODIRECT */
1237 }
1238
1239 /*
1240 * shutdown the pipe
1241 */
1242 static void
1243 pipeclose(struct file *fp, struct pipe *pipe)
1244 {
1245 struct pipe_mutex *mutex;
1246 kmutex_t *lock;
1247 struct pipe *ppipe;
1248 u_int refcnt;
1249
1250 if (pipe == NULL)
1251 return;
1252
1253 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1254 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1255 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1256 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1257
1258 lock = pipe->pipe_lock;
1259 mutex_enter(lock);
1260 pipeselwakeup(pipe, pipe, POLL_HUP);
1261
1262 /*
1263 * If the other side is blocked, wake it up saying that
1264 * we want to close it down.
1265 */
1266 pipe->pipe_state |= PIPE_EOF;
1267 if (pipe->pipe_busy) {
1268 while (pipe->pipe_busy) {
1269 cv_broadcast(&pipe->pipe_wcv);
1270 cv_wait_sig(&pipe->pipe_draincv, lock);
1271 }
1272 }
1273
1274 /*
1275 * Disconnect from peer
1276 */
1277 if ((ppipe = pipe->pipe_peer) != NULL) {
1278 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1279 ppipe->pipe_state |= PIPE_EOF;
1280 cv_broadcast(&ppipe->pipe_rcv);
1281 ppipe->pipe_peer = NULL;
1282 }
1283
1284 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1285
1286 mutex = (struct pipe_mutex *)lock;
1287 refcnt = --(mutex->pm_refcnt);
1288 KASSERT(refcnt == 0 || refcnt == 1);
1289 mutex_exit(lock);
1290
1291 /*
1292 * free resources
1293 */
1294 pipe_free_kmem(pipe);
1295 cv_destroy(&pipe->pipe_rcv);
1296 cv_destroy(&pipe->pipe_wcv);
1297 cv_destroy(&pipe->pipe_draincv);
1298 cv_destroy(&pipe->pipe_lkcv);
1299 seldestroy(&pipe->pipe_sel);
1300 pool_cache_put(pipe_cache, pipe);
1301 if (refcnt == 0)
1302 pool_cache_put(pipe_mutex_cache, mutex);
1303 }
1304
1305 static void
1306 filt_pipedetach(struct knote *kn)
1307 {
1308 struct pipe *pipe;
1309 kmutex_t *lock;
1310
1311 pipe = ((file_t *)kn->kn_obj)->f_data;
1312 lock = pipe->pipe_lock;
1313
1314 mutex_enter(lock);
1315
1316 switch(kn->kn_filter) {
1317 case EVFILT_WRITE:
1318 /* need the peer structure, not our own */
1319 pipe = pipe->pipe_peer;
1320
1321 /* if reader end already closed, just return */
1322 if (pipe == NULL) {
1323 mutex_exit(lock);
1324 return;
1325 }
1326
1327 break;
1328 default:
1329 /* nothing to do */
1330 break;
1331 }
1332
1333 #ifdef DIAGNOSTIC
1334 if (kn->kn_hook != pipe)
1335 panic("filt_pipedetach: inconsistent knote");
1336 #endif
1337
1338 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1339 mutex_exit(lock);
1340 }
1341
1342 /*ARGSUSED*/
1343 static int
1344 filt_piperead(struct knote *kn, long hint)
1345 {
1346 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1347 struct pipe *wpipe;
1348
1349 if ((hint & NOTE_SUBMIT) == 0) {
1350 mutex_enter(rpipe->pipe_lock);
1351 }
1352 wpipe = rpipe->pipe_peer;
1353 kn->kn_data = rpipe->pipe_buffer.cnt;
1354
1355 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1356 kn->kn_data = rpipe->pipe_map.cnt;
1357
1358 if ((rpipe->pipe_state & PIPE_EOF) ||
1359 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1360 kn->kn_flags |= EV_EOF;
1361 if ((hint & NOTE_SUBMIT) == 0) {
1362 mutex_exit(rpipe->pipe_lock);
1363 }
1364 return (1);
1365 }
1366
1367 if ((hint & NOTE_SUBMIT) == 0) {
1368 mutex_exit(rpipe->pipe_lock);
1369 }
1370 return (kn->kn_data > 0);
1371 }
1372
1373 /*ARGSUSED*/
1374 static int
1375 filt_pipewrite(struct knote *kn, long hint)
1376 {
1377 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1378 struct pipe *wpipe;
1379
1380 if ((hint & NOTE_SUBMIT) == 0) {
1381 mutex_enter(rpipe->pipe_lock);
1382 }
1383 wpipe = rpipe->pipe_peer;
1384
1385 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1386 kn->kn_data = 0;
1387 kn->kn_flags |= EV_EOF;
1388 if ((hint & NOTE_SUBMIT) == 0) {
1389 mutex_exit(rpipe->pipe_lock);
1390 }
1391 return (1);
1392 }
1393 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1394 if (wpipe->pipe_state & PIPE_DIRECTW)
1395 kn->kn_data = 0;
1396
1397 if ((hint & NOTE_SUBMIT) == 0) {
1398 mutex_exit(rpipe->pipe_lock);
1399 }
1400 return (kn->kn_data >= PIPE_BUF);
1401 }
1402
1403 static const struct filterops pipe_rfiltops =
1404 { 1, NULL, filt_pipedetach, filt_piperead };
1405 static const struct filterops pipe_wfiltops =
1406 { 1, NULL, filt_pipedetach, filt_pipewrite };
1407
1408 /*ARGSUSED*/
1409 static int
1410 pipe_kqfilter(struct file *fp, struct knote *kn)
1411 {
1412 struct pipe *pipe;
1413 kmutex_t *lock;
1414
1415 pipe = ((file_t *)kn->kn_obj)->f_data;
1416 lock = pipe->pipe_lock;
1417
1418 mutex_enter(lock);
1419
1420 switch (kn->kn_filter) {
1421 case EVFILT_READ:
1422 kn->kn_fop = &pipe_rfiltops;
1423 break;
1424 case EVFILT_WRITE:
1425 kn->kn_fop = &pipe_wfiltops;
1426 pipe = pipe->pipe_peer;
1427 if (pipe == NULL) {
1428 /* other end of pipe has been closed */
1429 mutex_exit(lock);
1430 return (EBADF);
1431 }
1432 break;
1433 default:
1434 mutex_exit(lock);
1435 return (EINVAL);
1436 }
1437
1438 kn->kn_hook = pipe;
1439 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1440 mutex_exit(lock);
1441
1442 return (0);
1443 }
1444
1445 /*
1446 * Handle pipe sysctls.
1447 */
1448 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1449 {
1450
1451 sysctl_createv(clog, 0, NULL, NULL,
1452 CTLFLAG_PERMANENT,
1453 CTLTYPE_NODE, "kern", NULL,
1454 NULL, 0, NULL, 0,
1455 CTL_KERN, CTL_EOL);
1456 sysctl_createv(clog, 0, NULL, NULL,
1457 CTLFLAG_PERMANENT,
1458 CTLTYPE_NODE, "pipe",
1459 SYSCTL_DESCR("Pipe settings"),
1460 NULL, 0, NULL, 0,
1461 CTL_KERN, KERN_PIPE, CTL_EOL);
1462
1463 sysctl_createv(clog, 0, NULL, NULL,
1464 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1465 CTLTYPE_INT, "maxkvasz",
1466 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1467 "used for pipes"),
1468 NULL, 0, &maxpipekva, 0,
1469 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1470 sysctl_createv(clog, 0, NULL, NULL,
1471 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1472 CTLTYPE_INT, "maxloankvasz",
1473 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1474 NULL, 0, &limitpipekva, 0,
1475 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1476 sysctl_createv(clog, 0, NULL, NULL,
1477 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1478 CTLTYPE_INT, "maxbigpipes",
1479 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1480 NULL, 0, &maxbigpipes, 0,
1481 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1482 sysctl_createv(clog, 0, NULL, NULL,
1483 CTLFLAG_PERMANENT,
1484 CTLTYPE_INT, "nbigpipes",
1485 SYSCTL_DESCR("Number of \"big\" pipes"),
1486 NULL, 0, &nbigpipe, 0,
1487 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1488 sysctl_createv(clog, 0, NULL, NULL,
1489 CTLFLAG_PERMANENT,
1490 CTLTYPE_INT, "kvasize",
1491 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1492 "buffers"),
1493 NULL, 0, &amountpipekva, 0,
1494 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1495 }
1496