sys_pipe.c revision 1.101.2.1 1 /* $NetBSD: sys_pipe.c,v 1.101.2.1 2008/05/10 23:49:05 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 *
50 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
51 */
52
53 /*
54 * This file contains a high-performance replacement for the socket-based
55 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
56 * all features of sockets, but does do everything that pipes normally
57 * do.
58 *
59 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
60 * written by Jaromir Dolecek.
61 */
62
63 /*
64 * This code has two modes of operation, a small write mode and a large
65 * write mode. The small write mode acts like conventional pipes with
66 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
67 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
68 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
69 * using the UVM page loan facility from where the receiving process can copy
70 * the data directly from the pages in the sending process.
71 *
72 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
73 * happen for small transfers so that the system will not spend all of
74 * its time context switching. PIPE_SIZE is constrained by the
75 * amount of kernel virtual memory.
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.101.2.1 2008/05/10 23:49:05 wrstuden Exp $");
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/fcntl.h>
85 #include <sys/file.h>
86 #include <sys/filedesc.h>
87 #include <sys/filio.h>
88 #include <sys/kernel.h>
89 #include <sys/ttycom.h>
90 #include <sys/stat.h>
91 #include <sys/malloc.h>
92 #include <sys/poll.h>
93 #include <sys/signalvar.h>
94 #include <sys/vnode.h>
95 #include <sys/uio.h>
96 #include <sys/select.h>
97 #include <sys/mount.h>
98 #include <sys/sa.h>
99 #include <sys/syscallargs.h>
100 #include <sys/sysctl.h>
101 #include <sys/kauth.h>
102 #include <sys/atomic.h>
103 #include <sys/pipe.h>
104
105 #include <uvm/uvm.h>
106
107 /*
108 * Use this define if you want to disable *fancy* VM things. Expect an
109 * approx 30% decrease in transfer rate.
110 */
111 /* #define PIPE_NODIRECT */
112
113 /*
114 * interfaces to the outside world
115 */
116 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
117 kauth_cred_t cred, int flags);
118 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
119 kauth_cred_t cred, int flags);
120 static int pipe_close(struct file *fp);
121 static int pipe_poll(struct file *fp, int events);
122 static int pipe_kqfilter(struct file *fp, struct knote *kn);
123 static int pipe_stat(struct file *fp, struct stat *sb);
124 static int pipe_ioctl(struct file *fp, u_long cmd, void *data);
125
126 static const struct fileops pipeops = {
127 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
128 pipe_stat, pipe_close, pipe_kqfilter
129 };
130
131 /*
132 * Single mutex shared between both ends of the pipe.
133 */
134
135 struct pipe_mutex {
136 kmutex_t pm_mutex;
137 u_int pm_refcnt;
138 };
139
140 /*
141 * Default pipe buffer size(s), this can be kind-of large now because pipe
142 * space is pageable. The pipe code will try to maintain locality of
143 * reference for performance reasons, so small amounts of outstanding I/O
144 * will not wipe the cache.
145 */
146 #define MINPIPESIZE (PIPE_SIZE/3)
147 #define MAXPIPESIZE (2*PIPE_SIZE/3)
148
149 /*
150 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
151 * is there so that on large systems, we don't exhaust it.
152 */
153 #define MAXPIPEKVA (8*1024*1024)
154 static u_int maxpipekva = MAXPIPEKVA;
155
156 /*
157 * Limit for direct transfers, we cannot, of course limit
158 * the amount of kva for pipes in general though.
159 */
160 #define LIMITPIPEKVA (16*1024*1024)
161 static u_int limitpipekva = LIMITPIPEKVA;
162
163 /*
164 * Limit the number of "big" pipes
165 */
166 #define LIMITBIGPIPES 32
167 static u_int maxbigpipes = LIMITBIGPIPES;
168 static u_int nbigpipe = 0;
169
170 /*
171 * Amount of KVA consumed by pipe buffers.
172 */
173 static u_int amountpipekva = 0;
174
175 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
176
177 static void pipeclose(struct file *fp, struct pipe *pipe);
178 static void pipe_free_kmem(struct pipe *pipe);
179 static int pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *);
180 static int pipelock(struct pipe *pipe, int catch);
181 static inline void pipeunlock(struct pipe *pipe);
182 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
183 #ifndef PIPE_NODIRECT
184 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
185 struct uio *uio);
186 #endif
187 static int pipespace(struct pipe *pipe, int size);
188
189 #ifndef PIPE_NODIRECT
190 static int pipe_loan_alloc(struct pipe *, int);
191 static void pipe_loan_free(struct pipe *);
192 #endif /* PIPE_NODIRECT */
193
194 static int pipe_mutex_ctor(void *, void *, int);
195 static void pipe_mutex_dtor(void *, void *);
196
197 static pool_cache_t pipe_cache;
198 static pool_cache_t pipe_mutex_cache;
199
200 void
201 pipe_init(void)
202 {
203
204 pipe_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipepl",
205 NULL, IPL_NONE, NULL, NULL, NULL);
206 KASSERT(pipe_cache != NULL);
207
208 pipe_mutex_cache = pool_cache_init(sizeof(struct pipe_mutex),
209 coherency_unit, 0, 0, "pipemtxpl", NULL, IPL_NONE, pipe_mutex_ctor,
210 pipe_mutex_dtor, NULL);
211 KASSERT(pipe_cache != NULL);
212 }
213
214 static int
215 pipe_mutex_ctor(void *arg, void *obj, int flag)
216 {
217 struct pipe_mutex *pm = obj;
218
219 mutex_init(&pm->pm_mutex, MUTEX_DEFAULT, IPL_NONE);
220 pm->pm_refcnt = 0;
221
222 return 0;
223 }
224
225 static void
226 pipe_mutex_dtor(void *arg, void *obj)
227 {
228 struct pipe_mutex *pm = obj;
229
230 KASSERT(pm->pm_refcnt == 0);
231
232 mutex_destroy(&pm->pm_mutex);
233 }
234
235 /*
236 * The pipe system call for the DTYPE_PIPE type of pipes
237 */
238
239 /* ARGSUSED */
240 int
241 sys_pipe(struct lwp *l, const void *v, register_t *retval)
242 {
243 struct file *rf, *wf;
244 struct pipe *rpipe, *wpipe;
245 struct pipe_mutex *mutex;
246 int fd, error;
247 proc_t *p;
248
249 p = curproc;
250 rpipe = wpipe = NULL;
251 mutex = pool_cache_get(pipe_mutex_cache, PR_WAITOK);
252 if (mutex == NULL)
253 return (ENOMEM);
254 if (pipe_create(&rpipe, 1, mutex) || pipe_create(&wpipe, 0, mutex)) {
255 pipeclose(NULL, rpipe);
256 pipeclose(NULL, wpipe);
257 return (ENFILE);
258 }
259
260 error = fd_allocfile(&rf, &fd);
261 if (error)
262 goto free2;
263 retval[0] = fd;
264 rf->f_flag = FREAD;
265 rf->f_type = DTYPE_PIPE;
266 rf->f_data = (void *)rpipe;
267 rf->f_ops = &pipeops;
268
269 error = fd_allocfile(&wf, &fd);
270 if (error)
271 goto free3;
272 retval[1] = fd;
273 wf->f_flag = FWRITE;
274 wf->f_type = DTYPE_PIPE;
275 wf->f_data = (void *)wpipe;
276 wf->f_ops = &pipeops;
277
278 rpipe->pipe_peer = wpipe;
279 wpipe->pipe_peer = rpipe;
280
281 fd_affix(p, rf, (int)retval[0]);
282 fd_affix(p, wf, (int)retval[1]);
283 return (0);
284 free3:
285 fd_abort(p, rf, (int)retval[0]);
286 free2:
287 pipeclose(NULL, wpipe);
288 pipeclose(NULL, rpipe);
289
290 return (error);
291 }
292
293 /*
294 * Allocate kva for pipe circular buffer, the space is pageable
295 * This routine will 'realloc' the size of a pipe safely, if it fails
296 * it will retain the old buffer.
297 * If it fails it will return ENOMEM.
298 */
299 static int
300 pipespace(struct pipe *pipe, int size)
301 {
302 void *buffer;
303 /*
304 * Allocate pageable virtual address space. Physical memory is
305 * allocated on demand.
306 */
307 buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
308 UVM_KMF_PAGEABLE);
309 if (buffer == NULL)
310 return (ENOMEM);
311
312 /* free old resources if we're resizing */
313 pipe_free_kmem(pipe);
314 pipe->pipe_buffer.buffer = buffer;
315 pipe->pipe_buffer.size = size;
316 pipe->pipe_buffer.in = 0;
317 pipe->pipe_buffer.out = 0;
318 pipe->pipe_buffer.cnt = 0;
319 atomic_add_int(&amountpipekva, pipe->pipe_buffer.size);
320 return (0);
321 }
322
323 /*
324 * Initialize and allocate VM and memory for pipe.
325 */
326 static int
327 pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *mutex)
328 {
329 struct pipe *pipe;
330 int error;
331
332 pipe = *pipep = pool_cache_get(pipe_cache, PR_WAITOK);
333 mutex->pm_refcnt++;
334
335 /* Initialize */
336 memset(pipe, 0, sizeof(struct pipe));
337 pipe->pipe_state = PIPE_SIGNALR;
338
339 getmicrotime(&pipe->pipe_ctime);
340 pipe->pipe_atime = pipe->pipe_ctime;
341 pipe->pipe_mtime = pipe->pipe_ctime;
342 pipe->pipe_lock = &mutex->pm_mutex;
343 cv_init(&pipe->pipe_rcv, "piperd");
344 cv_init(&pipe->pipe_wcv, "pipewr");
345 cv_init(&pipe->pipe_draincv, "pipedrain");
346 cv_init(&pipe->pipe_lkcv, "pipelk");
347 selinit(&pipe->pipe_sel);
348
349 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
350 return (error);
351
352 return (0);
353 }
354
355
356 /*
357 * Lock a pipe for I/O, blocking other access
358 * Called with pipe spin lock held.
359 * Return with pipe spin lock released on success.
360 */
361 static int
362 pipelock(struct pipe *pipe, int catch)
363 {
364 int error;
365
366 KASSERT(mutex_owned(pipe->pipe_lock));
367
368 while (pipe->pipe_state & PIPE_LOCKFL) {
369 pipe->pipe_state |= PIPE_LWANT;
370 if (catch) {
371 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
372 if (error != 0)
373 return error;
374 } else
375 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
376 }
377
378 pipe->pipe_state |= PIPE_LOCKFL;
379
380 return 0;
381 }
382
383 /*
384 * unlock a pipe I/O lock
385 */
386 static inline void
387 pipeunlock(struct pipe *pipe)
388 {
389
390 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
391
392 pipe->pipe_state &= ~PIPE_LOCKFL;
393 if (pipe->pipe_state & PIPE_LWANT) {
394 pipe->pipe_state &= ~PIPE_LWANT;
395 cv_broadcast(&pipe->pipe_lkcv);
396 }
397 }
398
399 /*
400 * Select/poll wakup. This also sends SIGIO to peer connected to
401 * 'sigpipe' side of pipe.
402 */
403 static void
404 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
405 {
406 int band;
407
408 switch (code) {
409 case POLL_IN:
410 band = POLLIN|POLLRDNORM;
411 break;
412 case POLL_OUT:
413 band = POLLOUT|POLLWRNORM;
414 break;
415 case POLL_HUP:
416 band = POLLHUP;
417 break;
418 #if POLL_HUP != POLL_ERR
419 case POLL_ERR:
420 band = POLLERR;
421 break;
422 #endif
423 default:
424 band = 0;
425 #ifdef DIAGNOSTIC
426 printf("bad siginfo code %d in pipe notification.\n", code);
427 #endif
428 break;
429 }
430
431 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
432
433 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
434 return;
435
436 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
437 }
438
439 /* ARGSUSED */
440 static int
441 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
442 int flags)
443 {
444 struct pipe *rpipe = (struct pipe *) fp->f_data;
445 struct pipebuf *bp = &rpipe->pipe_buffer;
446 kmutex_t *lock = rpipe->pipe_lock;
447 int error;
448 size_t nread = 0;
449 size_t size;
450 size_t ocnt;
451
452 mutex_enter(lock);
453 ++rpipe->pipe_busy;
454 ocnt = bp->cnt;
455
456 again:
457 error = pipelock(rpipe, 1);
458 if (error)
459 goto unlocked_error;
460
461 while (uio->uio_resid) {
462 /*
463 * normal pipe buffer receive
464 */
465 if (bp->cnt > 0) {
466 size = bp->size - bp->out;
467 if (size > bp->cnt)
468 size = bp->cnt;
469 if (size > uio->uio_resid)
470 size = uio->uio_resid;
471
472 mutex_exit(lock);
473 error = uiomove((char *)bp->buffer + bp->out, size, uio);
474 mutex_enter(lock);
475 if (error)
476 break;
477
478 bp->out += size;
479 if (bp->out >= bp->size)
480 bp->out = 0;
481
482 bp->cnt -= size;
483
484 /*
485 * If there is no more to read in the pipe, reset
486 * its pointers to the beginning. This improves
487 * cache hit stats.
488 */
489 if (bp->cnt == 0) {
490 bp->in = 0;
491 bp->out = 0;
492 }
493 nread += size;
494 continue;
495 }
496
497 #ifndef PIPE_NODIRECT
498 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
499 /*
500 * Direct copy, bypassing a kernel buffer.
501 */
502 void * va;
503
504 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
505
506 size = rpipe->pipe_map.cnt;
507 if (size > uio->uio_resid)
508 size = uio->uio_resid;
509
510 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
511 mutex_exit(lock);
512 error = uiomove(va, size, uio);
513 mutex_enter(lock);
514 if (error)
515 break;
516 nread += size;
517 rpipe->pipe_map.pos += size;
518 rpipe->pipe_map.cnt -= size;
519 if (rpipe->pipe_map.cnt == 0) {
520 rpipe->pipe_state &= ~PIPE_DIRECTR;
521 cv_broadcast(&rpipe->pipe_wcv);
522 }
523 continue;
524 }
525 #endif
526 /*
527 * Break if some data was read.
528 */
529 if (nread > 0)
530 break;
531
532 /*
533 * detect EOF condition
534 * read returns 0 on EOF, no need to set error
535 */
536 if (rpipe->pipe_state & PIPE_EOF)
537 break;
538
539 /*
540 * don't block on non-blocking I/O
541 */
542 if (fp->f_flag & FNONBLOCK) {
543 error = EAGAIN;
544 break;
545 }
546
547 /*
548 * Unlock the pipe buffer for our remaining processing.
549 * We will either break out with an error or we will
550 * sleep and relock to loop.
551 */
552 pipeunlock(rpipe);
553
554 /*
555 * Re-check to see if more direct writes are pending.
556 */
557 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
558 goto again;
559
560 /*
561 * We want to read more, wake up select/poll.
562 */
563 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
564
565 /*
566 * If the "write-side" is blocked, wake it up now.
567 */
568 cv_broadcast(&rpipe->pipe_wcv);
569
570 /* Now wait until the pipe is filled */
571 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
572 if (error != 0)
573 goto unlocked_error;
574 goto again;
575 }
576
577 if (error == 0)
578 getmicrotime(&rpipe->pipe_atime);
579 pipeunlock(rpipe);
580
581 unlocked_error:
582 --rpipe->pipe_busy;
583 if (rpipe->pipe_busy == 0) {
584 cv_broadcast(&rpipe->pipe_draincv);
585 }
586 if (bp->cnt < MINPIPESIZE) {
587 cv_broadcast(&rpipe->pipe_wcv);
588 }
589
590 /*
591 * If anything was read off the buffer, signal to the writer it's
592 * possible to write more data. Also send signal if we are here for the
593 * first time after last write.
594 */
595 if ((bp->size - bp->cnt) >= PIPE_BUF
596 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
597 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
598 rpipe->pipe_state &= ~PIPE_SIGNALR;
599 }
600
601 mutex_exit(lock);
602 return (error);
603 }
604
605 #ifndef PIPE_NODIRECT
606 /*
607 * Allocate structure for loan transfer.
608 */
609 static int
610 pipe_loan_alloc(struct pipe *wpipe, int npages)
611 {
612 vsize_t len;
613
614 len = (vsize_t)npages << PAGE_SHIFT;
615 atomic_add_int(&amountpipekva, len);
616 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
617 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
618 if (wpipe->pipe_map.kva == 0) {
619 atomic_add_int(&amountpipekva, -len);
620 return (ENOMEM);
621 }
622
623 wpipe->pipe_map.npages = npages;
624 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
625 M_WAITOK);
626 return (0);
627 }
628
629 /*
630 * Free resources allocated for loan transfer.
631 */
632 static void
633 pipe_loan_free(struct pipe *wpipe)
634 {
635 vsize_t len;
636
637 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
638 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
639 wpipe->pipe_map.kva = 0;
640 atomic_add_int(&amountpipekva, -len);
641 free(wpipe->pipe_map.pgs, M_PIPE);
642 wpipe->pipe_map.pgs = NULL;
643 }
644
645 /*
646 * NetBSD direct write, using uvm_loan() mechanism.
647 * This implements the pipe buffer write mechanism. Note that only
648 * a direct write OR a normal pipe write can be pending at any given time.
649 * If there are any characters in the pipe buffer, the direct write will
650 * be deferred until the receiving process grabs all of the bytes from
651 * the pipe buffer. Then the direct mapping write is set-up.
652 *
653 * Called with the long-term pipe lock held.
654 */
655 static int
656 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
657 {
658 int error, npages, j;
659 struct vm_page **pgs;
660 vaddr_t bbase, kva, base, bend;
661 vsize_t blen, bcnt;
662 voff_t bpos;
663 kmutex_t *lock = wpipe->pipe_lock;
664
665 KASSERT(mutex_owned(wpipe->pipe_lock));
666 KASSERT(wpipe->pipe_map.cnt == 0);
667
668 mutex_exit(lock);
669
670 /*
671 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
672 * not aligned to PAGE_SIZE.
673 */
674 bbase = (vaddr_t)uio->uio_iov->iov_base;
675 base = trunc_page(bbase);
676 bend = round_page(bbase + uio->uio_iov->iov_len);
677 blen = bend - base;
678 bpos = bbase - base;
679
680 if (blen > PIPE_DIRECT_CHUNK) {
681 blen = PIPE_DIRECT_CHUNK;
682 bend = base + blen;
683 bcnt = PIPE_DIRECT_CHUNK - bpos;
684 } else {
685 bcnt = uio->uio_iov->iov_len;
686 }
687 npages = blen >> PAGE_SHIFT;
688
689 /*
690 * Free the old kva if we need more pages than we have
691 * allocated.
692 */
693 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
694 pipe_loan_free(wpipe);
695
696 /* Allocate new kva. */
697 if (wpipe->pipe_map.kva == 0) {
698 error = pipe_loan_alloc(wpipe, npages);
699 if (error) {
700 mutex_enter(lock);
701 return (error);
702 }
703 }
704
705 /* Loan the write buffer memory from writer process */
706 pgs = wpipe->pipe_map.pgs;
707 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
708 pgs, UVM_LOAN_TOPAGE);
709 if (error) {
710 pipe_loan_free(wpipe);
711 mutex_enter(lock);
712 return (ENOMEM); /* so that caller fallback to ordinary write */
713 }
714
715 /* Enter the loaned pages to kva */
716 kva = wpipe->pipe_map.kva;
717 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
718 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
719 }
720 pmap_update(pmap_kernel());
721
722 /* Now we can put the pipe in direct write mode */
723 wpipe->pipe_map.pos = bpos;
724 wpipe->pipe_map.cnt = bcnt;
725
726 /*
727 * But before we can let someone do a direct read, we
728 * have to wait until the pipe is drained. Release the
729 * pipe lock while we wait.
730 */
731 mutex_enter(lock);
732 wpipe->pipe_state |= PIPE_DIRECTW;
733 pipeunlock(wpipe);
734
735 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
736 cv_broadcast(&wpipe->pipe_rcv);
737 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
738 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
739 error = EPIPE;
740 }
741
742 /* Pipe is drained; next read will off the direct buffer */
743 wpipe->pipe_state |= PIPE_DIRECTR;
744
745 /* Wait until the reader is done */
746 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
747 cv_broadcast(&wpipe->pipe_rcv);
748 pipeselwakeup(wpipe, wpipe, POLL_IN);
749 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
750 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
751 error = EPIPE;
752 }
753
754 /* Take pipe out of direct write mode */
755 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
756
757 /* Acquire the pipe lock and cleanup */
758 (void)pipelock(wpipe, 0);
759 mutex_exit(lock);
760
761 if (pgs != NULL) {
762 pmap_kremove(wpipe->pipe_map.kva, blen);
763 pmap_update(pmap_kernel());
764 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
765 }
766 if (error || amountpipekva > maxpipekva)
767 pipe_loan_free(wpipe);
768
769 mutex_enter(lock);
770 if (error) {
771 pipeselwakeup(wpipe, wpipe, POLL_ERR);
772
773 /*
774 * If nothing was read from what we offered, return error
775 * straight on. Otherwise update uio resid first. Caller
776 * will deal with the error condition, returning short
777 * write, error, or restarting the write(2) as appropriate.
778 */
779 if (wpipe->pipe_map.cnt == bcnt) {
780 wpipe->pipe_map.cnt = 0;
781 cv_broadcast(&wpipe->pipe_wcv);
782 return (error);
783 }
784
785 bcnt -= wpipe->pipe_map.cnt;
786 }
787
788 uio->uio_resid -= bcnt;
789 /* uio_offset not updated, not set/used for write(2) */
790 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
791 uio->uio_iov->iov_len -= bcnt;
792 if (uio->uio_iov->iov_len == 0) {
793 uio->uio_iov++;
794 uio->uio_iovcnt--;
795 }
796
797 wpipe->pipe_map.cnt = 0;
798 return (error);
799 }
800 #endif /* !PIPE_NODIRECT */
801
802 static int
803 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
804 int flags)
805 {
806 struct pipe *wpipe, *rpipe;
807 struct pipebuf *bp;
808 kmutex_t *lock;
809 int error;
810
811 /* We want to write to our peer */
812 rpipe = (struct pipe *) fp->f_data;
813 lock = rpipe->pipe_lock;
814 error = 0;
815
816 mutex_enter(lock);
817 wpipe = rpipe->pipe_peer;
818
819 /*
820 * Detect loss of pipe read side, issue SIGPIPE if lost.
821 */
822 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
823 mutex_exit(lock);
824 return EPIPE;
825 }
826 ++wpipe->pipe_busy;
827
828 /* Aquire the long-term pipe lock */
829 if ((error = pipelock(wpipe, 1)) != 0) {
830 --wpipe->pipe_busy;
831 if (wpipe->pipe_busy == 0) {
832 cv_broadcast(&wpipe->pipe_draincv);
833 }
834 mutex_exit(lock);
835 return (error);
836 }
837
838 bp = &wpipe->pipe_buffer;
839
840 /*
841 * If it is advantageous to resize the pipe buffer, do so.
842 */
843 if ((uio->uio_resid > PIPE_SIZE) &&
844 (nbigpipe < maxbigpipes) &&
845 #ifndef PIPE_NODIRECT
846 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
847 #endif
848 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
849
850 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
851 atomic_inc_uint(&nbigpipe);
852 }
853
854 while (uio->uio_resid) {
855 size_t space;
856
857 #ifndef PIPE_NODIRECT
858 /*
859 * Pipe buffered writes cannot be coincidental with
860 * direct writes. Also, only one direct write can be
861 * in progress at any one time. We wait until the currently
862 * executing direct write is completed before continuing.
863 *
864 * We break out if a signal occurs or the reader goes away.
865 */
866 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
867 cv_broadcast(&wpipe->pipe_rcv);
868 pipeunlock(wpipe);
869 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
870 (void)pipelock(wpipe, 0);
871 if (wpipe->pipe_state & PIPE_EOF)
872 error = EPIPE;
873 }
874 if (error)
875 break;
876
877 /*
878 * If the transfer is large, we can gain performance if
879 * we do process-to-process copies directly.
880 * If the write is non-blocking, we don't use the
881 * direct write mechanism.
882 *
883 * The direct write mechanism will detect the reader going
884 * away on us.
885 */
886 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
887 (fp->f_flag & FNONBLOCK) == 0 &&
888 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
889 error = pipe_direct_write(fp, wpipe, uio);
890
891 /*
892 * Break out if error occurred, unless it's ENOMEM.
893 * ENOMEM means we failed to allocate some resources
894 * for direct write, so we just fallback to ordinary
895 * write. If the direct write was successful,
896 * process rest of data via ordinary write.
897 */
898 if (error == 0)
899 continue;
900
901 if (error != ENOMEM)
902 break;
903 }
904 #endif /* PIPE_NODIRECT */
905
906 space = bp->size - bp->cnt;
907
908 /* Writes of size <= PIPE_BUF must be atomic. */
909 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
910 space = 0;
911
912 if (space > 0) {
913 int size; /* Transfer size */
914 int segsize; /* first segment to transfer */
915
916 /*
917 * Transfer size is minimum of uio transfer
918 * and free space in pipe buffer.
919 */
920 if (space > uio->uio_resid)
921 size = uio->uio_resid;
922 else
923 size = space;
924 /*
925 * First segment to transfer is minimum of
926 * transfer size and contiguous space in
927 * pipe buffer. If first segment to transfer
928 * is less than the transfer size, we've got
929 * a wraparound in the buffer.
930 */
931 segsize = bp->size - bp->in;
932 if (segsize > size)
933 segsize = size;
934
935 /* Transfer first segment */
936 mutex_exit(lock);
937 error = uiomove((char *)bp->buffer + bp->in, segsize,
938 uio);
939
940 if (error == 0 && segsize < size) {
941 /*
942 * Transfer remaining part now, to
943 * support atomic writes. Wraparound
944 * happened.
945 */
946 #ifdef DEBUG
947 if (bp->in + segsize != bp->size)
948 panic("Expected pipe buffer wraparound disappeared");
949 #endif
950
951 error = uiomove(bp->buffer,
952 size - segsize, uio);
953 }
954 mutex_enter(lock);
955 if (error)
956 break;
957
958 bp->in += size;
959 if (bp->in >= bp->size) {
960 #ifdef DEBUG
961 if (bp->in != size - segsize + bp->size)
962 panic("Expected wraparound bad");
963 #endif
964 bp->in = size - segsize;
965 }
966
967 bp->cnt += size;
968 #ifdef DEBUG
969 if (bp->cnt > bp->size)
970 panic("Pipe buffer overflow");
971 #endif
972 } else {
973 /*
974 * If the "read-side" has been blocked, wake it up now.
975 */
976 cv_broadcast(&wpipe->pipe_rcv);
977
978 /*
979 * don't block on non-blocking I/O
980 */
981 if (fp->f_flag & FNONBLOCK) {
982 error = EAGAIN;
983 break;
984 }
985
986 /*
987 * We have no more space and have something to offer,
988 * wake up select/poll.
989 */
990 if (bp->cnt)
991 pipeselwakeup(wpipe, wpipe, POLL_OUT);
992
993 pipeunlock(wpipe);
994 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
995 (void)pipelock(wpipe, 0);
996 if (error != 0)
997 break;
998 /*
999 * If read side wants to go away, we just issue a signal
1000 * to ourselves.
1001 */
1002 if (wpipe->pipe_state & PIPE_EOF) {
1003 error = EPIPE;
1004 break;
1005 }
1006 }
1007 }
1008
1009 --wpipe->pipe_busy;
1010 if (wpipe->pipe_busy == 0) {
1011 cv_broadcast(&wpipe->pipe_draincv);
1012 }
1013 if (bp->cnt > 0) {
1014 cv_broadcast(&wpipe->pipe_rcv);
1015 }
1016
1017 /*
1018 * Don't return EPIPE if I/O was successful
1019 */
1020 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1021 error = 0;
1022
1023 if (error == 0)
1024 getmicrotime(&wpipe->pipe_mtime);
1025
1026 /*
1027 * We have something to offer, wake up select/poll.
1028 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1029 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1030 */
1031 if (bp->cnt)
1032 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1033
1034 /*
1035 * Arrange for next read(2) to do a signal.
1036 */
1037 wpipe->pipe_state |= PIPE_SIGNALR;
1038
1039 pipeunlock(wpipe);
1040 mutex_exit(lock);
1041 return (error);
1042 }
1043
1044 /*
1045 * we implement a very minimal set of ioctls for compatibility with sockets.
1046 */
1047 int
1048 pipe_ioctl(struct file *fp, u_long cmd, void *data)
1049 {
1050 struct pipe *pipe = fp->f_data;
1051 kmutex_t *lock = pipe->pipe_lock;
1052
1053 switch (cmd) {
1054
1055 case FIONBIO:
1056 return (0);
1057
1058 case FIOASYNC:
1059 mutex_enter(lock);
1060 if (*(int *)data) {
1061 pipe->pipe_state |= PIPE_ASYNC;
1062 } else {
1063 pipe->pipe_state &= ~PIPE_ASYNC;
1064 }
1065 mutex_exit(lock);
1066 return (0);
1067
1068 case FIONREAD:
1069 mutex_enter(lock);
1070 #ifndef PIPE_NODIRECT
1071 if (pipe->pipe_state & PIPE_DIRECTW)
1072 *(int *)data = pipe->pipe_map.cnt;
1073 else
1074 #endif
1075 *(int *)data = pipe->pipe_buffer.cnt;
1076 mutex_exit(lock);
1077 return (0);
1078
1079 case FIONWRITE:
1080 /* Look at other side */
1081 pipe = pipe->pipe_peer;
1082 mutex_enter(lock);
1083 #ifndef PIPE_NODIRECT
1084 if (pipe->pipe_state & PIPE_DIRECTW)
1085 *(int *)data = pipe->pipe_map.cnt;
1086 else
1087 #endif
1088 *(int *)data = pipe->pipe_buffer.cnt;
1089 mutex_exit(lock);
1090 return (0);
1091
1092 case FIONSPACE:
1093 /* Look at other side */
1094 pipe = pipe->pipe_peer;
1095 mutex_enter(lock);
1096 #ifndef PIPE_NODIRECT
1097 /*
1098 * If we're in direct-mode, we don't really have a
1099 * send queue, and any other write will block. Thus
1100 * zero seems like the best answer.
1101 */
1102 if (pipe->pipe_state & PIPE_DIRECTW)
1103 *(int *)data = 0;
1104 else
1105 #endif
1106 *(int *)data = pipe->pipe_buffer.size -
1107 pipe->pipe_buffer.cnt;
1108 mutex_exit(lock);
1109 return (0);
1110
1111 case TIOCSPGRP:
1112 case FIOSETOWN:
1113 return fsetown(&pipe->pipe_pgid, cmd, data);
1114
1115 case TIOCGPGRP:
1116 case FIOGETOWN:
1117 return fgetown(pipe->pipe_pgid, cmd, data);
1118
1119 }
1120 return (EPASSTHROUGH);
1121 }
1122
1123 int
1124 pipe_poll(struct file *fp, int events)
1125 {
1126 struct pipe *rpipe = fp->f_data;
1127 struct pipe *wpipe;
1128 int eof = 0;
1129 int revents = 0;
1130
1131 mutex_enter(rpipe->pipe_lock);
1132 wpipe = rpipe->pipe_peer;
1133
1134 if (events & (POLLIN | POLLRDNORM))
1135 if ((rpipe->pipe_buffer.cnt > 0) ||
1136 #ifndef PIPE_NODIRECT
1137 (rpipe->pipe_state & PIPE_DIRECTR) ||
1138 #endif
1139 (rpipe->pipe_state & PIPE_EOF))
1140 revents |= events & (POLLIN | POLLRDNORM);
1141
1142 eof |= (rpipe->pipe_state & PIPE_EOF);
1143
1144 if (wpipe == NULL)
1145 revents |= events & (POLLOUT | POLLWRNORM);
1146 else {
1147 if (events & (POLLOUT | POLLWRNORM))
1148 if ((wpipe->pipe_state & PIPE_EOF) || (
1149 #ifndef PIPE_NODIRECT
1150 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1151 #endif
1152 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1153 revents |= events & (POLLOUT | POLLWRNORM);
1154
1155 eof |= (wpipe->pipe_state & PIPE_EOF);
1156 }
1157
1158 if (wpipe == NULL || eof)
1159 revents |= POLLHUP;
1160
1161 if (revents == 0) {
1162 if (events & (POLLIN | POLLRDNORM))
1163 selrecord(curlwp, &rpipe->pipe_sel);
1164
1165 if (events & (POLLOUT | POLLWRNORM))
1166 selrecord(curlwp, &wpipe->pipe_sel);
1167 }
1168 mutex_exit(rpipe->pipe_lock);
1169
1170 return (revents);
1171 }
1172
1173 static int
1174 pipe_stat(struct file *fp, struct stat *ub)
1175 {
1176 struct pipe *pipe = fp->f_data;
1177
1178 memset((void *)ub, 0, sizeof(*ub));
1179 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1180 ub->st_blksize = pipe->pipe_buffer.size;
1181 if (ub->st_blksize == 0 && pipe->pipe_peer)
1182 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1183 ub->st_size = pipe->pipe_buffer.cnt;
1184 ub->st_blocks = (ub->st_size) ? 1 : 0;
1185 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1186 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1187 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1188 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1189 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1190
1191 /*
1192 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1193 * XXX (st_dev, st_ino) should be unique.
1194 */
1195 return (0);
1196 }
1197
1198 /* ARGSUSED */
1199 static int
1200 pipe_close(struct file *fp)
1201 {
1202 struct pipe *pipe = fp->f_data;
1203
1204 fp->f_data = NULL;
1205 pipeclose(fp, pipe);
1206 return (0);
1207 }
1208
1209 static void
1210 pipe_free_kmem(struct pipe *pipe)
1211 {
1212
1213 if (pipe->pipe_buffer.buffer != NULL) {
1214 if (pipe->pipe_buffer.size > PIPE_SIZE)
1215 atomic_dec_uint(&nbigpipe);
1216 uvm_km_free(kernel_map,
1217 (vaddr_t)pipe->pipe_buffer.buffer,
1218 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1219 atomic_add_int(&amountpipekva, -pipe->pipe_buffer.size);
1220 pipe->pipe_buffer.buffer = NULL;
1221 }
1222 #ifndef PIPE_NODIRECT
1223 if (pipe->pipe_map.kva != 0) {
1224 pipe_loan_free(pipe);
1225 pipe->pipe_map.cnt = 0;
1226 pipe->pipe_map.kva = 0;
1227 pipe->pipe_map.pos = 0;
1228 pipe->pipe_map.npages = 0;
1229 }
1230 #endif /* !PIPE_NODIRECT */
1231 }
1232
1233 /*
1234 * shutdown the pipe
1235 */
1236 static void
1237 pipeclose(struct file *fp, struct pipe *pipe)
1238 {
1239 struct pipe_mutex *mutex;
1240 kmutex_t *lock;
1241 struct pipe *ppipe;
1242 u_int refcnt;
1243
1244 if (pipe == NULL)
1245 return;
1246
1247 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1248 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1249 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1250 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1251
1252 lock = pipe->pipe_lock;
1253 mutex_enter(lock);
1254 pipeselwakeup(pipe, pipe, POLL_HUP);
1255
1256 /*
1257 * If the other side is blocked, wake it up saying that
1258 * we want to close it down.
1259 */
1260 pipe->pipe_state |= PIPE_EOF;
1261 if (pipe->pipe_busy) {
1262 while (pipe->pipe_busy) {
1263 cv_broadcast(&pipe->pipe_wcv);
1264 cv_wait_sig(&pipe->pipe_draincv, lock);
1265 }
1266 }
1267
1268 /*
1269 * Disconnect from peer
1270 */
1271 if ((ppipe = pipe->pipe_peer) != NULL) {
1272 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1273 ppipe->pipe_state |= PIPE_EOF;
1274 cv_broadcast(&ppipe->pipe_rcv);
1275 ppipe->pipe_peer = NULL;
1276 }
1277
1278 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1279
1280 mutex = (struct pipe_mutex *)lock;
1281 refcnt = --(mutex->pm_refcnt);
1282 KASSERT(refcnt == 0 || refcnt == 1);
1283 mutex_exit(lock);
1284
1285 /*
1286 * free resources
1287 */
1288 pipe_free_kmem(pipe);
1289 cv_destroy(&pipe->pipe_rcv);
1290 cv_destroy(&pipe->pipe_wcv);
1291 cv_destroy(&pipe->pipe_draincv);
1292 cv_destroy(&pipe->pipe_lkcv);
1293 seldestroy(&pipe->pipe_sel);
1294 pool_cache_put(pipe_cache, pipe);
1295 if (refcnt == 0)
1296 pool_cache_put(pipe_mutex_cache, mutex);
1297 }
1298
1299 static void
1300 filt_pipedetach(struct knote *kn)
1301 {
1302 struct pipe *pipe;
1303 kmutex_t *lock;
1304
1305 pipe = ((file_t *)kn->kn_obj)->f_data;
1306 lock = pipe->pipe_lock;
1307
1308 mutex_enter(lock);
1309
1310 switch(kn->kn_filter) {
1311 case EVFILT_WRITE:
1312 /* need the peer structure, not our own */
1313 pipe = pipe->pipe_peer;
1314
1315 /* if reader end already closed, just return */
1316 if (pipe == NULL) {
1317 mutex_exit(lock);
1318 return;
1319 }
1320
1321 break;
1322 default:
1323 /* nothing to do */
1324 break;
1325 }
1326
1327 #ifdef DIAGNOSTIC
1328 if (kn->kn_hook != pipe)
1329 panic("filt_pipedetach: inconsistent knote");
1330 #endif
1331
1332 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1333 mutex_exit(lock);
1334 }
1335
1336 /*ARGSUSED*/
1337 static int
1338 filt_piperead(struct knote *kn, long hint)
1339 {
1340 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1341 struct pipe *wpipe;
1342
1343 if ((hint & NOTE_SUBMIT) == 0) {
1344 mutex_enter(rpipe->pipe_lock);
1345 }
1346 wpipe = rpipe->pipe_peer;
1347 kn->kn_data = rpipe->pipe_buffer.cnt;
1348
1349 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1350 kn->kn_data = rpipe->pipe_map.cnt;
1351
1352 if ((rpipe->pipe_state & PIPE_EOF) ||
1353 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1354 kn->kn_flags |= EV_EOF;
1355 if ((hint & NOTE_SUBMIT) == 0) {
1356 mutex_exit(rpipe->pipe_lock);
1357 }
1358 return (1);
1359 }
1360
1361 if ((hint & NOTE_SUBMIT) == 0) {
1362 mutex_exit(rpipe->pipe_lock);
1363 }
1364 return (kn->kn_data > 0);
1365 }
1366
1367 /*ARGSUSED*/
1368 static int
1369 filt_pipewrite(struct knote *kn, long hint)
1370 {
1371 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1372 struct pipe *wpipe;
1373
1374 if ((hint & NOTE_SUBMIT) == 0) {
1375 mutex_enter(rpipe->pipe_lock);
1376 }
1377 wpipe = rpipe->pipe_peer;
1378
1379 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1380 kn->kn_data = 0;
1381 kn->kn_flags |= EV_EOF;
1382 if ((hint & NOTE_SUBMIT) == 0) {
1383 mutex_exit(rpipe->pipe_lock);
1384 }
1385 return (1);
1386 }
1387 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1388 if (wpipe->pipe_state & PIPE_DIRECTW)
1389 kn->kn_data = 0;
1390
1391 if ((hint & NOTE_SUBMIT) == 0) {
1392 mutex_exit(rpipe->pipe_lock);
1393 }
1394 return (kn->kn_data >= PIPE_BUF);
1395 }
1396
1397 static const struct filterops pipe_rfiltops =
1398 { 1, NULL, filt_pipedetach, filt_piperead };
1399 static const struct filterops pipe_wfiltops =
1400 { 1, NULL, filt_pipedetach, filt_pipewrite };
1401
1402 /*ARGSUSED*/
1403 static int
1404 pipe_kqfilter(struct file *fp, struct knote *kn)
1405 {
1406 struct pipe *pipe;
1407 kmutex_t *lock;
1408
1409 pipe = ((file_t *)kn->kn_obj)->f_data;
1410 lock = pipe->pipe_lock;
1411
1412 mutex_enter(lock);
1413
1414 switch (kn->kn_filter) {
1415 case EVFILT_READ:
1416 kn->kn_fop = &pipe_rfiltops;
1417 break;
1418 case EVFILT_WRITE:
1419 kn->kn_fop = &pipe_wfiltops;
1420 pipe = pipe->pipe_peer;
1421 if (pipe == NULL) {
1422 /* other end of pipe has been closed */
1423 mutex_exit(lock);
1424 return (EBADF);
1425 }
1426 break;
1427 default:
1428 mutex_exit(lock);
1429 return (EINVAL);
1430 }
1431
1432 kn->kn_hook = pipe;
1433 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1434 mutex_exit(lock);
1435
1436 return (0);
1437 }
1438
1439 /*
1440 * Handle pipe sysctls.
1441 */
1442 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1443 {
1444
1445 sysctl_createv(clog, 0, NULL, NULL,
1446 CTLFLAG_PERMANENT,
1447 CTLTYPE_NODE, "kern", NULL,
1448 NULL, 0, NULL, 0,
1449 CTL_KERN, CTL_EOL);
1450 sysctl_createv(clog, 0, NULL, NULL,
1451 CTLFLAG_PERMANENT,
1452 CTLTYPE_NODE, "pipe",
1453 SYSCTL_DESCR("Pipe settings"),
1454 NULL, 0, NULL, 0,
1455 CTL_KERN, KERN_PIPE, CTL_EOL);
1456
1457 sysctl_createv(clog, 0, NULL, NULL,
1458 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1459 CTLTYPE_INT, "maxkvasz",
1460 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1461 "used for pipes"),
1462 NULL, 0, &maxpipekva, 0,
1463 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1464 sysctl_createv(clog, 0, NULL, NULL,
1465 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1466 CTLTYPE_INT, "maxloankvasz",
1467 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1468 NULL, 0, &limitpipekva, 0,
1469 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1470 sysctl_createv(clog, 0, NULL, NULL,
1471 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1472 CTLTYPE_INT, "maxbigpipes",
1473 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1474 NULL, 0, &maxbigpipes, 0,
1475 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1476 sysctl_createv(clog, 0, NULL, NULL,
1477 CTLFLAG_PERMANENT,
1478 CTLTYPE_INT, "nbigpipes",
1479 SYSCTL_DESCR("Number of \"big\" pipes"),
1480 NULL, 0, &nbigpipe, 0,
1481 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1482 sysctl_createv(clog, 0, NULL, NULL,
1483 CTLFLAG_PERMANENT,
1484 CTLTYPE_INT, "kvasize",
1485 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1486 "buffers"),
1487 NULL, 0, &amountpipekva, 0,
1488 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1489 }
1490