sys_pipe.c revision 1.101.2.2 1 /* $NetBSD: sys_pipe.c,v 1.101.2.2 2008/05/14 01:35:13 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 *
50 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
51 */
52
53 /*
54 * This file contains a high-performance replacement for the socket-based
55 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
56 * all features of sockets, but does do everything that pipes normally
57 * do.
58 *
59 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
60 * written by Jaromir Dolecek.
61 */
62
63 /*
64 * This code has two modes of operation, a small write mode and a large
65 * write mode. The small write mode acts like conventional pipes with
66 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
67 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
68 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
69 * using the UVM page loan facility from where the receiving process can copy
70 * the data directly from the pages in the sending process.
71 *
72 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
73 * happen for small transfers so that the system will not spend all of
74 * its time context switching. PIPE_SIZE is constrained by the
75 * amount of kernel virtual memory.
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.101.2.2 2008/05/14 01:35:13 wrstuden Exp $");
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/fcntl.h>
85 #include <sys/file.h>
86 #include <sys/filedesc.h>
87 #include <sys/filio.h>
88 #include <sys/kernel.h>
89 #include <sys/ttycom.h>
90 #include <sys/stat.h>
91 #include <sys/malloc.h>
92 #include <sys/poll.h>
93 #include <sys/signalvar.h>
94 #include <sys/vnode.h>
95 #include <sys/uio.h>
96 #include <sys/select.h>
97 #include <sys/mount.h>
98 #include <sys/syscallargs.h>
99 #include <sys/sysctl.h>
100 #include <sys/kauth.h>
101 #include <sys/atomic.h>
102 #include <sys/pipe.h>
103
104 #include <uvm/uvm.h>
105
106 /*
107 * Use this define if you want to disable *fancy* VM things. Expect an
108 * approx 30% decrease in transfer rate.
109 */
110 /* #define PIPE_NODIRECT */
111
112 /*
113 * interfaces to the outside world
114 */
115 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
116 kauth_cred_t cred, int flags);
117 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
118 kauth_cred_t cred, int flags);
119 static int pipe_close(struct file *fp);
120 static int pipe_poll(struct file *fp, int events);
121 static int pipe_kqfilter(struct file *fp, struct knote *kn);
122 static int pipe_stat(struct file *fp, struct stat *sb);
123 static int pipe_ioctl(struct file *fp, u_long cmd, void *data);
124
125 static const struct fileops pipeops = {
126 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
127 pipe_stat, pipe_close, pipe_kqfilter
128 };
129
130 /*
131 * Single mutex shared between both ends of the pipe.
132 */
133
134 struct pipe_mutex {
135 kmutex_t pm_mutex;
136 u_int pm_refcnt;
137 };
138
139 /*
140 * Default pipe buffer size(s), this can be kind-of large now because pipe
141 * space is pageable. The pipe code will try to maintain locality of
142 * reference for performance reasons, so small amounts of outstanding I/O
143 * will not wipe the cache.
144 */
145 #define MINPIPESIZE (PIPE_SIZE/3)
146 #define MAXPIPESIZE (2*PIPE_SIZE/3)
147
148 /*
149 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
150 * is there so that on large systems, we don't exhaust it.
151 */
152 #define MAXPIPEKVA (8*1024*1024)
153 static u_int maxpipekva = MAXPIPEKVA;
154
155 /*
156 * Limit for direct transfers, we cannot, of course limit
157 * the amount of kva for pipes in general though.
158 */
159 #define LIMITPIPEKVA (16*1024*1024)
160 static u_int limitpipekva = LIMITPIPEKVA;
161
162 /*
163 * Limit the number of "big" pipes
164 */
165 #define LIMITBIGPIPES 32
166 static u_int maxbigpipes = LIMITBIGPIPES;
167 static u_int nbigpipe = 0;
168
169 /*
170 * Amount of KVA consumed by pipe buffers.
171 */
172 static u_int amountpipekva = 0;
173
174 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
175
176 static void pipeclose(struct file *fp, struct pipe *pipe);
177 static void pipe_free_kmem(struct pipe *pipe);
178 static int pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *);
179 static int pipelock(struct pipe *pipe, int catch);
180 static inline void pipeunlock(struct pipe *pipe);
181 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
182 #ifndef PIPE_NODIRECT
183 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
184 struct uio *uio);
185 #endif
186 static int pipespace(struct pipe *pipe, int size);
187
188 #ifndef PIPE_NODIRECT
189 static int pipe_loan_alloc(struct pipe *, int);
190 static void pipe_loan_free(struct pipe *);
191 #endif /* PIPE_NODIRECT */
192
193 static int pipe_mutex_ctor(void *, void *, int);
194 static void pipe_mutex_dtor(void *, void *);
195
196 static pool_cache_t pipe_cache;
197 static pool_cache_t pipe_mutex_cache;
198
199 void
200 pipe_init(void)
201 {
202
203 pipe_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipepl",
204 NULL, IPL_NONE, NULL, NULL, NULL);
205 KASSERT(pipe_cache != NULL);
206
207 pipe_mutex_cache = pool_cache_init(sizeof(struct pipe_mutex),
208 coherency_unit, 0, 0, "pipemtxpl", NULL, IPL_NONE, pipe_mutex_ctor,
209 pipe_mutex_dtor, NULL);
210 KASSERT(pipe_cache != NULL);
211 }
212
213 static int
214 pipe_mutex_ctor(void *arg, void *obj, int flag)
215 {
216 struct pipe_mutex *pm = obj;
217
218 mutex_init(&pm->pm_mutex, MUTEX_DEFAULT, IPL_NONE);
219 pm->pm_refcnt = 0;
220
221 return 0;
222 }
223
224 static void
225 pipe_mutex_dtor(void *arg, void *obj)
226 {
227 struct pipe_mutex *pm = obj;
228
229 KASSERT(pm->pm_refcnt == 0);
230
231 mutex_destroy(&pm->pm_mutex);
232 }
233
234 /*
235 * The pipe system call for the DTYPE_PIPE type of pipes
236 */
237
238 /* ARGSUSED */
239 int
240 sys_pipe(struct lwp *l, const void *v, register_t *retval)
241 {
242 struct file *rf, *wf;
243 struct pipe *rpipe, *wpipe;
244 struct pipe_mutex *mutex;
245 int fd, error;
246 proc_t *p;
247
248 p = curproc;
249 rpipe = wpipe = NULL;
250 mutex = pool_cache_get(pipe_mutex_cache, PR_WAITOK);
251 if (mutex == NULL)
252 return (ENOMEM);
253 if (pipe_create(&rpipe, 1, mutex) || pipe_create(&wpipe, 0, mutex)) {
254 pipeclose(NULL, rpipe);
255 pipeclose(NULL, wpipe);
256 return (ENFILE);
257 }
258
259 error = fd_allocfile(&rf, &fd);
260 if (error)
261 goto free2;
262 retval[0] = fd;
263 rf->f_flag = FREAD;
264 rf->f_type = DTYPE_PIPE;
265 rf->f_data = (void *)rpipe;
266 rf->f_ops = &pipeops;
267
268 error = fd_allocfile(&wf, &fd);
269 if (error)
270 goto free3;
271 retval[1] = fd;
272 wf->f_flag = FWRITE;
273 wf->f_type = DTYPE_PIPE;
274 wf->f_data = (void *)wpipe;
275 wf->f_ops = &pipeops;
276
277 rpipe->pipe_peer = wpipe;
278 wpipe->pipe_peer = rpipe;
279
280 fd_affix(p, rf, (int)retval[0]);
281 fd_affix(p, wf, (int)retval[1]);
282 return (0);
283 free3:
284 fd_abort(p, rf, (int)retval[0]);
285 free2:
286 pipeclose(NULL, wpipe);
287 pipeclose(NULL, rpipe);
288
289 return (error);
290 }
291
292 /*
293 * Allocate kva for pipe circular buffer, the space is pageable
294 * This routine will 'realloc' the size of a pipe safely, if it fails
295 * it will retain the old buffer.
296 * If it fails it will return ENOMEM.
297 */
298 static int
299 pipespace(struct pipe *pipe, int size)
300 {
301 void *buffer;
302 /*
303 * Allocate pageable virtual address space. Physical memory is
304 * allocated on demand.
305 */
306 buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
307 UVM_KMF_PAGEABLE);
308 if (buffer == NULL)
309 return (ENOMEM);
310
311 /* free old resources if we're resizing */
312 pipe_free_kmem(pipe);
313 pipe->pipe_buffer.buffer = buffer;
314 pipe->pipe_buffer.size = size;
315 pipe->pipe_buffer.in = 0;
316 pipe->pipe_buffer.out = 0;
317 pipe->pipe_buffer.cnt = 0;
318 atomic_add_int(&amountpipekva, pipe->pipe_buffer.size);
319 return (0);
320 }
321
322 /*
323 * Initialize and allocate VM and memory for pipe.
324 */
325 static int
326 pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *mutex)
327 {
328 struct pipe *pipe;
329 int error;
330
331 pipe = *pipep = pool_cache_get(pipe_cache, PR_WAITOK);
332 mutex->pm_refcnt++;
333
334 /* Initialize */
335 memset(pipe, 0, sizeof(struct pipe));
336 pipe->pipe_state = PIPE_SIGNALR;
337
338 getmicrotime(&pipe->pipe_ctime);
339 pipe->pipe_atime = pipe->pipe_ctime;
340 pipe->pipe_mtime = pipe->pipe_ctime;
341 pipe->pipe_lock = &mutex->pm_mutex;
342 cv_init(&pipe->pipe_rcv, "piperd");
343 cv_init(&pipe->pipe_wcv, "pipewr");
344 cv_init(&pipe->pipe_draincv, "pipedrain");
345 cv_init(&pipe->pipe_lkcv, "pipelk");
346 selinit(&pipe->pipe_sel);
347
348 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
349 return (error);
350
351 return (0);
352 }
353
354
355 /*
356 * Lock a pipe for I/O, blocking other access
357 * Called with pipe spin lock held.
358 * Return with pipe spin lock released on success.
359 */
360 static int
361 pipelock(struct pipe *pipe, int catch)
362 {
363 int error;
364
365 KASSERT(mutex_owned(pipe->pipe_lock));
366
367 while (pipe->pipe_state & PIPE_LOCKFL) {
368 pipe->pipe_state |= PIPE_LWANT;
369 if (catch) {
370 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
371 if (error != 0)
372 return error;
373 } else
374 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
375 }
376
377 pipe->pipe_state |= PIPE_LOCKFL;
378
379 return 0;
380 }
381
382 /*
383 * unlock a pipe I/O lock
384 */
385 static inline void
386 pipeunlock(struct pipe *pipe)
387 {
388
389 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
390
391 pipe->pipe_state &= ~PIPE_LOCKFL;
392 if (pipe->pipe_state & PIPE_LWANT) {
393 pipe->pipe_state &= ~PIPE_LWANT;
394 cv_broadcast(&pipe->pipe_lkcv);
395 }
396 }
397
398 /*
399 * Select/poll wakup. This also sends SIGIO to peer connected to
400 * 'sigpipe' side of pipe.
401 */
402 static void
403 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
404 {
405 int band;
406
407 switch (code) {
408 case POLL_IN:
409 band = POLLIN|POLLRDNORM;
410 break;
411 case POLL_OUT:
412 band = POLLOUT|POLLWRNORM;
413 break;
414 case POLL_HUP:
415 band = POLLHUP;
416 break;
417 #if POLL_HUP != POLL_ERR
418 case POLL_ERR:
419 band = POLLERR;
420 break;
421 #endif
422 default:
423 band = 0;
424 #ifdef DIAGNOSTIC
425 printf("bad siginfo code %d in pipe notification.\n", code);
426 #endif
427 break;
428 }
429
430 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
431
432 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
433 return;
434
435 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
436 }
437
438 /* ARGSUSED */
439 static int
440 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
441 int flags)
442 {
443 struct pipe *rpipe = (struct pipe *) fp->f_data;
444 struct pipebuf *bp = &rpipe->pipe_buffer;
445 kmutex_t *lock = rpipe->pipe_lock;
446 int error;
447 size_t nread = 0;
448 size_t size;
449 size_t ocnt;
450
451 mutex_enter(lock);
452 ++rpipe->pipe_busy;
453 ocnt = bp->cnt;
454
455 again:
456 error = pipelock(rpipe, 1);
457 if (error)
458 goto unlocked_error;
459
460 while (uio->uio_resid) {
461 /*
462 * normal pipe buffer receive
463 */
464 if (bp->cnt > 0) {
465 size = bp->size - bp->out;
466 if (size > bp->cnt)
467 size = bp->cnt;
468 if (size > uio->uio_resid)
469 size = uio->uio_resid;
470
471 mutex_exit(lock);
472 error = uiomove((char *)bp->buffer + bp->out, size, uio);
473 mutex_enter(lock);
474 if (error)
475 break;
476
477 bp->out += size;
478 if (bp->out >= bp->size)
479 bp->out = 0;
480
481 bp->cnt -= size;
482
483 /*
484 * If there is no more to read in the pipe, reset
485 * its pointers to the beginning. This improves
486 * cache hit stats.
487 */
488 if (bp->cnt == 0) {
489 bp->in = 0;
490 bp->out = 0;
491 }
492 nread += size;
493 continue;
494 }
495
496 #ifndef PIPE_NODIRECT
497 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
498 /*
499 * Direct copy, bypassing a kernel buffer.
500 */
501 void * va;
502
503 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
504
505 size = rpipe->pipe_map.cnt;
506 if (size > uio->uio_resid)
507 size = uio->uio_resid;
508
509 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
510 mutex_exit(lock);
511 error = uiomove(va, size, uio);
512 mutex_enter(lock);
513 if (error)
514 break;
515 nread += size;
516 rpipe->pipe_map.pos += size;
517 rpipe->pipe_map.cnt -= size;
518 if (rpipe->pipe_map.cnt == 0) {
519 rpipe->pipe_state &= ~PIPE_DIRECTR;
520 cv_broadcast(&rpipe->pipe_wcv);
521 }
522 continue;
523 }
524 #endif
525 /*
526 * Break if some data was read.
527 */
528 if (nread > 0)
529 break;
530
531 /*
532 * detect EOF condition
533 * read returns 0 on EOF, no need to set error
534 */
535 if (rpipe->pipe_state & PIPE_EOF)
536 break;
537
538 /*
539 * don't block on non-blocking I/O
540 */
541 if (fp->f_flag & FNONBLOCK) {
542 error = EAGAIN;
543 break;
544 }
545
546 /*
547 * Unlock the pipe buffer for our remaining processing.
548 * We will either break out with an error or we will
549 * sleep and relock to loop.
550 */
551 pipeunlock(rpipe);
552
553 /*
554 * Re-check to see if more direct writes are pending.
555 */
556 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
557 goto again;
558
559 /*
560 * We want to read more, wake up select/poll.
561 */
562 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
563
564 /*
565 * If the "write-side" is blocked, wake it up now.
566 */
567 cv_broadcast(&rpipe->pipe_wcv);
568
569 /* Now wait until the pipe is filled */
570 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
571 if (error != 0)
572 goto unlocked_error;
573 goto again;
574 }
575
576 if (error == 0)
577 getmicrotime(&rpipe->pipe_atime);
578 pipeunlock(rpipe);
579
580 unlocked_error:
581 --rpipe->pipe_busy;
582 if (rpipe->pipe_busy == 0) {
583 cv_broadcast(&rpipe->pipe_draincv);
584 }
585 if (bp->cnt < MINPIPESIZE) {
586 cv_broadcast(&rpipe->pipe_wcv);
587 }
588
589 /*
590 * If anything was read off the buffer, signal to the writer it's
591 * possible to write more data. Also send signal if we are here for the
592 * first time after last write.
593 */
594 if ((bp->size - bp->cnt) >= PIPE_BUF
595 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
596 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
597 rpipe->pipe_state &= ~PIPE_SIGNALR;
598 }
599
600 mutex_exit(lock);
601 return (error);
602 }
603
604 #ifndef PIPE_NODIRECT
605 /*
606 * Allocate structure for loan transfer.
607 */
608 static int
609 pipe_loan_alloc(struct pipe *wpipe, int npages)
610 {
611 vsize_t len;
612
613 len = (vsize_t)npages << PAGE_SHIFT;
614 atomic_add_int(&amountpipekva, len);
615 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
616 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
617 if (wpipe->pipe_map.kva == 0) {
618 atomic_add_int(&amountpipekva, -len);
619 return (ENOMEM);
620 }
621
622 wpipe->pipe_map.npages = npages;
623 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
624 M_WAITOK);
625 return (0);
626 }
627
628 /*
629 * Free resources allocated for loan transfer.
630 */
631 static void
632 pipe_loan_free(struct pipe *wpipe)
633 {
634 vsize_t len;
635
636 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
637 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
638 wpipe->pipe_map.kva = 0;
639 atomic_add_int(&amountpipekva, -len);
640 free(wpipe->pipe_map.pgs, M_PIPE);
641 wpipe->pipe_map.pgs = NULL;
642 }
643
644 /*
645 * NetBSD direct write, using uvm_loan() mechanism.
646 * This implements the pipe buffer write mechanism. Note that only
647 * a direct write OR a normal pipe write can be pending at any given time.
648 * If there are any characters in the pipe buffer, the direct write will
649 * be deferred until the receiving process grabs all of the bytes from
650 * the pipe buffer. Then the direct mapping write is set-up.
651 *
652 * Called with the long-term pipe lock held.
653 */
654 static int
655 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
656 {
657 int error, npages, j;
658 struct vm_page **pgs;
659 vaddr_t bbase, kva, base, bend;
660 vsize_t blen, bcnt;
661 voff_t bpos;
662 kmutex_t *lock = wpipe->pipe_lock;
663
664 KASSERT(mutex_owned(wpipe->pipe_lock));
665 KASSERT(wpipe->pipe_map.cnt == 0);
666
667 mutex_exit(lock);
668
669 /*
670 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
671 * not aligned to PAGE_SIZE.
672 */
673 bbase = (vaddr_t)uio->uio_iov->iov_base;
674 base = trunc_page(bbase);
675 bend = round_page(bbase + uio->uio_iov->iov_len);
676 blen = bend - base;
677 bpos = bbase - base;
678
679 if (blen > PIPE_DIRECT_CHUNK) {
680 blen = PIPE_DIRECT_CHUNK;
681 bend = base + blen;
682 bcnt = PIPE_DIRECT_CHUNK - bpos;
683 } else {
684 bcnt = uio->uio_iov->iov_len;
685 }
686 npages = blen >> PAGE_SHIFT;
687
688 /*
689 * Free the old kva if we need more pages than we have
690 * allocated.
691 */
692 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
693 pipe_loan_free(wpipe);
694
695 /* Allocate new kva. */
696 if (wpipe->pipe_map.kva == 0) {
697 error = pipe_loan_alloc(wpipe, npages);
698 if (error) {
699 mutex_enter(lock);
700 return (error);
701 }
702 }
703
704 /* Loan the write buffer memory from writer process */
705 pgs = wpipe->pipe_map.pgs;
706 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
707 pgs, UVM_LOAN_TOPAGE);
708 if (error) {
709 pipe_loan_free(wpipe);
710 mutex_enter(lock);
711 return (ENOMEM); /* so that caller fallback to ordinary write */
712 }
713
714 /* Enter the loaned pages to kva */
715 kva = wpipe->pipe_map.kva;
716 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
717 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
718 }
719 pmap_update(pmap_kernel());
720
721 /* Now we can put the pipe in direct write mode */
722 wpipe->pipe_map.pos = bpos;
723 wpipe->pipe_map.cnt = bcnt;
724
725 /*
726 * But before we can let someone do a direct read, we
727 * have to wait until the pipe is drained. Release the
728 * pipe lock while we wait.
729 */
730 mutex_enter(lock);
731 wpipe->pipe_state |= PIPE_DIRECTW;
732 pipeunlock(wpipe);
733
734 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
735 cv_broadcast(&wpipe->pipe_rcv);
736 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
737 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
738 error = EPIPE;
739 }
740
741 /* Pipe is drained; next read will off the direct buffer */
742 wpipe->pipe_state |= PIPE_DIRECTR;
743
744 /* Wait until the reader is done */
745 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
746 cv_broadcast(&wpipe->pipe_rcv);
747 pipeselwakeup(wpipe, wpipe, POLL_IN);
748 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
749 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
750 error = EPIPE;
751 }
752
753 /* Take pipe out of direct write mode */
754 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
755
756 /* Acquire the pipe lock and cleanup */
757 (void)pipelock(wpipe, 0);
758 mutex_exit(lock);
759
760 if (pgs != NULL) {
761 pmap_kremove(wpipe->pipe_map.kva, blen);
762 pmap_update(pmap_kernel());
763 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
764 }
765 if (error || amountpipekva > maxpipekva)
766 pipe_loan_free(wpipe);
767
768 mutex_enter(lock);
769 if (error) {
770 pipeselwakeup(wpipe, wpipe, POLL_ERR);
771
772 /*
773 * If nothing was read from what we offered, return error
774 * straight on. Otherwise update uio resid first. Caller
775 * will deal with the error condition, returning short
776 * write, error, or restarting the write(2) as appropriate.
777 */
778 if (wpipe->pipe_map.cnt == bcnt) {
779 wpipe->pipe_map.cnt = 0;
780 cv_broadcast(&wpipe->pipe_wcv);
781 return (error);
782 }
783
784 bcnt -= wpipe->pipe_map.cnt;
785 }
786
787 uio->uio_resid -= bcnt;
788 /* uio_offset not updated, not set/used for write(2) */
789 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
790 uio->uio_iov->iov_len -= bcnt;
791 if (uio->uio_iov->iov_len == 0) {
792 uio->uio_iov++;
793 uio->uio_iovcnt--;
794 }
795
796 wpipe->pipe_map.cnt = 0;
797 return (error);
798 }
799 #endif /* !PIPE_NODIRECT */
800
801 static int
802 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
803 int flags)
804 {
805 struct pipe *wpipe, *rpipe;
806 struct pipebuf *bp;
807 kmutex_t *lock;
808 int error;
809
810 /* We want to write to our peer */
811 rpipe = (struct pipe *) fp->f_data;
812 lock = rpipe->pipe_lock;
813 error = 0;
814
815 mutex_enter(lock);
816 wpipe = rpipe->pipe_peer;
817
818 /*
819 * Detect loss of pipe read side, issue SIGPIPE if lost.
820 */
821 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
822 mutex_exit(lock);
823 return EPIPE;
824 }
825 ++wpipe->pipe_busy;
826
827 /* Aquire the long-term pipe lock */
828 if ((error = pipelock(wpipe, 1)) != 0) {
829 --wpipe->pipe_busy;
830 if (wpipe->pipe_busy == 0) {
831 cv_broadcast(&wpipe->pipe_draincv);
832 }
833 mutex_exit(lock);
834 return (error);
835 }
836
837 bp = &wpipe->pipe_buffer;
838
839 /*
840 * If it is advantageous to resize the pipe buffer, do so.
841 */
842 if ((uio->uio_resid > PIPE_SIZE) &&
843 (nbigpipe < maxbigpipes) &&
844 #ifndef PIPE_NODIRECT
845 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
846 #endif
847 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
848
849 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
850 atomic_inc_uint(&nbigpipe);
851 }
852
853 while (uio->uio_resid) {
854 size_t space;
855
856 #ifndef PIPE_NODIRECT
857 /*
858 * Pipe buffered writes cannot be coincidental with
859 * direct writes. Also, only one direct write can be
860 * in progress at any one time. We wait until the currently
861 * executing direct write is completed before continuing.
862 *
863 * We break out if a signal occurs or the reader goes away.
864 */
865 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
866 cv_broadcast(&wpipe->pipe_rcv);
867 pipeunlock(wpipe);
868 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
869 (void)pipelock(wpipe, 0);
870 if (wpipe->pipe_state & PIPE_EOF)
871 error = EPIPE;
872 }
873 if (error)
874 break;
875
876 /*
877 * If the transfer is large, we can gain performance if
878 * we do process-to-process copies directly.
879 * If the write is non-blocking, we don't use the
880 * direct write mechanism.
881 *
882 * The direct write mechanism will detect the reader going
883 * away on us.
884 */
885 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
886 (fp->f_flag & FNONBLOCK) == 0 &&
887 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
888 error = pipe_direct_write(fp, wpipe, uio);
889
890 /*
891 * Break out if error occurred, unless it's ENOMEM.
892 * ENOMEM means we failed to allocate some resources
893 * for direct write, so we just fallback to ordinary
894 * write. If the direct write was successful,
895 * process rest of data via ordinary write.
896 */
897 if (error == 0)
898 continue;
899
900 if (error != ENOMEM)
901 break;
902 }
903 #endif /* PIPE_NODIRECT */
904
905 space = bp->size - bp->cnt;
906
907 /* Writes of size <= PIPE_BUF must be atomic. */
908 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
909 space = 0;
910
911 if (space > 0) {
912 int size; /* Transfer size */
913 int segsize; /* first segment to transfer */
914
915 /*
916 * Transfer size is minimum of uio transfer
917 * and free space in pipe buffer.
918 */
919 if (space > uio->uio_resid)
920 size = uio->uio_resid;
921 else
922 size = space;
923 /*
924 * First segment to transfer is minimum of
925 * transfer size and contiguous space in
926 * pipe buffer. If first segment to transfer
927 * is less than the transfer size, we've got
928 * a wraparound in the buffer.
929 */
930 segsize = bp->size - bp->in;
931 if (segsize > size)
932 segsize = size;
933
934 /* Transfer first segment */
935 mutex_exit(lock);
936 error = uiomove((char *)bp->buffer + bp->in, segsize,
937 uio);
938
939 if (error == 0 && segsize < size) {
940 /*
941 * Transfer remaining part now, to
942 * support atomic writes. Wraparound
943 * happened.
944 */
945 #ifdef DEBUG
946 if (bp->in + segsize != bp->size)
947 panic("Expected pipe buffer wraparound disappeared");
948 #endif
949
950 error = uiomove(bp->buffer,
951 size - segsize, uio);
952 }
953 mutex_enter(lock);
954 if (error)
955 break;
956
957 bp->in += size;
958 if (bp->in >= bp->size) {
959 #ifdef DEBUG
960 if (bp->in != size - segsize + bp->size)
961 panic("Expected wraparound bad");
962 #endif
963 bp->in = size - segsize;
964 }
965
966 bp->cnt += size;
967 #ifdef DEBUG
968 if (bp->cnt > bp->size)
969 panic("Pipe buffer overflow");
970 #endif
971 } else {
972 /*
973 * If the "read-side" has been blocked, wake it up now.
974 */
975 cv_broadcast(&wpipe->pipe_rcv);
976
977 /*
978 * don't block on non-blocking I/O
979 */
980 if (fp->f_flag & FNONBLOCK) {
981 error = EAGAIN;
982 break;
983 }
984
985 /*
986 * We have no more space and have something to offer,
987 * wake up select/poll.
988 */
989 if (bp->cnt)
990 pipeselwakeup(wpipe, wpipe, POLL_OUT);
991
992 pipeunlock(wpipe);
993 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
994 (void)pipelock(wpipe, 0);
995 if (error != 0)
996 break;
997 /*
998 * If read side wants to go away, we just issue a signal
999 * to ourselves.
1000 */
1001 if (wpipe->pipe_state & PIPE_EOF) {
1002 error = EPIPE;
1003 break;
1004 }
1005 }
1006 }
1007
1008 --wpipe->pipe_busy;
1009 if (wpipe->pipe_busy == 0) {
1010 cv_broadcast(&wpipe->pipe_draincv);
1011 }
1012 if (bp->cnt > 0) {
1013 cv_broadcast(&wpipe->pipe_rcv);
1014 }
1015
1016 /*
1017 * Don't return EPIPE if I/O was successful
1018 */
1019 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1020 error = 0;
1021
1022 if (error == 0)
1023 getmicrotime(&wpipe->pipe_mtime);
1024
1025 /*
1026 * We have something to offer, wake up select/poll.
1027 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1028 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1029 */
1030 if (bp->cnt)
1031 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1032
1033 /*
1034 * Arrange for next read(2) to do a signal.
1035 */
1036 wpipe->pipe_state |= PIPE_SIGNALR;
1037
1038 pipeunlock(wpipe);
1039 mutex_exit(lock);
1040 return (error);
1041 }
1042
1043 /*
1044 * we implement a very minimal set of ioctls for compatibility with sockets.
1045 */
1046 int
1047 pipe_ioctl(struct file *fp, u_long cmd, void *data)
1048 {
1049 struct pipe *pipe = fp->f_data;
1050 kmutex_t *lock = pipe->pipe_lock;
1051
1052 switch (cmd) {
1053
1054 case FIONBIO:
1055 return (0);
1056
1057 case FIOASYNC:
1058 mutex_enter(lock);
1059 if (*(int *)data) {
1060 pipe->pipe_state |= PIPE_ASYNC;
1061 } else {
1062 pipe->pipe_state &= ~PIPE_ASYNC;
1063 }
1064 mutex_exit(lock);
1065 return (0);
1066
1067 case FIONREAD:
1068 mutex_enter(lock);
1069 #ifndef PIPE_NODIRECT
1070 if (pipe->pipe_state & PIPE_DIRECTW)
1071 *(int *)data = pipe->pipe_map.cnt;
1072 else
1073 #endif
1074 *(int *)data = pipe->pipe_buffer.cnt;
1075 mutex_exit(lock);
1076 return (0);
1077
1078 case FIONWRITE:
1079 /* Look at other side */
1080 pipe = pipe->pipe_peer;
1081 mutex_enter(lock);
1082 #ifndef PIPE_NODIRECT
1083 if (pipe->pipe_state & PIPE_DIRECTW)
1084 *(int *)data = pipe->pipe_map.cnt;
1085 else
1086 #endif
1087 *(int *)data = pipe->pipe_buffer.cnt;
1088 mutex_exit(lock);
1089 return (0);
1090
1091 case FIONSPACE:
1092 /* Look at other side */
1093 pipe = pipe->pipe_peer;
1094 mutex_enter(lock);
1095 #ifndef PIPE_NODIRECT
1096 /*
1097 * If we're in direct-mode, we don't really have a
1098 * send queue, and any other write will block. Thus
1099 * zero seems like the best answer.
1100 */
1101 if (pipe->pipe_state & PIPE_DIRECTW)
1102 *(int *)data = 0;
1103 else
1104 #endif
1105 *(int *)data = pipe->pipe_buffer.size -
1106 pipe->pipe_buffer.cnt;
1107 mutex_exit(lock);
1108 return (0);
1109
1110 case TIOCSPGRP:
1111 case FIOSETOWN:
1112 return fsetown(&pipe->pipe_pgid, cmd, data);
1113
1114 case TIOCGPGRP:
1115 case FIOGETOWN:
1116 return fgetown(pipe->pipe_pgid, cmd, data);
1117
1118 }
1119 return (EPASSTHROUGH);
1120 }
1121
1122 int
1123 pipe_poll(struct file *fp, int events)
1124 {
1125 struct pipe *rpipe = fp->f_data;
1126 struct pipe *wpipe;
1127 int eof = 0;
1128 int revents = 0;
1129
1130 mutex_enter(rpipe->pipe_lock);
1131 wpipe = rpipe->pipe_peer;
1132
1133 if (events & (POLLIN | POLLRDNORM))
1134 if ((rpipe->pipe_buffer.cnt > 0) ||
1135 #ifndef PIPE_NODIRECT
1136 (rpipe->pipe_state & PIPE_DIRECTR) ||
1137 #endif
1138 (rpipe->pipe_state & PIPE_EOF))
1139 revents |= events & (POLLIN | POLLRDNORM);
1140
1141 eof |= (rpipe->pipe_state & PIPE_EOF);
1142
1143 if (wpipe == NULL)
1144 revents |= events & (POLLOUT | POLLWRNORM);
1145 else {
1146 if (events & (POLLOUT | POLLWRNORM))
1147 if ((wpipe->pipe_state & PIPE_EOF) || (
1148 #ifndef PIPE_NODIRECT
1149 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1150 #endif
1151 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1152 revents |= events & (POLLOUT | POLLWRNORM);
1153
1154 eof |= (wpipe->pipe_state & PIPE_EOF);
1155 }
1156
1157 if (wpipe == NULL || eof)
1158 revents |= POLLHUP;
1159
1160 if (revents == 0) {
1161 if (events & (POLLIN | POLLRDNORM))
1162 selrecord(curlwp, &rpipe->pipe_sel);
1163
1164 if (events & (POLLOUT | POLLWRNORM))
1165 selrecord(curlwp, &wpipe->pipe_sel);
1166 }
1167 mutex_exit(rpipe->pipe_lock);
1168
1169 return (revents);
1170 }
1171
1172 static int
1173 pipe_stat(struct file *fp, struct stat *ub)
1174 {
1175 struct pipe *pipe = fp->f_data;
1176
1177 memset((void *)ub, 0, sizeof(*ub));
1178 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1179 ub->st_blksize = pipe->pipe_buffer.size;
1180 if (ub->st_blksize == 0 && pipe->pipe_peer)
1181 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1182 ub->st_size = pipe->pipe_buffer.cnt;
1183 ub->st_blocks = (ub->st_size) ? 1 : 0;
1184 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1185 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1186 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1187 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1188 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1189
1190 /*
1191 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1192 * XXX (st_dev, st_ino) should be unique.
1193 */
1194 return (0);
1195 }
1196
1197 /* ARGSUSED */
1198 static int
1199 pipe_close(struct file *fp)
1200 {
1201 struct pipe *pipe = fp->f_data;
1202
1203 fp->f_data = NULL;
1204 pipeclose(fp, pipe);
1205 return (0);
1206 }
1207
1208 static void
1209 pipe_free_kmem(struct pipe *pipe)
1210 {
1211
1212 if (pipe->pipe_buffer.buffer != NULL) {
1213 if (pipe->pipe_buffer.size > PIPE_SIZE)
1214 atomic_dec_uint(&nbigpipe);
1215 uvm_km_free(kernel_map,
1216 (vaddr_t)pipe->pipe_buffer.buffer,
1217 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1218 atomic_add_int(&amountpipekva, -pipe->pipe_buffer.size);
1219 pipe->pipe_buffer.buffer = NULL;
1220 }
1221 #ifndef PIPE_NODIRECT
1222 if (pipe->pipe_map.kva != 0) {
1223 pipe_loan_free(pipe);
1224 pipe->pipe_map.cnt = 0;
1225 pipe->pipe_map.kva = 0;
1226 pipe->pipe_map.pos = 0;
1227 pipe->pipe_map.npages = 0;
1228 }
1229 #endif /* !PIPE_NODIRECT */
1230 }
1231
1232 /*
1233 * shutdown the pipe
1234 */
1235 static void
1236 pipeclose(struct file *fp, struct pipe *pipe)
1237 {
1238 struct pipe_mutex *mutex;
1239 kmutex_t *lock;
1240 struct pipe *ppipe;
1241 u_int refcnt;
1242
1243 if (pipe == NULL)
1244 return;
1245
1246 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1247 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1248 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1249 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1250
1251 lock = pipe->pipe_lock;
1252 mutex_enter(lock);
1253 pipeselwakeup(pipe, pipe, POLL_HUP);
1254
1255 /*
1256 * If the other side is blocked, wake it up saying that
1257 * we want to close it down.
1258 */
1259 pipe->pipe_state |= PIPE_EOF;
1260 if (pipe->pipe_busy) {
1261 while (pipe->pipe_busy) {
1262 cv_broadcast(&pipe->pipe_wcv);
1263 cv_wait_sig(&pipe->pipe_draincv, lock);
1264 }
1265 }
1266
1267 /*
1268 * Disconnect from peer
1269 */
1270 if ((ppipe = pipe->pipe_peer) != NULL) {
1271 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1272 ppipe->pipe_state |= PIPE_EOF;
1273 cv_broadcast(&ppipe->pipe_rcv);
1274 ppipe->pipe_peer = NULL;
1275 }
1276
1277 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1278
1279 mutex = (struct pipe_mutex *)lock;
1280 refcnt = --(mutex->pm_refcnt);
1281 KASSERT(refcnt == 0 || refcnt == 1);
1282 mutex_exit(lock);
1283
1284 /*
1285 * free resources
1286 */
1287 pipe_free_kmem(pipe);
1288 cv_destroy(&pipe->pipe_rcv);
1289 cv_destroy(&pipe->pipe_wcv);
1290 cv_destroy(&pipe->pipe_draincv);
1291 cv_destroy(&pipe->pipe_lkcv);
1292 seldestroy(&pipe->pipe_sel);
1293 pool_cache_put(pipe_cache, pipe);
1294 if (refcnt == 0)
1295 pool_cache_put(pipe_mutex_cache, mutex);
1296 }
1297
1298 static void
1299 filt_pipedetach(struct knote *kn)
1300 {
1301 struct pipe *pipe;
1302 kmutex_t *lock;
1303
1304 pipe = ((file_t *)kn->kn_obj)->f_data;
1305 lock = pipe->pipe_lock;
1306
1307 mutex_enter(lock);
1308
1309 switch(kn->kn_filter) {
1310 case EVFILT_WRITE:
1311 /* need the peer structure, not our own */
1312 pipe = pipe->pipe_peer;
1313
1314 /* if reader end already closed, just return */
1315 if (pipe == NULL) {
1316 mutex_exit(lock);
1317 return;
1318 }
1319
1320 break;
1321 default:
1322 /* nothing to do */
1323 break;
1324 }
1325
1326 #ifdef DIAGNOSTIC
1327 if (kn->kn_hook != pipe)
1328 panic("filt_pipedetach: inconsistent knote");
1329 #endif
1330
1331 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1332 mutex_exit(lock);
1333 }
1334
1335 /*ARGSUSED*/
1336 static int
1337 filt_piperead(struct knote *kn, long hint)
1338 {
1339 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1340 struct pipe *wpipe;
1341
1342 if ((hint & NOTE_SUBMIT) == 0) {
1343 mutex_enter(rpipe->pipe_lock);
1344 }
1345 wpipe = rpipe->pipe_peer;
1346 kn->kn_data = rpipe->pipe_buffer.cnt;
1347
1348 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1349 kn->kn_data = rpipe->pipe_map.cnt;
1350
1351 if ((rpipe->pipe_state & PIPE_EOF) ||
1352 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1353 kn->kn_flags |= EV_EOF;
1354 if ((hint & NOTE_SUBMIT) == 0) {
1355 mutex_exit(rpipe->pipe_lock);
1356 }
1357 return (1);
1358 }
1359
1360 if ((hint & NOTE_SUBMIT) == 0) {
1361 mutex_exit(rpipe->pipe_lock);
1362 }
1363 return (kn->kn_data > 0);
1364 }
1365
1366 /*ARGSUSED*/
1367 static int
1368 filt_pipewrite(struct knote *kn, long hint)
1369 {
1370 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1371 struct pipe *wpipe;
1372
1373 if ((hint & NOTE_SUBMIT) == 0) {
1374 mutex_enter(rpipe->pipe_lock);
1375 }
1376 wpipe = rpipe->pipe_peer;
1377
1378 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1379 kn->kn_data = 0;
1380 kn->kn_flags |= EV_EOF;
1381 if ((hint & NOTE_SUBMIT) == 0) {
1382 mutex_exit(rpipe->pipe_lock);
1383 }
1384 return (1);
1385 }
1386 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1387 if (wpipe->pipe_state & PIPE_DIRECTW)
1388 kn->kn_data = 0;
1389
1390 if ((hint & NOTE_SUBMIT) == 0) {
1391 mutex_exit(rpipe->pipe_lock);
1392 }
1393 return (kn->kn_data >= PIPE_BUF);
1394 }
1395
1396 static const struct filterops pipe_rfiltops =
1397 { 1, NULL, filt_pipedetach, filt_piperead };
1398 static const struct filterops pipe_wfiltops =
1399 { 1, NULL, filt_pipedetach, filt_pipewrite };
1400
1401 /*ARGSUSED*/
1402 static int
1403 pipe_kqfilter(struct file *fp, struct knote *kn)
1404 {
1405 struct pipe *pipe;
1406 kmutex_t *lock;
1407
1408 pipe = ((file_t *)kn->kn_obj)->f_data;
1409 lock = pipe->pipe_lock;
1410
1411 mutex_enter(lock);
1412
1413 switch (kn->kn_filter) {
1414 case EVFILT_READ:
1415 kn->kn_fop = &pipe_rfiltops;
1416 break;
1417 case EVFILT_WRITE:
1418 kn->kn_fop = &pipe_wfiltops;
1419 pipe = pipe->pipe_peer;
1420 if (pipe == NULL) {
1421 /* other end of pipe has been closed */
1422 mutex_exit(lock);
1423 return (EBADF);
1424 }
1425 break;
1426 default:
1427 mutex_exit(lock);
1428 return (EINVAL);
1429 }
1430
1431 kn->kn_hook = pipe;
1432 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1433 mutex_exit(lock);
1434
1435 return (0);
1436 }
1437
1438 /*
1439 * Handle pipe sysctls.
1440 */
1441 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1442 {
1443
1444 sysctl_createv(clog, 0, NULL, NULL,
1445 CTLFLAG_PERMANENT,
1446 CTLTYPE_NODE, "kern", NULL,
1447 NULL, 0, NULL, 0,
1448 CTL_KERN, CTL_EOL);
1449 sysctl_createv(clog, 0, NULL, NULL,
1450 CTLFLAG_PERMANENT,
1451 CTLTYPE_NODE, "pipe",
1452 SYSCTL_DESCR("Pipe settings"),
1453 NULL, 0, NULL, 0,
1454 CTL_KERN, KERN_PIPE, CTL_EOL);
1455
1456 sysctl_createv(clog, 0, NULL, NULL,
1457 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1458 CTLTYPE_INT, "maxkvasz",
1459 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1460 "used for pipes"),
1461 NULL, 0, &maxpipekva, 0,
1462 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1463 sysctl_createv(clog, 0, NULL, NULL,
1464 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1465 CTLTYPE_INT, "maxloankvasz",
1466 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1467 NULL, 0, &limitpipekva, 0,
1468 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1469 sysctl_createv(clog, 0, NULL, NULL,
1470 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1471 CTLTYPE_INT, "maxbigpipes",
1472 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1473 NULL, 0, &maxbigpipes, 0,
1474 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1475 sysctl_createv(clog, 0, NULL, NULL,
1476 CTLFLAG_PERMANENT,
1477 CTLTYPE_INT, "nbigpipes",
1478 SYSCTL_DESCR("Number of \"big\" pipes"),
1479 NULL, 0, &nbigpipe, 0,
1480 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1481 sysctl_createv(clog, 0, NULL, NULL,
1482 CTLFLAG_PERMANENT,
1483 CTLTYPE_INT, "kvasize",
1484 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1485 "buffers"),
1486 NULL, 0, &amountpipekva, 0,
1487 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1488 }
1489