sys_pipe.c revision 1.103 1 /* $NetBSD: sys_pipe.c,v 1.103 2008/09/17 14:00:41 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 *
50 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
51 */
52
53 /*
54 * This file contains a high-performance replacement for the socket-based
55 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
56 * all features of sockets, but does do everything that pipes normally
57 * do.
58 *
59 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
60 * written by Jaromir Dolecek.
61 */
62
63 /*
64 * This code has two modes of operation, a small write mode and a large
65 * write mode. The small write mode acts like conventional pipes with
66 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
67 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
68 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
69 * using the UVM page loan facility from where the receiving process can copy
70 * the data directly from the pages in the sending process.
71 *
72 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
73 * happen for small transfers so that the system will not spend all of
74 * its time context switching. PIPE_SIZE is constrained by the
75 * amount of kernel virtual memory.
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.103 2008/09/17 14:00:41 pooka Exp $");
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/fcntl.h>
85 #include <sys/file.h>
86 #include <sys/filedesc.h>
87 #include <sys/filio.h>
88 #include <sys/kernel.h>
89 #include <sys/ttycom.h>
90 #include <sys/stat.h>
91 #include <sys/poll.h>
92 #include <sys/signalvar.h>
93 #include <sys/vnode.h>
94 #include <sys/uio.h>
95 #include <sys/select.h>
96 #include <sys/mount.h>
97 #include <sys/syscallargs.h>
98 #include <sys/sysctl.h>
99 #include <sys/kauth.h>
100 #include <sys/atomic.h>
101 #include <sys/pipe.h>
102
103 #include <uvm/uvm.h>
104
105 /*
106 * Use this define if you want to disable *fancy* VM things. Expect an
107 * approx 30% decrease in transfer rate.
108 */
109 /* #define PIPE_NODIRECT */
110
111 /*
112 * interfaces to the outside world
113 */
114 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
115 kauth_cred_t cred, int flags);
116 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
117 kauth_cred_t cred, int flags);
118 static int pipe_close(struct file *fp);
119 static int pipe_poll(struct file *fp, int events);
120 static int pipe_kqfilter(struct file *fp, struct knote *kn);
121 static int pipe_stat(struct file *fp, struct stat *sb);
122 static int pipe_ioctl(struct file *fp, u_long cmd, void *data);
123
124 static const struct fileops pipeops = {
125 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
126 pipe_stat, pipe_close, pipe_kqfilter
127 };
128
129 /*
130 * Single mutex shared between both ends of the pipe.
131 */
132
133 struct pipe_mutex {
134 kmutex_t pm_mutex;
135 u_int pm_refcnt;
136 };
137
138 /*
139 * Default pipe buffer size(s), this can be kind-of large now because pipe
140 * space is pageable. The pipe code will try to maintain locality of
141 * reference for performance reasons, so small amounts of outstanding I/O
142 * will not wipe the cache.
143 */
144 #define MINPIPESIZE (PIPE_SIZE/3)
145 #define MAXPIPESIZE (2*PIPE_SIZE/3)
146
147 /*
148 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
149 * is there so that on large systems, we don't exhaust it.
150 */
151 #define MAXPIPEKVA (8*1024*1024)
152 static u_int maxpipekva = MAXPIPEKVA;
153
154 /*
155 * Limit for direct transfers, we cannot, of course limit
156 * the amount of kva for pipes in general though.
157 */
158 #define LIMITPIPEKVA (16*1024*1024)
159 static u_int limitpipekva = LIMITPIPEKVA;
160
161 /*
162 * Limit the number of "big" pipes
163 */
164 #define LIMITBIGPIPES 32
165 static u_int maxbigpipes = LIMITBIGPIPES;
166 static u_int nbigpipe = 0;
167
168 /*
169 * Amount of KVA consumed by pipe buffers.
170 */
171 static u_int amountpipekva = 0;
172
173 static void pipeclose(struct file *fp, struct pipe *pipe);
174 static void pipe_free_kmem(struct pipe *pipe);
175 static int pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *);
176 static int pipelock(struct pipe *pipe, int catch);
177 static inline void pipeunlock(struct pipe *pipe);
178 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
179 #ifndef PIPE_NODIRECT
180 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
181 struct uio *uio);
182 #endif
183 static int pipespace(struct pipe *pipe, int size);
184
185 #ifndef PIPE_NODIRECT
186 static int pipe_loan_alloc(struct pipe *, int);
187 static void pipe_loan_free(struct pipe *);
188 #endif /* PIPE_NODIRECT */
189
190 static int pipe_mutex_ctor(void *, void *, int);
191 static void pipe_mutex_dtor(void *, void *);
192
193 static pool_cache_t pipe_cache;
194 static pool_cache_t pipe_mutex_cache;
195
196 void
197 pipe_init(void)
198 {
199
200 pipe_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipepl",
201 NULL, IPL_NONE, NULL, NULL, NULL);
202 KASSERT(pipe_cache != NULL);
203
204 pipe_mutex_cache = pool_cache_init(sizeof(struct pipe_mutex),
205 coherency_unit, 0, 0, "pipemtxpl", NULL, IPL_NONE, pipe_mutex_ctor,
206 pipe_mutex_dtor, NULL);
207 KASSERT(pipe_cache != NULL);
208 }
209
210 static int
211 pipe_mutex_ctor(void *arg, void *obj, int flag)
212 {
213 struct pipe_mutex *pm = obj;
214
215 mutex_init(&pm->pm_mutex, MUTEX_DEFAULT, IPL_NONE);
216 pm->pm_refcnt = 0;
217
218 return 0;
219 }
220
221 static void
222 pipe_mutex_dtor(void *arg, void *obj)
223 {
224 struct pipe_mutex *pm = obj;
225
226 KASSERT(pm->pm_refcnt == 0);
227
228 mutex_destroy(&pm->pm_mutex);
229 }
230
231 /*
232 * The pipe system call for the DTYPE_PIPE type of pipes
233 */
234
235 /* ARGSUSED */
236 int
237 sys_pipe(struct lwp *l, const void *v, register_t *retval)
238 {
239 struct file *rf, *wf;
240 struct pipe *rpipe, *wpipe;
241 struct pipe_mutex *mutex;
242 int fd, error;
243 proc_t *p;
244
245 p = curproc;
246 rpipe = wpipe = NULL;
247 mutex = pool_cache_get(pipe_mutex_cache, PR_WAITOK);
248 if (mutex == NULL)
249 return (ENOMEM);
250 if (pipe_create(&rpipe, 1, mutex) || pipe_create(&wpipe, 0, mutex)) {
251 pipeclose(NULL, rpipe);
252 pipeclose(NULL, wpipe);
253 return (ENFILE);
254 }
255
256 error = fd_allocfile(&rf, &fd);
257 if (error)
258 goto free2;
259 retval[0] = fd;
260 rf->f_flag = FREAD;
261 rf->f_type = DTYPE_PIPE;
262 rf->f_data = (void *)rpipe;
263 rf->f_ops = &pipeops;
264
265 error = fd_allocfile(&wf, &fd);
266 if (error)
267 goto free3;
268 retval[1] = fd;
269 wf->f_flag = FWRITE;
270 wf->f_type = DTYPE_PIPE;
271 wf->f_data = (void *)wpipe;
272 wf->f_ops = &pipeops;
273
274 rpipe->pipe_peer = wpipe;
275 wpipe->pipe_peer = rpipe;
276
277 fd_affix(p, rf, (int)retval[0]);
278 fd_affix(p, wf, (int)retval[1]);
279 return (0);
280 free3:
281 fd_abort(p, rf, (int)retval[0]);
282 free2:
283 pipeclose(NULL, wpipe);
284 pipeclose(NULL, rpipe);
285
286 return (error);
287 }
288
289 /*
290 * Allocate kva for pipe circular buffer, the space is pageable
291 * This routine will 'realloc' the size of a pipe safely, if it fails
292 * it will retain the old buffer.
293 * If it fails it will return ENOMEM.
294 */
295 static int
296 pipespace(struct pipe *pipe, int size)
297 {
298 void *buffer;
299 /*
300 * Allocate pageable virtual address space. Physical memory is
301 * allocated on demand.
302 */
303 buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
304 UVM_KMF_PAGEABLE);
305 if (buffer == NULL)
306 return (ENOMEM);
307
308 /* free old resources if we're resizing */
309 pipe_free_kmem(pipe);
310 pipe->pipe_buffer.buffer = buffer;
311 pipe->pipe_buffer.size = size;
312 pipe->pipe_buffer.in = 0;
313 pipe->pipe_buffer.out = 0;
314 pipe->pipe_buffer.cnt = 0;
315 atomic_add_int(&amountpipekva, pipe->pipe_buffer.size);
316 return (0);
317 }
318
319 /*
320 * Initialize and allocate VM and memory for pipe.
321 */
322 static int
323 pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *mutex)
324 {
325 struct pipe *pipe;
326 int error;
327
328 pipe = *pipep = pool_cache_get(pipe_cache, PR_WAITOK);
329 mutex->pm_refcnt++;
330
331 /* Initialize */
332 memset(pipe, 0, sizeof(struct pipe));
333 pipe->pipe_state = PIPE_SIGNALR;
334
335 getmicrotime(&pipe->pipe_ctime);
336 pipe->pipe_atime = pipe->pipe_ctime;
337 pipe->pipe_mtime = pipe->pipe_ctime;
338 pipe->pipe_lock = &mutex->pm_mutex;
339 cv_init(&pipe->pipe_rcv, "piperd");
340 cv_init(&pipe->pipe_wcv, "pipewr");
341 cv_init(&pipe->pipe_draincv, "pipedrain");
342 cv_init(&pipe->pipe_lkcv, "pipelk");
343 selinit(&pipe->pipe_sel);
344
345 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
346 return (error);
347
348 return (0);
349 }
350
351
352 /*
353 * Lock a pipe for I/O, blocking other access
354 * Called with pipe spin lock held.
355 * Return with pipe spin lock released on success.
356 */
357 static int
358 pipelock(struct pipe *pipe, int catch)
359 {
360 int error;
361
362 KASSERT(mutex_owned(pipe->pipe_lock));
363
364 while (pipe->pipe_state & PIPE_LOCKFL) {
365 pipe->pipe_state |= PIPE_LWANT;
366 if (catch) {
367 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
368 if (error != 0)
369 return error;
370 } else
371 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
372 }
373
374 pipe->pipe_state |= PIPE_LOCKFL;
375
376 return 0;
377 }
378
379 /*
380 * unlock a pipe I/O lock
381 */
382 static inline void
383 pipeunlock(struct pipe *pipe)
384 {
385
386 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
387
388 pipe->pipe_state &= ~PIPE_LOCKFL;
389 if (pipe->pipe_state & PIPE_LWANT) {
390 pipe->pipe_state &= ~PIPE_LWANT;
391 cv_broadcast(&pipe->pipe_lkcv);
392 }
393 }
394
395 /*
396 * Select/poll wakup. This also sends SIGIO to peer connected to
397 * 'sigpipe' side of pipe.
398 */
399 static void
400 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
401 {
402 int band;
403
404 switch (code) {
405 case POLL_IN:
406 band = POLLIN|POLLRDNORM;
407 break;
408 case POLL_OUT:
409 band = POLLOUT|POLLWRNORM;
410 break;
411 case POLL_HUP:
412 band = POLLHUP;
413 break;
414 #if POLL_HUP != POLL_ERR
415 case POLL_ERR:
416 band = POLLERR;
417 break;
418 #endif
419 default:
420 band = 0;
421 #ifdef DIAGNOSTIC
422 printf("bad siginfo code %d in pipe notification.\n", code);
423 #endif
424 break;
425 }
426
427 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
428
429 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
430 return;
431
432 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
433 }
434
435 /* ARGSUSED */
436 static int
437 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
438 int flags)
439 {
440 struct pipe *rpipe = (struct pipe *) fp->f_data;
441 struct pipebuf *bp = &rpipe->pipe_buffer;
442 kmutex_t *lock = rpipe->pipe_lock;
443 int error;
444 size_t nread = 0;
445 size_t size;
446 size_t ocnt;
447
448 mutex_enter(lock);
449 ++rpipe->pipe_busy;
450 ocnt = bp->cnt;
451
452 again:
453 error = pipelock(rpipe, 1);
454 if (error)
455 goto unlocked_error;
456
457 while (uio->uio_resid) {
458 /*
459 * normal pipe buffer receive
460 */
461 if (bp->cnt > 0) {
462 size = bp->size - bp->out;
463 if (size > bp->cnt)
464 size = bp->cnt;
465 if (size > uio->uio_resid)
466 size = uio->uio_resid;
467
468 mutex_exit(lock);
469 error = uiomove((char *)bp->buffer + bp->out, size, uio);
470 mutex_enter(lock);
471 if (error)
472 break;
473
474 bp->out += size;
475 if (bp->out >= bp->size)
476 bp->out = 0;
477
478 bp->cnt -= size;
479
480 /*
481 * If there is no more to read in the pipe, reset
482 * its pointers to the beginning. This improves
483 * cache hit stats.
484 */
485 if (bp->cnt == 0) {
486 bp->in = 0;
487 bp->out = 0;
488 }
489 nread += size;
490 continue;
491 }
492
493 #ifndef PIPE_NODIRECT
494 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
495 /*
496 * Direct copy, bypassing a kernel buffer.
497 */
498 void * va;
499
500 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
501
502 size = rpipe->pipe_map.cnt;
503 if (size > uio->uio_resid)
504 size = uio->uio_resid;
505
506 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
507 mutex_exit(lock);
508 error = uiomove(va, size, uio);
509 mutex_enter(lock);
510 if (error)
511 break;
512 nread += size;
513 rpipe->pipe_map.pos += size;
514 rpipe->pipe_map.cnt -= size;
515 if (rpipe->pipe_map.cnt == 0) {
516 rpipe->pipe_state &= ~PIPE_DIRECTR;
517 cv_broadcast(&rpipe->pipe_wcv);
518 }
519 continue;
520 }
521 #endif
522 /*
523 * Break if some data was read.
524 */
525 if (nread > 0)
526 break;
527
528 /*
529 * detect EOF condition
530 * read returns 0 on EOF, no need to set error
531 */
532 if (rpipe->pipe_state & PIPE_EOF)
533 break;
534
535 /*
536 * don't block on non-blocking I/O
537 */
538 if (fp->f_flag & FNONBLOCK) {
539 error = EAGAIN;
540 break;
541 }
542
543 /*
544 * Unlock the pipe buffer for our remaining processing.
545 * We will either break out with an error or we will
546 * sleep and relock to loop.
547 */
548 pipeunlock(rpipe);
549
550 /*
551 * Re-check to see if more direct writes are pending.
552 */
553 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
554 goto again;
555
556 /*
557 * We want to read more, wake up select/poll.
558 */
559 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
560
561 /*
562 * If the "write-side" is blocked, wake it up now.
563 */
564 cv_broadcast(&rpipe->pipe_wcv);
565
566 /* Now wait until the pipe is filled */
567 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
568 if (error != 0)
569 goto unlocked_error;
570 goto again;
571 }
572
573 if (error == 0)
574 getmicrotime(&rpipe->pipe_atime);
575 pipeunlock(rpipe);
576
577 unlocked_error:
578 --rpipe->pipe_busy;
579 if (rpipe->pipe_busy == 0) {
580 cv_broadcast(&rpipe->pipe_draincv);
581 }
582 if (bp->cnt < MINPIPESIZE) {
583 cv_broadcast(&rpipe->pipe_wcv);
584 }
585
586 /*
587 * If anything was read off the buffer, signal to the writer it's
588 * possible to write more data. Also send signal if we are here for the
589 * first time after last write.
590 */
591 if ((bp->size - bp->cnt) >= PIPE_BUF
592 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
593 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
594 rpipe->pipe_state &= ~PIPE_SIGNALR;
595 }
596
597 mutex_exit(lock);
598 return (error);
599 }
600
601 #ifndef PIPE_NODIRECT
602 /*
603 * Allocate structure for loan transfer.
604 */
605 static int
606 pipe_loan_alloc(struct pipe *wpipe, int npages)
607 {
608 vsize_t len;
609
610 len = (vsize_t)npages << PAGE_SHIFT;
611 atomic_add_int(&amountpipekva, len);
612 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
613 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
614 if (wpipe->pipe_map.kva == 0) {
615 atomic_add_int(&amountpipekva, -len);
616 return (ENOMEM);
617 }
618
619 wpipe->pipe_map.npages = npages;
620 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
621 KM_SLEEP);
622 return (0);
623 }
624
625 /*
626 * Free resources allocated for loan transfer.
627 */
628 static void
629 pipe_loan_free(struct pipe *wpipe)
630 {
631 vsize_t len;
632
633 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
634 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
635 wpipe->pipe_map.kva = 0;
636 atomic_add_int(&amountpipekva, -len);
637 kmem_free(wpipe->pipe_map.pgs,
638 wpipe->pipe_map.npages * sizeof(struct vm_page *));
639 wpipe->pipe_map.pgs = NULL;
640 }
641
642 /*
643 * NetBSD direct write, using uvm_loan() mechanism.
644 * This implements the pipe buffer write mechanism. Note that only
645 * a direct write OR a normal pipe write can be pending at any given time.
646 * If there are any characters in the pipe buffer, the direct write will
647 * be deferred until the receiving process grabs all of the bytes from
648 * the pipe buffer. Then the direct mapping write is set-up.
649 *
650 * Called with the long-term pipe lock held.
651 */
652 static int
653 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
654 {
655 int error, npages, j;
656 struct vm_page **pgs;
657 vaddr_t bbase, kva, base, bend;
658 vsize_t blen, bcnt;
659 voff_t bpos;
660 kmutex_t *lock = wpipe->pipe_lock;
661
662 KASSERT(mutex_owned(wpipe->pipe_lock));
663 KASSERT(wpipe->pipe_map.cnt == 0);
664
665 mutex_exit(lock);
666
667 /*
668 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
669 * not aligned to PAGE_SIZE.
670 */
671 bbase = (vaddr_t)uio->uio_iov->iov_base;
672 base = trunc_page(bbase);
673 bend = round_page(bbase + uio->uio_iov->iov_len);
674 blen = bend - base;
675 bpos = bbase - base;
676
677 if (blen > PIPE_DIRECT_CHUNK) {
678 blen = PIPE_DIRECT_CHUNK;
679 bend = base + blen;
680 bcnt = PIPE_DIRECT_CHUNK - bpos;
681 } else {
682 bcnt = uio->uio_iov->iov_len;
683 }
684 npages = blen >> PAGE_SHIFT;
685
686 /*
687 * Free the old kva if we need more pages than we have
688 * allocated.
689 */
690 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
691 pipe_loan_free(wpipe);
692
693 /* Allocate new kva. */
694 if (wpipe->pipe_map.kva == 0) {
695 error = pipe_loan_alloc(wpipe, npages);
696 if (error) {
697 mutex_enter(lock);
698 return (error);
699 }
700 }
701
702 /* Loan the write buffer memory from writer process */
703 pgs = wpipe->pipe_map.pgs;
704 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
705 pgs, UVM_LOAN_TOPAGE);
706 if (error) {
707 pipe_loan_free(wpipe);
708 mutex_enter(lock);
709 return (ENOMEM); /* so that caller fallback to ordinary write */
710 }
711
712 /* Enter the loaned pages to kva */
713 kva = wpipe->pipe_map.kva;
714 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
715 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
716 }
717 pmap_update(pmap_kernel());
718
719 /* Now we can put the pipe in direct write mode */
720 wpipe->pipe_map.pos = bpos;
721 wpipe->pipe_map.cnt = bcnt;
722
723 /*
724 * But before we can let someone do a direct read, we
725 * have to wait until the pipe is drained. Release the
726 * pipe lock while we wait.
727 */
728 mutex_enter(lock);
729 wpipe->pipe_state |= PIPE_DIRECTW;
730 pipeunlock(wpipe);
731
732 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
733 cv_broadcast(&wpipe->pipe_rcv);
734 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
735 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
736 error = EPIPE;
737 }
738
739 /* Pipe is drained; next read will off the direct buffer */
740 wpipe->pipe_state |= PIPE_DIRECTR;
741
742 /* Wait until the reader is done */
743 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
744 cv_broadcast(&wpipe->pipe_rcv);
745 pipeselwakeup(wpipe, wpipe, POLL_IN);
746 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
747 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
748 error = EPIPE;
749 }
750
751 /* Take pipe out of direct write mode */
752 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
753
754 /* Acquire the pipe lock and cleanup */
755 (void)pipelock(wpipe, 0);
756 mutex_exit(lock);
757
758 if (pgs != NULL) {
759 pmap_kremove(wpipe->pipe_map.kva, blen);
760 pmap_update(pmap_kernel());
761 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
762 }
763 if (error || amountpipekva > maxpipekva)
764 pipe_loan_free(wpipe);
765
766 mutex_enter(lock);
767 if (error) {
768 pipeselwakeup(wpipe, wpipe, POLL_ERR);
769
770 /*
771 * If nothing was read from what we offered, return error
772 * straight on. Otherwise update uio resid first. Caller
773 * will deal with the error condition, returning short
774 * write, error, or restarting the write(2) as appropriate.
775 */
776 if (wpipe->pipe_map.cnt == bcnt) {
777 wpipe->pipe_map.cnt = 0;
778 cv_broadcast(&wpipe->pipe_wcv);
779 return (error);
780 }
781
782 bcnt -= wpipe->pipe_map.cnt;
783 }
784
785 uio->uio_resid -= bcnt;
786 /* uio_offset not updated, not set/used for write(2) */
787 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
788 uio->uio_iov->iov_len -= bcnt;
789 if (uio->uio_iov->iov_len == 0) {
790 uio->uio_iov++;
791 uio->uio_iovcnt--;
792 }
793
794 wpipe->pipe_map.cnt = 0;
795 return (error);
796 }
797 #endif /* !PIPE_NODIRECT */
798
799 static int
800 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
801 int flags)
802 {
803 struct pipe *wpipe, *rpipe;
804 struct pipebuf *bp;
805 kmutex_t *lock;
806 int error;
807
808 /* We want to write to our peer */
809 rpipe = (struct pipe *) fp->f_data;
810 lock = rpipe->pipe_lock;
811 error = 0;
812
813 mutex_enter(lock);
814 wpipe = rpipe->pipe_peer;
815
816 /*
817 * Detect loss of pipe read side, issue SIGPIPE if lost.
818 */
819 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
820 mutex_exit(lock);
821 return EPIPE;
822 }
823 ++wpipe->pipe_busy;
824
825 /* Aquire the long-term pipe lock */
826 if ((error = pipelock(wpipe, 1)) != 0) {
827 --wpipe->pipe_busy;
828 if (wpipe->pipe_busy == 0) {
829 cv_broadcast(&wpipe->pipe_draincv);
830 }
831 mutex_exit(lock);
832 return (error);
833 }
834
835 bp = &wpipe->pipe_buffer;
836
837 /*
838 * If it is advantageous to resize the pipe buffer, do so.
839 */
840 if ((uio->uio_resid > PIPE_SIZE) &&
841 (nbigpipe < maxbigpipes) &&
842 #ifndef PIPE_NODIRECT
843 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
844 #endif
845 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
846
847 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
848 atomic_inc_uint(&nbigpipe);
849 }
850
851 while (uio->uio_resid) {
852 size_t space;
853
854 #ifndef PIPE_NODIRECT
855 /*
856 * Pipe buffered writes cannot be coincidental with
857 * direct writes. Also, only one direct write can be
858 * in progress at any one time. We wait until the currently
859 * executing direct write is completed before continuing.
860 *
861 * We break out if a signal occurs or the reader goes away.
862 */
863 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
864 cv_broadcast(&wpipe->pipe_rcv);
865 pipeunlock(wpipe);
866 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
867 (void)pipelock(wpipe, 0);
868 if (wpipe->pipe_state & PIPE_EOF)
869 error = EPIPE;
870 }
871 if (error)
872 break;
873
874 /*
875 * If the transfer is large, we can gain performance if
876 * we do process-to-process copies directly.
877 * If the write is non-blocking, we don't use the
878 * direct write mechanism.
879 *
880 * The direct write mechanism will detect the reader going
881 * away on us.
882 */
883 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
884 (fp->f_flag & FNONBLOCK) == 0 &&
885 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
886 error = pipe_direct_write(fp, wpipe, uio);
887
888 /*
889 * Break out if error occurred, unless it's ENOMEM.
890 * ENOMEM means we failed to allocate some resources
891 * for direct write, so we just fallback to ordinary
892 * write. If the direct write was successful,
893 * process rest of data via ordinary write.
894 */
895 if (error == 0)
896 continue;
897
898 if (error != ENOMEM)
899 break;
900 }
901 #endif /* PIPE_NODIRECT */
902
903 space = bp->size - bp->cnt;
904
905 /* Writes of size <= PIPE_BUF must be atomic. */
906 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
907 space = 0;
908
909 if (space > 0) {
910 int size; /* Transfer size */
911 int segsize; /* first segment to transfer */
912
913 /*
914 * Transfer size is minimum of uio transfer
915 * and free space in pipe buffer.
916 */
917 if (space > uio->uio_resid)
918 size = uio->uio_resid;
919 else
920 size = space;
921 /*
922 * First segment to transfer is minimum of
923 * transfer size and contiguous space in
924 * pipe buffer. If first segment to transfer
925 * is less than the transfer size, we've got
926 * a wraparound in the buffer.
927 */
928 segsize = bp->size - bp->in;
929 if (segsize > size)
930 segsize = size;
931
932 /* Transfer first segment */
933 mutex_exit(lock);
934 error = uiomove((char *)bp->buffer + bp->in, segsize,
935 uio);
936
937 if (error == 0 && segsize < size) {
938 /*
939 * Transfer remaining part now, to
940 * support atomic writes. Wraparound
941 * happened.
942 */
943 #ifdef DEBUG
944 if (bp->in + segsize != bp->size)
945 panic("Expected pipe buffer wraparound disappeared");
946 #endif
947
948 error = uiomove(bp->buffer,
949 size - segsize, uio);
950 }
951 mutex_enter(lock);
952 if (error)
953 break;
954
955 bp->in += size;
956 if (bp->in >= bp->size) {
957 #ifdef DEBUG
958 if (bp->in != size - segsize + bp->size)
959 panic("Expected wraparound bad");
960 #endif
961 bp->in = size - segsize;
962 }
963
964 bp->cnt += size;
965 #ifdef DEBUG
966 if (bp->cnt > bp->size)
967 panic("Pipe buffer overflow");
968 #endif
969 } else {
970 /*
971 * If the "read-side" has been blocked, wake it up now.
972 */
973 cv_broadcast(&wpipe->pipe_rcv);
974
975 /*
976 * don't block on non-blocking I/O
977 */
978 if (fp->f_flag & FNONBLOCK) {
979 error = EAGAIN;
980 break;
981 }
982
983 /*
984 * We have no more space and have something to offer,
985 * wake up select/poll.
986 */
987 if (bp->cnt)
988 pipeselwakeup(wpipe, wpipe, POLL_OUT);
989
990 pipeunlock(wpipe);
991 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
992 (void)pipelock(wpipe, 0);
993 if (error != 0)
994 break;
995 /*
996 * If read side wants to go away, we just issue a signal
997 * to ourselves.
998 */
999 if (wpipe->pipe_state & PIPE_EOF) {
1000 error = EPIPE;
1001 break;
1002 }
1003 }
1004 }
1005
1006 --wpipe->pipe_busy;
1007 if (wpipe->pipe_busy == 0) {
1008 cv_broadcast(&wpipe->pipe_draincv);
1009 }
1010 if (bp->cnt > 0) {
1011 cv_broadcast(&wpipe->pipe_rcv);
1012 }
1013
1014 /*
1015 * Don't return EPIPE if I/O was successful
1016 */
1017 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1018 error = 0;
1019
1020 if (error == 0)
1021 getmicrotime(&wpipe->pipe_mtime);
1022
1023 /*
1024 * We have something to offer, wake up select/poll.
1025 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1026 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1027 */
1028 if (bp->cnt)
1029 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1030
1031 /*
1032 * Arrange for next read(2) to do a signal.
1033 */
1034 wpipe->pipe_state |= PIPE_SIGNALR;
1035
1036 pipeunlock(wpipe);
1037 mutex_exit(lock);
1038 return (error);
1039 }
1040
1041 /*
1042 * we implement a very minimal set of ioctls for compatibility with sockets.
1043 */
1044 int
1045 pipe_ioctl(struct file *fp, u_long cmd, void *data)
1046 {
1047 struct pipe *pipe = fp->f_data;
1048 kmutex_t *lock = pipe->pipe_lock;
1049
1050 switch (cmd) {
1051
1052 case FIONBIO:
1053 return (0);
1054
1055 case FIOASYNC:
1056 mutex_enter(lock);
1057 if (*(int *)data) {
1058 pipe->pipe_state |= PIPE_ASYNC;
1059 } else {
1060 pipe->pipe_state &= ~PIPE_ASYNC;
1061 }
1062 mutex_exit(lock);
1063 return (0);
1064
1065 case FIONREAD:
1066 mutex_enter(lock);
1067 #ifndef PIPE_NODIRECT
1068 if (pipe->pipe_state & PIPE_DIRECTW)
1069 *(int *)data = pipe->pipe_map.cnt;
1070 else
1071 #endif
1072 *(int *)data = pipe->pipe_buffer.cnt;
1073 mutex_exit(lock);
1074 return (0);
1075
1076 case FIONWRITE:
1077 /* Look at other side */
1078 pipe = pipe->pipe_peer;
1079 mutex_enter(lock);
1080 #ifndef PIPE_NODIRECT
1081 if (pipe->pipe_state & PIPE_DIRECTW)
1082 *(int *)data = pipe->pipe_map.cnt;
1083 else
1084 #endif
1085 *(int *)data = pipe->pipe_buffer.cnt;
1086 mutex_exit(lock);
1087 return (0);
1088
1089 case FIONSPACE:
1090 /* Look at other side */
1091 pipe = pipe->pipe_peer;
1092 mutex_enter(lock);
1093 #ifndef PIPE_NODIRECT
1094 /*
1095 * If we're in direct-mode, we don't really have a
1096 * send queue, and any other write will block. Thus
1097 * zero seems like the best answer.
1098 */
1099 if (pipe->pipe_state & PIPE_DIRECTW)
1100 *(int *)data = 0;
1101 else
1102 #endif
1103 *(int *)data = pipe->pipe_buffer.size -
1104 pipe->pipe_buffer.cnt;
1105 mutex_exit(lock);
1106 return (0);
1107
1108 case TIOCSPGRP:
1109 case FIOSETOWN:
1110 return fsetown(&pipe->pipe_pgid, cmd, data);
1111
1112 case TIOCGPGRP:
1113 case FIOGETOWN:
1114 return fgetown(pipe->pipe_pgid, cmd, data);
1115
1116 }
1117 return (EPASSTHROUGH);
1118 }
1119
1120 int
1121 pipe_poll(struct file *fp, int events)
1122 {
1123 struct pipe *rpipe = fp->f_data;
1124 struct pipe *wpipe;
1125 int eof = 0;
1126 int revents = 0;
1127
1128 mutex_enter(rpipe->pipe_lock);
1129 wpipe = rpipe->pipe_peer;
1130
1131 if (events & (POLLIN | POLLRDNORM))
1132 if ((rpipe->pipe_buffer.cnt > 0) ||
1133 #ifndef PIPE_NODIRECT
1134 (rpipe->pipe_state & PIPE_DIRECTR) ||
1135 #endif
1136 (rpipe->pipe_state & PIPE_EOF))
1137 revents |= events & (POLLIN | POLLRDNORM);
1138
1139 eof |= (rpipe->pipe_state & PIPE_EOF);
1140
1141 if (wpipe == NULL)
1142 revents |= events & (POLLOUT | POLLWRNORM);
1143 else {
1144 if (events & (POLLOUT | POLLWRNORM))
1145 if ((wpipe->pipe_state & PIPE_EOF) || (
1146 #ifndef PIPE_NODIRECT
1147 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1148 #endif
1149 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1150 revents |= events & (POLLOUT | POLLWRNORM);
1151
1152 eof |= (wpipe->pipe_state & PIPE_EOF);
1153 }
1154
1155 if (wpipe == NULL || eof)
1156 revents |= POLLHUP;
1157
1158 if (revents == 0) {
1159 if (events & (POLLIN | POLLRDNORM))
1160 selrecord(curlwp, &rpipe->pipe_sel);
1161
1162 if (events & (POLLOUT | POLLWRNORM))
1163 selrecord(curlwp, &wpipe->pipe_sel);
1164 }
1165 mutex_exit(rpipe->pipe_lock);
1166
1167 return (revents);
1168 }
1169
1170 static int
1171 pipe_stat(struct file *fp, struct stat *ub)
1172 {
1173 struct pipe *pipe = fp->f_data;
1174
1175 memset((void *)ub, 0, sizeof(*ub));
1176 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1177 ub->st_blksize = pipe->pipe_buffer.size;
1178 if (ub->st_blksize == 0 && pipe->pipe_peer)
1179 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1180 ub->st_size = pipe->pipe_buffer.cnt;
1181 ub->st_blocks = (ub->st_size) ? 1 : 0;
1182 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1183 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1184 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1185 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1186 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1187
1188 /*
1189 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1190 * XXX (st_dev, st_ino) should be unique.
1191 */
1192 return (0);
1193 }
1194
1195 /* ARGSUSED */
1196 static int
1197 pipe_close(struct file *fp)
1198 {
1199 struct pipe *pipe = fp->f_data;
1200
1201 fp->f_data = NULL;
1202 pipeclose(fp, pipe);
1203 return (0);
1204 }
1205
1206 static void
1207 pipe_free_kmem(struct pipe *pipe)
1208 {
1209
1210 if (pipe->pipe_buffer.buffer != NULL) {
1211 if (pipe->pipe_buffer.size > PIPE_SIZE)
1212 atomic_dec_uint(&nbigpipe);
1213 uvm_km_free(kernel_map,
1214 (vaddr_t)pipe->pipe_buffer.buffer,
1215 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1216 atomic_add_int(&amountpipekva, -pipe->pipe_buffer.size);
1217 pipe->pipe_buffer.buffer = NULL;
1218 }
1219 #ifndef PIPE_NODIRECT
1220 if (pipe->pipe_map.kva != 0) {
1221 pipe_loan_free(pipe);
1222 pipe->pipe_map.cnt = 0;
1223 pipe->pipe_map.kva = 0;
1224 pipe->pipe_map.pos = 0;
1225 pipe->pipe_map.npages = 0;
1226 }
1227 #endif /* !PIPE_NODIRECT */
1228 }
1229
1230 /*
1231 * shutdown the pipe
1232 */
1233 static void
1234 pipeclose(struct file *fp, struct pipe *pipe)
1235 {
1236 struct pipe_mutex *mutex;
1237 kmutex_t *lock;
1238 struct pipe *ppipe;
1239 u_int refcnt;
1240
1241 if (pipe == NULL)
1242 return;
1243
1244 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1245 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1246 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1247 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1248
1249 lock = pipe->pipe_lock;
1250 mutex_enter(lock);
1251 pipeselwakeup(pipe, pipe, POLL_HUP);
1252
1253 /*
1254 * If the other side is blocked, wake it up saying that
1255 * we want to close it down.
1256 */
1257 pipe->pipe_state |= PIPE_EOF;
1258 if (pipe->pipe_busy) {
1259 while (pipe->pipe_busy) {
1260 cv_broadcast(&pipe->pipe_wcv);
1261 cv_wait_sig(&pipe->pipe_draincv, lock);
1262 }
1263 }
1264
1265 /*
1266 * Disconnect from peer
1267 */
1268 if ((ppipe = pipe->pipe_peer) != NULL) {
1269 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1270 ppipe->pipe_state |= PIPE_EOF;
1271 cv_broadcast(&ppipe->pipe_rcv);
1272 ppipe->pipe_peer = NULL;
1273 }
1274
1275 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1276
1277 mutex = (struct pipe_mutex *)lock;
1278 refcnt = --(mutex->pm_refcnt);
1279 KASSERT(refcnt == 0 || refcnt == 1);
1280 mutex_exit(lock);
1281
1282 /*
1283 * free resources
1284 */
1285 pipe_free_kmem(pipe);
1286 cv_destroy(&pipe->pipe_rcv);
1287 cv_destroy(&pipe->pipe_wcv);
1288 cv_destroy(&pipe->pipe_draincv);
1289 cv_destroy(&pipe->pipe_lkcv);
1290 seldestroy(&pipe->pipe_sel);
1291 pool_cache_put(pipe_cache, pipe);
1292 if (refcnt == 0)
1293 pool_cache_put(pipe_mutex_cache, mutex);
1294 }
1295
1296 static void
1297 filt_pipedetach(struct knote *kn)
1298 {
1299 struct pipe *pipe;
1300 kmutex_t *lock;
1301
1302 pipe = ((file_t *)kn->kn_obj)->f_data;
1303 lock = pipe->pipe_lock;
1304
1305 mutex_enter(lock);
1306
1307 switch(kn->kn_filter) {
1308 case EVFILT_WRITE:
1309 /* need the peer structure, not our own */
1310 pipe = pipe->pipe_peer;
1311
1312 /* if reader end already closed, just return */
1313 if (pipe == NULL) {
1314 mutex_exit(lock);
1315 return;
1316 }
1317
1318 break;
1319 default:
1320 /* nothing to do */
1321 break;
1322 }
1323
1324 #ifdef DIAGNOSTIC
1325 if (kn->kn_hook != pipe)
1326 panic("filt_pipedetach: inconsistent knote");
1327 #endif
1328
1329 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1330 mutex_exit(lock);
1331 }
1332
1333 /*ARGSUSED*/
1334 static int
1335 filt_piperead(struct knote *kn, long hint)
1336 {
1337 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1338 struct pipe *wpipe;
1339
1340 if ((hint & NOTE_SUBMIT) == 0) {
1341 mutex_enter(rpipe->pipe_lock);
1342 }
1343 wpipe = rpipe->pipe_peer;
1344 kn->kn_data = rpipe->pipe_buffer.cnt;
1345
1346 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1347 kn->kn_data = rpipe->pipe_map.cnt;
1348
1349 if ((rpipe->pipe_state & PIPE_EOF) ||
1350 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1351 kn->kn_flags |= EV_EOF;
1352 if ((hint & NOTE_SUBMIT) == 0) {
1353 mutex_exit(rpipe->pipe_lock);
1354 }
1355 return (1);
1356 }
1357
1358 if ((hint & NOTE_SUBMIT) == 0) {
1359 mutex_exit(rpipe->pipe_lock);
1360 }
1361 return (kn->kn_data > 0);
1362 }
1363
1364 /*ARGSUSED*/
1365 static int
1366 filt_pipewrite(struct knote *kn, long hint)
1367 {
1368 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1369 struct pipe *wpipe;
1370
1371 if ((hint & NOTE_SUBMIT) == 0) {
1372 mutex_enter(rpipe->pipe_lock);
1373 }
1374 wpipe = rpipe->pipe_peer;
1375
1376 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1377 kn->kn_data = 0;
1378 kn->kn_flags |= EV_EOF;
1379 if ((hint & NOTE_SUBMIT) == 0) {
1380 mutex_exit(rpipe->pipe_lock);
1381 }
1382 return (1);
1383 }
1384 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1385 if (wpipe->pipe_state & PIPE_DIRECTW)
1386 kn->kn_data = 0;
1387
1388 if ((hint & NOTE_SUBMIT) == 0) {
1389 mutex_exit(rpipe->pipe_lock);
1390 }
1391 return (kn->kn_data >= PIPE_BUF);
1392 }
1393
1394 static const struct filterops pipe_rfiltops =
1395 { 1, NULL, filt_pipedetach, filt_piperead };
1396 static const struct filterops pipe_wfiltops =
1397 { 1, NULL, filt_pipedetach, filt_pipewrite };
1398
1399 /*ARGSUSED*/
1400 static int
1401 pipe_kqfilter(struct file *fp, struct knote *kn)
1402 {
1403 struct pipe *pipe;
1404 kmutex_t *lock;
1405
1406 pipe = ((file_t *)kn->kn_obj)->f_data;
1407 lock = pipe->pipe_lock;
1408
1409 mutex_enter(lock);
1410
1411 switch (kn->kn_filter) {
1412 case EVFILT_READ:
1413 kn->kn_fop = &pipe_rfiltops;
1414 break;
1415 case EVFILT_WRITE:
1416 kn->kn_fop = &pipe_wfiltops;
1417 pipe = pipe->pipe_peer;
1418 if (pipe == NULL) {
1419 /* other end of pipe has been closed */
1420 mutex_exit(lock);
1421 return (EBADF);
1422 }
1423 break;
1424 default:
1425 mutex_exit(lock);
1426 return (EINVAL);
1427 }
1428
1429 kn->kn_hook = pipe;
1430 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1431 mutex_exit(lock);
1432
1433 return (0);
1434 }
1435
1436 /*
1437 * Handle pipe sysctls.
1438 */
1439 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1440 {
1441
1442 sysctl_createv(clog, 0, NULL, NULL,
1443 CTLFLAG_PERMANENT,
1444 CTLTYPE_NODE, "kern", NULL,
1445 NULL, 0, NULL, 0,
1446 CTL_KERN, CTL_EOL);
1447 sysctl_createv(clog, 0, NULL, NULL,
1448 CTLFLAG_PERMANENT,
1449 CTLTYPE_NODE, "pipe",
1450 SYSCTL_DESCR("Pipe settings"),
1451 NULL, 0, NULL, 0,
1452 CTL_KERN, KERN_PIPE, CTL_EOL);
1453
1454 sysctl_createv(clog, 0, NULL, NULL,
1455 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1456 CTLTYPE_INT, "maxkvasz",
1457 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1458 "used for pipes"),
1459 NULL, 0, &maxpipekva, 0,
1460 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1461 sysctl_createv(clog, 0, NULL, NULL,
1462 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1463 CTLTYPE_INT, "maxloankvasz",
1464 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1465 NULL, 0, &limitpipekva, 0,
1466 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1467 sysctl_createv(clog, 0, NULL, NULL,
1468 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1469 CTLTYPE_INT, "maxbigpipes",
1470 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1471 NULL, 0, &maxbigpipes, 0,
1472 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1473 sysctl_createv(clog, 0, NULL, NULL,
1474 CTLFLAG_PERMANENT,
1475 CTLTYPE_INT, "nbigpipes",
1476 SYSCTL_DESCR("Number of \"big\" pipes"),
1477 NULL, 0, &nbigpipe, 0,
1478 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1479 sysctl_createv(clog, 0, NULL, NULL,
1480 CTLFLAG_PERMANENT,
1481 CTLTYPE_INT, "kvasize",
1482 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1483 "buffers"),
1484 NULL, 0, &amountpipekva, 0,
1485 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1486 }
1487