sys_pipe.c revision 1.103.2.1 1 /* $NetBSD: sys_pipe.c,v 1.103.2.1 2009/03/03 18:32:56 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.103.2.1 2009/03/03 18:32:56 skrll Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 #include <uvm/uvm.h>
96
97 /* Use this define if you want to disable *fancy* VM things. */
98 /* XXX Disabled for now; rare hangs switching between direct/buffered */
99 #define PIPE_NODIRECT
100
101 /*
102 * interfaces to the outside world
103 */
104 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
105 kauth_cred_t cred, int flags);
106 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
107 kauth_cred_t cred, int flags);
108 static int pipe_close(struct file *fp);
109 static int pipe_poll(struct file *fp, int events);
110 static int pipe_kqfilter(struct file *fp, struct knote *kn);
111 static int pipe_stat(struct file *fp, struct stat *sb);
112 static int pipe_ioctl(struct file *fp, u_long cmd, void *data);
113
114 static const struct fileops pipeops = {
115 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
116 pipe_stat, pipe_close, pipe_kqfilter
117 };
118
119 /*
120 * Default pipe buffer size(s), this can be kind-of large now because pipe
121 * space is pageable. The pipe code will try to maintain locality of
122 * reference for performance reasons, so small amounts of outstanding I/O
123 * will not wipe the cache.
124 */
125 #define MINPIPESIZE (PIPE_SIZE/3)
126 #define MAXPIPESIZE (2*PIPE_SIZE/3)
127
128 /*
129 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
130 * is there so that on large systems, we don't exhaust it.
131 */
132 #define MAXPIPEKVA (8*1024*1024)
133 static u_int maxpipekva = MAXPIPEKVA;
134
135 /*
136 * Limit for direct transfers, we cannot, of course limit
137 * the amount of kva for pipes in general though.
138 */
139 #define LIMITPIPEKVA (16*1024*1024)
140 static u_int limitpipekva = LIMITPIPEKVA;
141
142 /*
143 * Limit the number of "big" pipes
144 */
145 #define LIMITBIGPIPES 32
146 static u_int maxbigpipes = LIMITBIGPIPES;
147 static u_int nbigpipe = 0;
148
149 /*
150 * Amount of KVA consumed by pipe buffers.
151 */
152 static u_int amountpipekva = 0;
153
154 static void pipeclose(struct file *fp, struct pipe *pipe);
155 static void pipe_free_kmem(struct pipe *pipe);
156 static int pipe_create(struct pipe **pipep, pool_cache_t, kmutex_t *);
157 static int pipelock(struct pipe *pipe, int catch);
158 static inline void pipeunlock(struct pipe *pipe);
159 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
160 #ifndef PIPE_NODIRECT
161 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
162 struct uio *uio);
163 #endif
164 static int pipespace(struct pipe *pipe, int size);
165 static int pipe_ctor(void *, void *, int);
166 static void pipe_dtor(void *, void *);
167
168 #ifndef PIPE_NODIRECT
169 static int pipe_loan_alloc(struct pipe *, int);
170 static void pipe_loan_free(struct pipe *);
171 #endif /* PIPE_NODIRECT */
172
173 static pool_cache_t pipe_wr_cache;
174 static pool_cache_t pipe_rd_cache;
175
176 void
177 pipe_init(void)
178 {
179
180 /* Writer side is not automatically allocated KVA. */
181 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
182 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
183 KASSERT(pipe_wr_cache != NULL);
184
185 /* Reader side gets preallocated KVA. */
186 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
187 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
188 KASSERT(pipe_rd_cache != NULL);
189 }
190
191 static int
192 pipe_ctor(void *arg, void *obj, int flags)
193 {
194 struct pipe *pipe;
195 vaddr_t va;
196
197 pipe = obj;
198
199 memset(pipe, 0, sizeof(struct pipe));
200 if (arg != NULL) {
201 /* Preallocate space. */
202 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
203 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
204 KASSERT(va != 0);
205 pipe->pipe_kmem = va;
206 atomic_add_int(&amountpipekva, PIPE_SIZE);
207 }
208 cv_init(&pipe->pipe_rcv, "piperd");
209 cv_init(&pipe->pipe_wcv, "pipewr");
210 cv_init(&pipe->pipe_draincv, "pipedrain");
211 cv_init(&pipe->pipe_lkcv, "pipelk");
212 selinit(&pipe->pipe_sel);
213 pipe->pipe_state = PIPE_SIGNALR;
214
215 return 0;
216 }
217
218 static void
219 pipe_dtor(void *arg, void *obj)
220 {
221 struct pipe *pipe;
222
223 pipe = obj;
224
225 cv_destroy(&pipe->pipe_rcv);
226 cv_destroy(&pipe->pipe_wcv);
227 cv_destroy(&pipe->pipe_draincv);
228 cv_destroy(&pipe->pipe_lkcv);
229 seldestroy(&pipe->pipe_sel);
230 if (pipe->pipe_kmem != 0) {
231 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
232 UVM_KMF_PAGEABLE);
233 atomic_add_int(&amountpipekva, -PIPE_SIZE);
234 }
235 }
236
237 /*
238 * The pipe system call for the DTYPE_PIPE type of pipes
239 */
240
241 /* ARGSUSED */
242 int
243 sys_pipe(struct lwp *l, const void *v, register_t *retval)
244 {
245 struct file *rf, *wf;
246 struct pipe *rpipe, *wpipe;
247 kmutex_t *mutex;
248 int fd, error;
249 proc_t *p;
250
251 p = curproc;
252 rpipe = wpipe = NULL;
253 mutex = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
254 if (mutex == NULL)
255 return (ENOMEM);
256 mutex_obj_hold(mutex);
257 if (pipe_create(&rpipe, pipe_rd_cache, mutex) ||
258 pipe_create(&wpipe, pipe_wr_cache, mutex)) {
259 pipeclose(NULL, rpipe);
260 pipeclose(NULL, wpipe);
261 return (ENFILE);
262 }
263
264 error = fd_allocfile(&rf, &fd);
265 if (error)
266 goto free2;
267 retval[0] = fd;
268 rf->f_flag = FREAD;
269 rf->f_type = DTYPE_PIPE;
270 rf->f_data = (void *)rpipe;
271 rf->f_ops = &pipeops;
272
273 error = fd_allocfile(&wf, &fd);
274 if (error)
275 goto free3;
276 retval[1] = fd;
277 wf->f_flag = FWRITE;
278 wf->f_type = DTYPE_PIPE;
279 wf->f_data = (void *)wpipe;
280 wf->f_ops = &pipeops;
281
282 rpipe->pipe_peer = wpipe;
283 wpipe->pipe_peer = rpipe;
284
285 fd_affix(p, rf, (int)retval[0]);
286 fd_affix(p, wf, (int)retval[1]);
287 return (0);
288 free3:
289 fd_abort(p, rf, (int)retval[0]);
290 free2:
291 pipeclose(NULL, wpipe);
292 pipeclose(NULL, rpipe);
293
294 return (error);
295 }
296
297 /*
298 * Allocate kva for pipe circular buffer, the space is pageable
299 * This routine will 'realloc' the size of a pipe safely, if it fails
300 * it will retain the old buffer.
301 * If it fails it will return ENOMEM.
302 */
303 static int
304 pipespace(struct pipe *pipe, int size)
305 {
306 void *buffer;
307
308 /*
309 * Allocate pageable virtual address space. Physical memory is
310 * allocated on demand.
311 */
312 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
313 buffer = (void *)pipe->pipe_kmem;
314 } else {
315 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
316 0, UVM_KMF_PAGEABLE);
317 if (buffer == NULL)
318 return (ENOMEM);
319 atomic_add_int(&amountpipekva, size);
320 }
321
322 /* free old resources if we're resizing */
323 pipe_free_kmem(pipe);
324 pipe->pipe_buffer.buffer = buffer;
325 pipe->pipe_buffer.size = size;
326 pipe->pipe_buffer.in = 0;
327 pipe->pipe_buffer.out = 0;
328 pipe->pipe_buffer.cnt = 0;
329 return (0);
330 }
331
332 /*
333 * Initialize and allocate VM and memory for pipe.
334 */
335 static int
336 pipe_create(struct pipe **pipep, pool_cache_t cache, kmutex_t *mutex)
337 {
338 struct pipe *pipe;
339 int error;
340
341 pipe = pool_cache_get(cache, PR_WAITOK);
342 KASSERT(pipe != NULL);
343 *pipep = pipe;
344 error = 0;
345 getmicrotime(&pipe->pipe_ctime);
346 pipe->pipe_atime = pipe->pipe_ctime;
347 pipe->pipe_mtime = pipe->pipe_ctime;
348 pipe->pipe_lock = mutex;
349 if (cache == pipe_rd_cache) {
350 error = pipespace(pipe, PIPE_SIZE);
351 } else {
352 pipe->pipe_buffer.buffer = NULL;
353 pipe->pipe_buffer.size = 0;
354 pipe->pipe_buffer.in = 0;
355 pipe->pipe_buffer.out = 0;
356 pipe->pipe_buffer.cnt = 0;
357 }
358 return error;
359 }
360
361 /*
362 * Lock a pipe for I/O, blocking other access
363 * Called with pipe spin lock held.
364 * Return with pipe spin lock released on success.
365 */
366 static int
367 pipelock(struct pipe *pipe, int catch)
368 {
369 int error;
370
371 KASSERT(mutex_owned(pipe->pipe_lock));
372
373 while (pipe->pipe_state & PIPE_LOCKFL) {
374 pipe->pipe_state |= PIPE_LWANT;
375 if (catch) {
376 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
377 if (error != 0)
378 return error;
379 } else
380 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
381 }
382
383 pipe->pipe_state |= PIPE_LOCKFL;
384
385 return 0;
386 }
387
388 /*
389 * unlock a pipe I/O lock
390 */
391 static inline void
392 pipeunlock(struct pipe *pipe)
393 {
394
395 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
396
397 pipe->pipe_state &= ~PIPE_LOCKFL;
398 if (pipe->pipe_state & PIPE_LWANT) {
399 pipe->pipe_state &= ~PIPE_LWANT;
400 cv_broadcast(&pipe->pipe_lkcv);
401 }
402 }
403
404 /*
405 * Select/poll wakup. This also sends SIGIO to peer connected to
406 * 'sigpipe' side of pipe.
407 */
408 static void
409 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
410 {
411 int band;
412
413 switch (code) {
414 case POLL_IN:
415 band = POLLIN|POLLRDNORM;
416 break;
417 case POLL_OUT:
418 band = POLLOUT|POLLWRNORM;
419 break;
420 case POLL_HUP:
421 band = POLLHUP;
422 break;
423 case POLL_ERR:
424 band = POLLERR;
425 break;
426 default:
427 band = 0;
428 #ifdef DIAGNOSTIC
429 printf("bad siginfo code %d in pipe notification.\n", code);
430 #endif
431 break;
432 }
433
434 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
435
436 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
437 return;
438
439 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
440 }
441
442 /* ARGSUSED */
443 static int
444 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
445 int flags)
446 {
447 struct pipe *rpipe = (struct pipe *) fp->f_data;
448 struct pipebuf *bp = &rpipe->pipe_buffer;
449 kmutex_t *lock = rpipe->pipe_lock;
450 int error;
451 size_t nread = 0;
452 size_t size;
453 size_t ocnt;
454
455 mutex_enter(lock);
456 ++rpipe->pipe_busy;
457 ocnt = bp->cnt;
458
459 again:
460 error = pipelock(rpipe, 1);
461 if (error)
462 goto unlocked_error;
463
464 while (uio->uio_resid) {
465 /*
466 * normal pipe buffer receive
467 */
468 if (bp->cnt > 0) {
469 size = bp->size - bp->out;
470 if (size > bp->cnt)
471 size = bp->cnt;
472 if (size > uio->uio_resid)
473 size = uio->uio_resid;
474
475 mutex_exit(lock);
476 error = uiomove((char *)bp->buffer + bp->out, size, uio);
477 mutex_enter(lock);
478 if (error)
479 break;
480
481 bp->out += size;
482 if (bp->out >= bp->size)
483 bp->out = 0;
484
485 bp->cnt -= size;
486
487 /*
488 * If there is no more to read in the pipe, reset
489 * its pointers to the beginning. This improves
490 * cache hit stats.
491 */
492 if (bp->cnt == 0) {
493 bp->in = 0;
494 bp->out = 0;
495 }
496 nread += size;
497 continue;
498 }
499
500 #ifndef PIPE_NODIRECT
501 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
502 /*
503 * Direct copy, bypassing a kernel buffer.
504 */
505 void * va;
506
507 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
508
509 size = rpipe->pipe_map.cnt;
510 if (size > uio->uio_resid)
511 size = uio->uio_resid;
512
513 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
514 mutex_exit(lock);
515 error = uiomove(va, size, uio);
516 mutex_enter(lock);
517 if (error)
518 break;
519 nread += size;
520 rpipe->pipe_map.pos += size;
521 rpipe->pipe_map.cnt -= size;
522 if (rpipe->pipe_map.cnt == 0) {
523 rpipe->pipe_state &= ~PIPE_DIRECTR;
524 cv_broadcast(&rpipe->pipe_wcv);
525 }
526 continue;
527 }
528 #endif
529 /*
530 * Break if some data was read.
531 */
532 if (nread > 0)
533 break;
534
535 /*
536 * detect EOF condition
537 * read returns 0 on EOF, no need to set error
538 */
539 if (rpipe->pipe_state & PIPE_EOF)
540 break;
541
542 /*
543 * don't block on non-blocking I/O
544 */
545 if (fp->f_flag & FNONBLOCK) {
546 error = EAGAIN;
547 break;
548 }
549
550 /*
551 * Unlock the pipe buffer for our remaining processing.
552 * We will either break out with an error or we will
553 * sleep and relock to loop.
554 */
555 pipeunlock(rpipe);
556
557 /*
558 * Re-check to see if more direct writes are pending.
559 */
560 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
561 goto again;
562
563 /*
564 * We want to read more, wake up select/poll.
565 */
566 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
567
568 /*
569 * If the "write-side" is blocked, wake it up now.
570 */
571 cv_broadcast(&rpipe->pipe_wcv);
572
573 /* Now wait until the pipe is filled */
574 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
575 if (error != 0)
576 goto unlocked_error;
577 goto again;
578 }
579
580 if (error == 0)
581 getmicrotime(&rpipe->pipe_atime);
582 pipeunlock(rpipe);
583
584 unlocked_error:
585 --rpipe->pipe_busy;
586 if (rpipe->pipe_busy == 0) {
587 cv_broadcast(&rpipe->pipe_draincv);
588 }
589 if (bp->cnt < MINPIPESIZE) {
590 cv_broadcast(&rpipe->pipe_wcv);
591 }
592
593 /*
594 * If anything was read off the buffer, signal to the writer it's
595 * possible to write more data. Also send signal if we are here for the
596 * first time after last write.
597 */
598 if ((bp->size - bp->cnt) >= PIPE_BUF
599 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
600 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
601 rpipe->pipe_state &= ~PIPE_SIGNALR;
602 }
603
604 mutex_exit(lock);
605 return (error);
606 }
607
608 #ifndef PIPE_NODIRECT
609 /*
610 * Allocate structure for loan transfer.
611 */
612 static int
613 pipe_loan_alloc(struct pipe *wpipe, int npages)
614 {
615 vsize_t len;
616
617 len = (vsize_t)npages << PAGE_SHIFT;
618 atomic_add_int(&amountpipekva, len);
619 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
620 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
621 if (wpipe->pipe_map.kva == 0) {
622 atomic_add_int(&amountpipekva, -len);
623 return (ENOMEM);
624 }
625
626 wpipe->pipe_map.npages = npages;
627 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
628 KM_SLEEP);
629 return (0);
630 }
631
632 /*
633 * Free resources allocated for loan transfer.
634 */
635 static void
636 pipe_loan_free(struct pipe *wpipe)
637 {
638 vsize_t len;
639
640 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
641 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
642 wpipe->pipe_map.kva = 0;
643 atomic_add_int(&amountpipekva, -len);
644 kmem_free(wpipe->pipe_map.pgs,
645 wpipe->pipe_map.npages * sizeof(struct vm_page *));
646 wpipe->pipe_map.pgs = NULL;
647 }
648
649 /*
650 * NetBSD direct write, using uvm_loan() mechanism.
651 * This implements the pipe buffer write mechanism. Note that only
652 * a direct write OR a normal pipe write can be pending at any given time.
653 * If there are any characters in the pipe buffer, the direct write will
654 * be deferred until the receiving process grabs all of the bytes from
655 * the pipe buffer. Then the direct mapping write is set-up.
656 *
657 * Called with the long-term pipe lock held.
658 */
659 static int
660 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
661 {
662 int error, npages, j;
663 struct vm_page **pgs;
664 vaddr_t bbase, kva, base, bend;
665 vsize_t blen, bcnt;
666 voff_t bpos;
667 kmutex_t *lock = wpipe->pipe_lock;
668
669 KASSERT(mutex_owned(wpipe->pipe_lock));
670 KASSERT(wpipe->pipe_map.cnt == 0);
671
672 mutex_exit(lock);
673
674 /*
675 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
676 * not aligned to PAGE_SIZE.
677 */
678 bbase = (vaddr_t)uio->uio_iov->iov_base;
679 base = trunc_page(bbase);
680 bend = round_page(bbase + uio->uio_iov->iov_len);
681 blen = bend - base;
682 bpos = bbase - base;
683
684 if (blen > PIPE_DIRECT_CHUNK) {
685 blen = PIPE_DIRECT_CHUNK;
686 bend = base + blen;
687 bcnt = PIPE_DIRECT_CHUNK - bpos;
688 } else {
689 bcnt = uio->uio_iov->iov_len;
690 }
691 npages = blen >> PAGE_SHIFT;
692
693 /*
694 * Free the old kva if we need more pages than we have
695 * allocated.
696 */
697 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
698 pipe_loan_free(wpipe);
699
700 /* Allocate new kva. */
701 if (wpipe->pipe_map.kva == 0) {
702 error = pipe_loan_alloc(wpipe, npages);
703 if (error) {
704 mutex_enter(lock);
705 return (error);
706 }
707 }
708
709 /* Loan the write buffer memory from writer process */
710 pgs = wpipe->pipe_map.pgs;
711 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
712 pgs, UVM_LOAN_TOPAGE);
713 if (error) {
714 pipe_loan_free(wpipe);
715 mutex_enter(lock);
716 return (ENOMEM); /* so that caller fallback to ordinary write */
717 }
718
719 /* Enter the loaned pages to kva */
720 kva = wpipe->pipe_map.kva;
721 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
722 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
723 }
724 pmap_update(pmap_kernel());
725
726 /* Now we can put the pipe in direct write mode */
727 wpipe->pipe_map.pos = bpos;
728 wpipe->pipe_map.cnt = bcnt;
729
730 /*
731 * But before we can let someone do a direct read, we
732 * have to wait until the pipe is drained. Release the
733 * pipe lock while we wait.
734 */
735 mutex_enter(lock);
736 wpipe->pipe_state |= PIPE_DIRECTW;
737 pipeunlock(wpipe);
738
739 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
740 cv_broadcast(&wpipe->pipe_rcv);
741 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
742 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
743 error = EPIPE;
744 }
745
746 /* Pipe is drained; next read will off the direct buffer */
747 wpipe->pipe_state |= PIPE_DIRECTR;
748
749 /* Wait until the reader is done */
750 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
751 cv_broadcast(&wpipe->pipe_rcv);
752 pipeselwakeup(wpipe, wpipe, POLL_IN);
753 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
754 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
755 error = EPIPE;
756 }
757
758 /* Take pipe out of direct write mode */
759 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
760
761 /* Acquire the pipe lock and cleanup */
762 (void)pipelock(wpipe, 0);
763 mutex_exit(lock);
764
765 if (pgs != NULL) {
766 pmap_kremove(wpipe->pipe_map.kva, blen);
767 pmap_update(pmap_kernel());
768 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
769 }
770 if (error || amountpipekva > maxpipekva)
771 pipe_loan_free(wpipe);
772
773 mutex_enter(lock);
774 if (error) {
775 pipeselwakeup(wpipe, wpipe, POLL_ERR);
776
777 /*
778 * If nothing was read from what we offered, return error
779 * straight on. Otherwise update uio resid first. Caller
780 * will deal with the error condition, returning short
781 * write, error, or restarting the write(2) as appropriate.
782 */
783 if (wpipe->pipe_map.cnt == bcnt) {
784 wpipe->pipe_map.cnt = 0;
785 cv_broadcast(&wpipe->pipe_wcv);
786 return (error);
787 }
788
789 bcnt -= wpipe->pipe_map.cnt;
790 }
791
792 uio->uio_resid -= bcnt;
793 /* uio_offset not updated, not set/used for write(2) */
794 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
795 uio->uio_iov->iov_len -= bcnt;
796 if (uio->uio_iov->iov_len == 0) {
797 uio->uio_iov++;
798 uio->uio_iovcnt--;
799 }
800
801 wpipe->pipe_map.cnt = 0;
802 return (error);
803 }
804 #endif /* !PIPE_NODIRECT */
805
806 static int
807 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
808 int flags)
809 {
810 struct pipe *wpipe, *rpipe;
811 struct pipebuf *bp;
812 kmutex_t *lock;
813 int error;
814
815 /* We want to write to our peer */
816 rpipe = (struct pipe *) fp->f_data;
817 lock = rpipe->pipe_lock;
818 error = 0;
819
820 mutex_enter(lock);
821 wpipe = rpipe->pipe_peer;
822
823 /*
824 * Detect loss of pipe read side, issue SIGPIPE if lost.
825 */
826 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
827 mutex_exit(lock);
828 return EPIPE;
829 }
830 ++wpipe->pipe_busy;
831
832 /* Aquire the long-term pipe lock */
833 if ((error = pipelock(wpipe, 1)) != 0) {
834 --wpipe->pipe_busy;
835 if (wpipe->pipe_busy == 0) {
836 cv_broadcast(&wpipe->pipe_draincv);
837 }
838 mutex_exit(lock);
839 return (error);
840 }
841
842 bp = &wpipe->pipe_buffer;
843
844 /*
845 * If it is advantageous to resize the pipe buffer, do so.
846 */
847 if ((uio->uio_resid > PIPE_SIZE) &&
848 (nbigpipe < maxbigpipes) &&
849 #ifndef PIPE_NODIRECT
850 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
851 #endif
852 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
853
854 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
855 atomic_inc_uint(&nbigpipe);
856 }
857
858 while (uio->uio_resid) {
859 size_t space;
860
861 #ifndef PIPE_NODIRECT
862 /*
863 * Pipe buffered writes cannot be coincidental with
864 * direct writes. Also, only one direct write can be
865 * in progress at any one time. We wait until the currently
866 * executing direct write is completed before continuing.
867 *
868 * We break out if a signal occurs or the reader goes away.
869 */
870 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
871 cv_broadcast(&wpipe->pipe_rcv);
872 pipeunlock(wpipe);
873 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
874 (void)pipelock(wpipe, 0);
875 if (wpipe->pipe_state & PIPE_EOF)
876 error = EPIPE;
877 }
878 if (error)
879 break;
880
881 /*
882 * If the transfer is large, we can gain performance if
883 * we do process-to-process copies directly.
884 * If the write is non-blocking, we don't use the
885 * direct write mechanism.
886 *
887 * The direct write mechanism will detect the reader going
888 * away on us.
889 */
890 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
891 (fp->f_flag & FNONBLOCK) == 0 &&
892 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
893 error = pipe_direct_write(fp, wpipe, uio);
894
895 /*
896 * Break out if error occurred, unless it's ENOMEM.
897 * ENOMEM means we failed to allocate some resources
898 * for direct write, so we just fallback to ordinary
899 * write. If the direct write was successful,
900 * process rest of data via ordinary write.
901 */
902 if (error == 0)
903 continue;
904
905 if (error != ENOMEM)
906 break;
907 }
908 #endif /* PIPE_NODIRECT */
909
910 space = bp->size - bp->cnt;
911
912 /* Writes of size <= PIPE_BUF must be atomic. */
913 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
914 space = 0;
915
916 if (space > 0) {
917 int size; /* Transfer size */
918 int segsize; /* first segment to transfer */
919
920 /*
921 * Transfer size is minimum of uio transfer
922 * and free space in pipe buffer.
923 */
924 if (space > uio->uio_resid)
925 size = uio->uio_resid;
926 else
927 size = space;
928 /*
929 * First segment to transfer is minimum of
930 * transfer size and contiguous space in
931 * pipe buffer. If first segment to transfer
932 * is less than the transfer size, we've got
933 * a wraparound in the buffer.
934 */
935 segsize = bp->size - bp->in;
936 if (segsize > size)
937 segsize = size;
938
939 /* Transfer first segment */
940 mutex_exit(lock);
941 error = uiomove((char *)bp->buffer + bp->in, segsize,
942 uio);
943
944 if (error == 0 && segsize < size) {
945 /*
946 * Transfer remaining part now, to
947 * support atomic writes. Wraparound
948 * happened.
949 */
950 #ifdef DEBUG
951 if (bp->in + segsize != bp->size)
952 panic("Expected pipe buffer wraparound disappeared");
953 #endif
954
955 error = uiomove(bp->buffer,
956 size - segsize, uio);
957 }
958 mutex_enter(lock);
959 if (error)
960 break;
961
962 bp->in += size;
963 if (bp->in >= bp->size) {
964 #ifdef DEBUG
965 if (bp->in != size - segsize + bp->size)
966 panic("Expected wraparound bad");
967 #endif
968 bp->in = size - segsize;
969 }
970
971 bp->cnt += size;
972 #ifdef DEBUG
973 if (bp->cnt > bp->size)
974 panic("Pipe buffer overflow");
975 #endif
976 } else {
977 /*
978 * If the "read-side" has been blocked, wake it up now.
979 */
980 cv_broadcast(&wpipe->pipe_rcv);
981
982 /*
983 * don't block on non-blocking I/O
984 */
985 if (fp->f_flag & FNONBLOCK) {
986 error = EAGAIN;
987 break;
988 }
989
990 /*
991 * We have no more space and have something to offer,
992 * wake up select/poll.
993 */
994 if (bp->cnt)
995 pipeselwakeup(wpipe, wpipe, POLL_IN);
996
997 pipeunlock(wpipe);
998 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
999 (void)pipelock(wpipe, 0);
1000 if (error != 0)
1001 break;
1002 /*
1003 * If read side wants to go away, we just issue a signal
1004 * to ourselves.
1005 */
1006 if (wpipe->pipe_state & PIPE_EOF) {
1007 error = EPIPE;
1008 break;
1009 }
1010 }
1011 }
1012
1013 --wpipe->pipe_busy;
1014 if (wpipe->pipe_busy == 0) {
1015 cv_broadcast(&wpipe->pipe_draincv);
1016 }
1017 if (bp->cnt > 0) {
1018 cv_broadcast(&wpipe->pipe_rcv);
1019 }
1020
1021 /*
1022 * Don't return EPIPE if I/O was successful
1023 */
1024 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1025 error = 0;
1026
1027 if (error == 0)
1028 getmicrotime(&wpipe->pipe_mtime);
1029
1030 /*
1031 * We have something to offer, wake up select/poll.
1032 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1033 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1034 */
1035 if (bp->cnt)
1036 pipeselwakeup(wpipe, wpipe, POLL_IN);
1037
1038 /*
1039 * Arrange for next read(2) to do a signal.
1040 */
1041 wpipe->pipe_state |= PIPE_SIGNALR;
1042
1043 pipeunlock(wpipe);
1044 mutex_exit(lock);
1045 return (error);
1046 }
1047
1048 /*
1049 * we implement a very minimal set of ioctls for compatibility with sockets.
1050 */
1051 int
1052 pipe_ioctl(struct file *fp, u_long cmd, void *data)
1053 {
1054 struct pipe *pipe = fp->f_data;
1055 kmutex_t *lock = pipe->pipe_lock;
1056
1057 switch (cmd) {
1058
1059 case FIONBIO:
1060 return (0);
1061
1062 case FIOASYNC:
1063 mutex_enter(lock);
1064 if (*(int *)data) {
1065 pipe->pipe_state |= PIPE_ASYNC;
1066 } else {
1067 pipe->pipe_state &= ~PIPE_ASYNC;
1068 }
1069 mutex_exit(lock);
1070 return (0);
1071
1072 case FIONREAD:
1073 mutex_enter(lock);
1074 #ifndef PIPE_NODIRECT
1075 if (pipe->pipe_state & PIPE_DIRECTW)
1076 *(int *)data = pipe->pipe_map.cnt;
1077 else
1078 #endif
1079 *(int *)data = pipe->pipe_buffer.cnt;
1080 mutex_exit(lock);
1081 return (0);
1082
1083 case FIONWRITE:
1084 /* Look at other side */
1085 pipe = pipe->pipe_peer;
1086 mutex_enter(lock);
1087 #ifndef PIPE_NODIRECT
1088 if (pipe->pipe_state & PIPE_DIRECTW)
1089 *(int *)data = pipe->pipe_map.cnt;
1090 else
1091 #endif
1092 *(int *)data = pipe->pipe_buffer.cnt;
1093 mutex_exit(lock);
1094 return (0);
1095
1096 case FIONSPACE:
1097 /* Look at other side */
1098 pipe = pipe->pipe_peer;
1099 mutex_enter(lock);
1100 #ifndef PIPE_NODIRECT
1101 /*
1102 * If we're in direct-mode, we don't really have a
1103 * send queue, and any other write will block. Thus
1104 * zero seems like the best answer.
1105 */
1106 if (pipe->pipe_state & PIPE_DIRECTW)
1107 *(int *)data = 0;
1108 else
1109 #endif
1110 *(int *)data = pipe->pipe_buffer.size -
1111 pipe->pipe_buffer.cnt;
1112 mutex_exit(lock);
1113 return (0);
1114
1115 case TIOCSPGRP:
1116 case FIOSETOWN:
1117 return fsetown(&pipe->pipe_pgid, cmd, data);
1118
1119 case TIOCGPGRP:
1120 case FIOGETOWN:
1121 return fgetown(pipe->pipe_pgid, cmd, data);
1122
1123 }
1124 return (EPASSTHROUGH);
1125 }
1126
1127 int
1128 pipe_poll(struct file *fp, int events)
1129 {
1130 struct pipe *rpipe = fp->f_data;
1131 struct pipe *wpipe;
1132 int eof = 0;
1133 int revents = 0;
1134
1135 mutex_enter(rpipe->pipe_lock);
1136 wpipe = rpipe->pipe_peer;
1137
1138 if (events & (POLLIN | POLLRDNORM))
1139 if ((rpipe->pipe_buffer.cnt > 0) ||
1140 #ifndef PIPE_NODIRECT
1141 (rpipe->pipe_state & PIPE_DIRECTR) ||
1142 #endif
1143 (rpipe->pipe_state & PIPE_EOF))
1144 revents |= events & (POLLIN | POLLRDNORM);
1145
1146 eof |= (rpipe->pipe_state & PIPE_EOF);
1147
1148 if (wpipe == NULL)
1149 revents |= events & (POLLOUT | POLLWRNORM);
1150 else {
1151 if (events & (POLLOUT | POLLWRNORM))
1152 if ((wpipe->pipe_state & PIPE_EOF) || (
1153 #ifndef PIPE_NODIRECT
1154 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1155 #endif
1156 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1157 revents |= events & (POLLOUT | POLLWRNORM);
1158
1159 eof |= (wpipe->pipe_state & PIPE_EOF);
1160 }
1161
1162 if (wpipe == NULL || eof)
1163 revents |= POLLHUP;
1164
1165 if (revents == 0) {
1166 if (events & (POLLIN | POLLRDNORM))
1167 selrecord(curlwp, &rpipe->pipe_sel);
1168
1169 if (events & (POLLOUT | POLLWRNORM))
1170 selrecord(curlwp, &wpipe->pipe_sel);
1171 }
1172 mutex_exit(rpipe->pipe_lock);
1173
1174 return (revents);
1175 }
1176
1177 static int
1178 pipe_stat(struct file *fp, struct stat *ub)
1179 {
1180 struct pipe *pipe = fp->f_data;
1181
1182 memset((void *)ub, 0, sizeof(*ub));
1183 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1184 ub->st_blksize = pipe->pipe_buffer.size;
1185 if (ub->st_blksize == 0 && pipe->pipe_peer)
1186 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1187 ub->st_size = pipe->pipe_buffer.cnt;
1188 ub->st_blocks = (ub->st_size) ? 1 : 0;
1189 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1190 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1191 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1192 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1193 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1194
1195 /*
1196 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1197 * XXX (st_dev, st_ino) should be unique.
1198 */
1199 return (0);
1200 }
1201
1202 /* ARGSUSED */
1203 static int
1204 pipe_close(struct file *fp)
1205 {
1206 struct pipe *pipe = fp->f_data;
1207
1208 fp->f_data = NULL;
1209 pipeclose(fp, pipe);
1210 return (0);
1211 }
1212
1213 static void
1214 pipe_free_kmem(struct pipe *pipe)
1215 {
1216
1217 if (pipe->pipe_buffer.buffer != NULL) {
1218 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1219 atomic_dec_uint(&nbigpipe);
1220 }
1221 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1222 uvm_km_free(kernel_map,
1223 (vaddr_t)pipe->pipe_buffer.buffer,
1224 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1225 atomic_add_int(&amountpipekva,
1226 -pipe->pipe_buffer.size);
1227 }
1228 pipe->pipe_buffer.buffer = NULL;
1229 }
1230 #ifndef PIPE_NODIRECT
1231 if (pipe->pipe_map.kva != 0) {
1232 pipe_loan_free(pipe);
1233 pipe->pipe_map.cnt = 0;
1234 pipe->pipe_map.kva = 0;
1235 pipe->pipe_map.pos = 0;
1236 pipe->pipe_map.npages = 0;
1237 }
1238 #endif /* !PIPE_NODIRECT */
1239 }
1240
1241 /*
1242 * shutdown the pipe
1243 */
1244 static void
1245 pipeclose(struct file *fp, struct pipe *pipe)
1246 {
1247 kmutex_t *lock;
1248 struct pipe *ppipe;
1249
1250 if (pipe == NULL)
1251 return;
1252
1253 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1254 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1255 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1256 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1257
1258 lock = pipe->pipe_lock;
1259 mutex_enter(lock);
1260 pipeselwakeup(pipe, pipe, POLL_HUP);
1261
1262 /*
1263 * If the other side is blocked, wake it up saying that
1264 * we want to close it down.
1265 */
1266 pipe->pipe_state |= PIPE_EOF;
1267 if (pipe->pipe_busy) {
1268 while (pipe->pipe_busy) {
1269 cv_broadcast(&pipe->pipe_wcv);
1270 cv_wait_sig(&pipe->pipe_draincv, lock);
1271 }
1272 }
1273
1274 /*
1275 * Disconnect from peer
1276 */
1277 if ((ppipe = pipe->pipe_peer) != NULL) {
1278 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1279 ppipe->pipe_state |= PIPE_EOF;
1280 cv_broadcast(&ppipe->pipe_rcv);
1281 ppipe->pipe_peer = NULL;
1282 }
1283
1284 /*
1285 * Any knote objects still left in the list are
1286 * the one attached by peer. Since no one will
1287 * traverse this list, we just clear it.
1288 */
1289 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1290
1291 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1292 mutex_exit(lock);
1293
1294 /*
1295 * free resources
1296 */
1297 pipe->pipe_pgid = 0;
1298 pipe->pipe_state = PIPE_SIGNALR;
1299 pipe_free_kmem(pipe);
1300 if (pipe->pipe_kmem != 0) {
1301 pool_cache_put(pipe_rd_cache, pipe);
1302 } else {
1303 pool_cache_put(pipe_wr_cache, pipe);
1304 }
1305 mutex_obj_free(lock);
1306 }
1307
1308 static void
1309 filt_pipedetach(struct knote *kn)
1310 {
1311 struct pipe *pipe;
1312 kmutex_t *lock;
1313
1314 pipe = ((file_t *)kn->kn_obj)->f_data;
1315 lock = pipe->pipe_lock;
1316
1317 mutex_enter(lock);
1318
1319 switch(kn->kn_filter) {
1320 case EVFILT_WRITE:
1321 /* need the peer structure, not our own */
1322 pipe = pipe->pipe_peer;
1323
1324 /* if reader end already closed, just return */
1325 if (pipe == NULL) {
1326 mutex_exit(lock);
1327 return;
1328 }
1329
1330 break;
1331 default:
1332 /* nothing to do */
1333 break;
1334 }
1335
1336 #ifdef DIAGNOSTIC
1337 if (kn->kn_hook != pipe)
1338 panic("filt_pipedetach: inconsistent knote");
1339 #endif
1340
1341 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1342 mutex_exit(lock);
1343 }
1344
1345 /*ARGSUSED*/
1346 static int
1347 filt_piperead(struct knote *kn, long hint)
1348 {
1349 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1350 struct pipe *wpipe;
1351
1352 if ((hint & NOTE_SUBMIT) == 0) {
1353 mutex_enter(rpipe->pipe_lock);
1354 }
1355 wpipe = rpipe->pipe_peer;
1356 kn->kn_data = rpipe->pipe_buffer.cnt;
1357
1358 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1359 kn->kn_data = rpipe->pipe_map.cnt;
1360
1361 if ((rpipe->pipe_state & PIPE_EOF) ||
1362 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1363 kn->kn_flags |= EV_EOF;
1364 if ((hint & NOTE_SUBMIT) == 0) {
1365 mutex_exit(rpipe->pipe_lock);
1366 }
1367 return (1);
1368 }
1369
1370 if ((hint & NOTE_SUBMIT) == 0) {
1371 mutex_exit(rpipe->pipe_lock);
1372 }
1373 return (kn->kn_data > 0);
1374 }
1375
1376 /*ARGSUSED*/
1377 static int
1378 filt_pipewrite(struct knote *kn, long hint)
1379 {
1380 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1381 struct pipe *wpipe;
1382
1383 if ((hint & NOTE_SUBMIT) == 0) {
1384 mutex_enter(rpipe->pipe_lock);
1385 }
1386 wpipe = rpipe->pipe_peer;
1387
1388 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1389 kn->kn_data = 0;
1390 kn->kn_flags |= EV_EOF;
1391 if ((hint & NOTE_SUBMIT) == 0) {
1392 mutex_exit(rpipe->pipe_lock);
1393 }
1394 return (1);
1395 }
1396 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1397 if (wpipe->pipe_state & PIPE_DIRECTW)
1398 kn->kn_data = 0;
1399
1400 if ((hint & NOTE_SUBMIT) == 0) {
1401 mutex_exit(rpipe->pipe_lock);
1402 }
1403 return (kn->kn_data >= PIPE_BUF);
1404 }
1405
1406 static const struct filterops pipe_rfiltops =
1407 { 1, NULL, filt_pipedetach, filt_piperead };
1408 static const struct filterops pipe_wfiltops =
1409 { 1, NULL, filt_pipedetach, filt_pipewrite };
1410
1411 /*ARGSUSED*/
1412 static int
1413 pipe_kqfilter(struct file *fp, struct knote *kn)
1414 {
1415 struct pipe *pipe;
1416 kmutex_t *lock;
1417
1418 pipe = ((file_t *)kn->kn_obj)->f_data;
1419 lock = pipe->pipe_lock;
1420
1421 mutex_enter(lock);
1422
1423 switch (kn->kn_filter) {
1424 case EVFILT_READ:
1425 kn->kn_fop = &pipe_rfiltops;
1426 break;
1427 case EVFILT_WRITE:
1428 kn->kn_fop = &pipe_wfiltops;
1429 pipe = pipe->pipe_peer;
1430 if (pipe == NULL) {
1431 /* other end of pipe has been closed */
1432 mutex_exit(lock);
1433 return (EBADF);
1434 }
1435 break;
1436 default:
1437 mutex_exit(lock);
1438 return (EINVAL);
1439 }
1440
1441 kn->kn_hook = pipe;
1442 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1443 mutex_exit(lock);
1444
1445 return (0);
1446 }
1447
1448 /*
1449 * Handle pipe sysctls.
1450 */
1451 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1452 {
1453
1454 sysctl_createv(clog, 0, NULL, NULL,
1455 CTLFLAG_PERMANENT,
1456 CTLTYPE_NODE, "kern", NULL,
1457 NULL, 0, NULL, 0,
1458 CTL_KERN, CTL_EOL);
1459 sysctl_createv(clog, 0, NULL, NULL,
1460 CTLFLAG_PERMANENT,
1461 CTLTYPE_NODE, "pipe",
1462 SYSCTL_DESCR("Pipe settings"),
1463 NULL, 0, NULL, 0,
1464 CTL_KERN, KERN_PIPE, CTL_EOL);
1465
1466 sysctl_createv(clog, 0, NULL, NULL,
1467 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1468 CTLTYPE_INT, "maxkvasz",
1469 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1470 "used for pipes"),
1471 NULL, 0, &maxpipekva, 0,
1472 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1473 sysctl_createv(clog, 0, NULL, NULL,
1474 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1475 CTLTYPE_INT, "maxloankvasz",
1476 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1477 NULL, 0, &limitpipekva, 0,
1478 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1479 sysctl_createv(clog, 0, NULL, NULL,
1480 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1481 CTLTYPE_INT, "maxbigpipes",
1482 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1483 NULL, 0, &maxbigpipes, 0,
1484 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1485 sysctl_createv(clog, 0, NULL, NULL,
1486 CTLFLAG_PERMANENT,
1487 CTLTYPE_INT, "nbigpipes",
1488 SYSCTL_DESCR("Number of \"big\" pipes"),
1489 NULL, 0, &nbigpipe, 0,
1490 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1491 sysctl_createv(clog, 0, NULL, NULL,
1492 CTLFLAG_PERMANENT,
1493 CTLTYPE_INT, "kvasize",
1494 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1495 "buffers"),
1496 NULL, 0, &amountpipekva, 0,
1497 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1498 }
1499