sys_pipe.c revision 1.103.4.3 1 /* $NetBSD: sys_pipe.c,v 1.103.4.3 2009/02/24 02:36:34 snj Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.103.4.3 2009/02/24 02:36:34 snj Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 #include <uvm/uvm.h>
96
97 /* Use this define if you want to disable *fancy* VM things. */
98 /* XXX Disabled for now; rare hangs switching between direct/buffered */
99 #define PIPE_NODIRECT
100
101 /*
102 * interfaces to the outside world
103 */
104 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
105 kauth_cred_t cred, int flags);
106 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
107 kauth_cred_t cred, int flags);
108 static int pipe_close(struct file *fp);
109 static int pipe_poll(struct file *fp, int events);
110 static int pipe_kqfilter(struct file *fp, struct knote *kn);
111 static int pipe_stat(struct file *fp, struct stat *sb);
112 static int pipe_ioctl(struct file *fp, u_long cmd, void *data);
113
114 static const struct fileops pipeops = {
115 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
116 pipe_stat, pipe_close, pipe_kqfilter
117 };
118
119 /*
120 * Default pipe buffer size(s), this can be kind-of large now because pipe
121 * space is pageable. The pipe code will try to maintain locality of
122 * reference for performance reasons, so small amounts of outstanding I/O
123 * will not wipe the cache.
124 */
125 #define MINPIPESIZE (PIPE_SIZE/3)
126 #define MAXPIPESIZE (2*PIPE_SIZE/3)
127
128 /*
129 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
130 * is there so that on large systems, we don't exhaust it.
131 */
132 #define MAXPIPEKVA (8*1024*1024)
133 static u_int maxpipekva = MAXPIPEKVA;
134
135 /*
136 * Limit for direct transfers, we cannot, of course limit
137 * the amount of kva for pipes in general though.
138 */
139 #define LIMITPIPEKVA (16*1024*1024)
140 static u_int limitpipekva = LIMITPIPEKVA;
141
142 /*
143 * Limit the number of "big" pipes
144 */
145 #define LIMITBIGPIPES 32
146 static u_int maxbigpipes = LIMITBIGPIPES;
147 static u_int nbigpipe = 0;
148
149 /*
150 * Amount of KVA consumed by pipe buffers.
151 */
152 static u_int amountpipekva = 0;
153
154 static void pipeclose(struct file *fp, struct pipe *pipe);
155 static void pipe_free_kmem(struct pipe *pipe);
156 static int pipe_create(struct pipe **pipep, pool_cache_t, kmutex_t *);
157 static int pipelock(struct pipe *pipe, int catch);
158 static inline void pipeunlock(struct pipe *pipe);
159 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
160 #ifndef PIPE_NODIRECT
161 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
162 struct uio *uio);
163 #endif
164 static int pipespace(struct pipe *pipe, int size);
165 static int pipe_ctor(void *, void *, int);
166 static void pipe_dtor(void *, void *);
167
168 #ifndef PIPE_NODIRECT
169 static int pipe_loan_alloc(struct pipe *, int);
170 static void pipe_loan_free(struct pipe *);
171 #endif /* PIPE_NODIRECT */
172
173 static pool_cache_t pipe_wr_cache;
174 static pool_cache_t pipe_rd_cache;
175
176 void
177 pipe_init(void)
178 {
179
180 /* Writer side is not automatically allocated KVA. */
181 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
182 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
183 KASSERT(pipe_wr_cache != NULL);
184
185 /* Reader side gets preallocated KVA. */
186 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
187 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
188 KASSERT(pipe_rd_cache != NULL);
189 }
190
191 static int
192 pipe_ctor(void *arg, void *obj, int flags)
193 {
194 struct pipe *pipe;
195 vaddr_t va;
196
197 pipe = obj;
198
199 memset(pipe, 0, sizeof(struct pipe));
200 if (arg != NULL) {
201 /* Preallocate space. */
202 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
203 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
204 KASSERT(va != 0);
205 pipe->pipe_kmem = va;
206 atomic_add_int(&amountpipekva, PIPE_SIZE);
207 }
208 cv_init(&pipe->pipe_rcv, "piperd");
209 cv_init(&pipe->pipe_wcv, "pipewr");
210 cv_init(&pipe->pipe_draincv, "pipedrain");
211 cv_init(&pipe->pipe_lkcv, "pipelk");
212 selinit(&pipe->pipe_sel);
213 pipe->pipe_state = PIPE_SIGNALR;
214
215 return 0;
216 }
217
218 static void
219 pipe_dtor(void *arg, void *obj)
220 {
221 struct pipe *pipe;
222
223 pipe = obj;
224
225 cv_destroy(&pipe->pipe_rcv);
226 cv_destroy(&pipe->pipe_wcv);
227 cv_destroy(&pipe->pipe_draincv);
228 cv_destroy(&pipe->pipe_lkcv);
229 seldestroy(&pipe->pipe_sel);
230 if (pipe->pipe_kmem != 0) {
231 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
232 UVM_KMF_PAGEABLE);
233 atomic_add_int(&amountpipekva, -PIPE_SIZE);
234 }
235 }
236
237 /*
238 * The pipe system call for the DTYPE_PIPE type of pipes
239 */
240
241 /* ARGSUSED */
242 int
243 sys_pipe(struct lwp *l, const void *v, register_t *retval)
244 {
245 struct file *rf, *wf;
246 struct pipe *rpipe, *wpipe;
247 kmutex_t *mutex;
248 int fd, error;
249 proc_t *p;
250
251 p = curproc;
252 rpipe = wpipe = NULL;
253 mutex = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
254 if (mutex == NULL)
255 return (ENOMEM);
256 mutex_obj_hold(mutex);
257 if (pipe_create(&rpipe, pipe_rd_cache, mutex) ||
258 pipe_create(&wpipe, pipe_wr_cache, mutex)) {
259 pipeclose(NULL, rpipe);
260 pipeclose(NULL, wpipe);
261 return (ENFILE);
262 }
263
264 error = fd_allocfile(&rf, &fd);
265 if (error)
266 goto free2;
267 retval[0] = fd;
268 rf->f_flag = FREAD;
269 rf->f_type = DTYPE_PIPE;
270 rf->f_data = (void *)rpipe;
271 rf->f_ops = &pipeops;
272
273 error = fd_allocfile(&wf, &fd);
274 if (error)
275 goto free3;
276 retval[1] = fd;
277 wf->f_flag = FWRITE;
278 wf->f_type = DTYPE_PIPE;
279 wf->f_data = (void *)wpipe;
280 wf->f_ops = &pipeops;
281
282 rpipe->pipe_peer = wpipe;
283 wpipe->pipe_peer = rpipe;
284
285 fd_affix(p, rf, (int)retval[0]);
286 fd_affix(p, wf, (int)retval[1]);
287 return (0);
288 free3:
289 fd_abort(p, rf, (int)retval[0]);
290 free2:
291 pipeclose(NULL, wpipe);
292 pipeclose(NULL, rpipe);
293
294 return (error);
295 }
296
297 /*
298 * Allocate kva for pipe circular buffer, the space is pageable
299 * This routine will 'realloc' the size of a pipe safely, if it fails
300 * it will retain the old buffer.
301 * If it fails it will return ENOMEM.
302 */
303 static int
304 pipespace(struct pipe *pipe, int size)
305 {
306 void *buffer;
307
308 /*
309 * Allocate pageable virtual address space. Physical memory is
310 * allocated on demand.
311 */
312 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
313 buffer = (void *)pipe->pipe_kmem;
314 } else {
315 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
316 0, UVM_KMF_PAGEABLE);
317 if (buffer == NULL)
318 return (ENOMEM);
319 atomic_add_int(&amountpipekva, size);
320 }
321
322 /* free old resources if we're resizing */
323 pipe_free_kmem(pipe);
324 pipe->pipe_buffer.buffer = buffer;
325 pipe->pipe_buffer.size = size;
326 pipe->pipe_buffer.in = 0;
327 pipe->pipe_buffer.out = 0;
328 pipe->pipe_buffer.cnt = 0;
329 return (0);
330 }
331
332 /*
333 * Initialize and allocate VM and memory for pipe.
334 */
335 static int
336 pipe_create(struct pipe **pipep, pool_cache_t cache, kmutex_t *mutex)
337 {
338 struct pipe *pipe;
339 int error;
340
341 pipe = pool_cache_get(cache, PR_WAITOK);
342 KASSERT(pipe != NULL);
343 *pipep = pipe;
344 error = 0;
345 getmicrotime(&pipe->pipe_ctime);
346 pipe->pipe_atime = pipe->pipe_ctime;
347 pipe->pipe_mtime = pipe->pipe_ctime;
348 pipe->pipe_lock = mutex;
349 if (cache == pipe_rd_cache) {
350 error = pipespace(pipe, PIPE_SIZE);
351 } else {
352 pipe->pipe_buffer.buffer = NULL;
353 pipe->pipe_buffer.size = 0;
354 pipe->pipe_buffer.in = 0;
355 pipe->pipe_buffer.out = 0;
356 pipe->pipe_buffer.cnt = 0;
357 }
358 return error;
359 }
360
361 /*
362 * Lock a pipe for I/O, blocking other access
363 * Called with pipe spin lock held.
364 * Return with pipe spin lock released on success.
365 */
366 static int
367 pipelock(struct pipe *pipe, int catch)
368 {
369 int error;
370
371 KASSERT(mutex_owned(pipe->pipe_lock));
372
373 while (pipe->pipe_state & PIPE_LOCKFL) {
374 pipe->pipe_state |= PIPE_LWANT;
375 if (catch) {
376 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
377 if (error != 0)
378 return error;
379 } else
380 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
381 }
382
383 pipe->pipe_state |= PIPE_LOCKFL;
384
385 return 0;
386 }
387
388 /*
389 * unlock a pipe I/O lock
390 */
391 static inline void
392 pipeunlock(struct pipe *pipe)
393 {
394
395 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
396
397 pipe->pipe_state &= ~PIPE_LOCKFL;
398 if (pipe->pipe_state & PIPE_LWANT) {
399 pipe->pipe_state &= ~PIPE_LWANT;
400 cv_broadcast(&pipe->pipe_lkcv);
401 }
402 }
403
404 /*
405 * Select/poll wakup. This also sends SIGIO to peer connected to
406 * 'sigpipe' side of pipe.
407 */
408 static void
409 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
410 {
411 int band;
412
413 switch (code) {
414 case POLL_IN:
415 band = POLLIN|POLLRDNORM;
416 break;
417 case POLL_OUT:
418 band = POLLOUT|POLLWRNORM;
419 break;
420 case POLL_HUP:
421 band = POLLHUP;
422 break;
423 #if POLL_HUP != POLL_ERR
424 case POLL_ERR:
425 band = POLLERR;
426 break;
427 #endif
428 default:
429 band = 0;
430 #ifdef DIAGNOSTIC
431 printf("bad siginfo code %d in pipe notification.\n", code);
432 #endif
433 break;
434 }
435
436 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
437
438 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
439 return;
440
441 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
442 }
443
444 /* ARGSUSED */
445 static int
446 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
447 int flags)
448 {
449 struct pipe *rpipe = (struct pipe *) fp->f_data;
450 struct pipebuf *bp = &rpipe->pipe_buffer;
451 kmutex_t *lock = rpipe->pipe_lock;
452 int error;
453 size_t nread = 0;
454 size_t size;
455 size_t ocnt;
456
457 mutex_enter(lock);
458 ++rpipe->pipe_busy;
459 ocnt = bp->cnt;
460
461 again:
462 error = pipelock(rpipe, 1);
463 if (error)
464 goto unlocked_error;
465
466 while (uio->uio_resid) {
467 /*
468 * normal pipe buffer receive
469 */
470 if (bp->cnt > 0) {
471 size = bp->size - bp->out;
472 if (size > bp->cnt)
473 size = bp->cnt;
474 if (size > uio->uio_resid)
475 size = uio->uio_resid;
476
477 mutex_exit(lock);
478 error = uiomove((char *)bp->buffer + bp->out, size, uio);
479 mutex_enter(lock);
480 if (error)
481 break;
482
483 bp->out += size;
484 if (bp->out >= bp->size)
485 bp->out = 0;
486
487 bp->cnt -= size;
488
489 /*
490 * If there is no more to read in the pipe, reset
491 * its pointers to the beginning. This improves
492 * cache hit stats.
493 */
494 if (bp->cnt == 0) {
495 bp->in = 0;
496 bp->out = 0;
497 }
498 nread += size;
499 continue;
500 }
501
502 #ifndef PIPE_NODIRECT
503 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
504 /*
505 * Direct copy, bypassing a kernel buffer.
506 */
507 void * va;
508
509 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
510
511 size = rpipe->pipe_map.cnt;
512 if (size > uio->uio_resid)
513 size = uio->uio_resid;
514
515 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
516 mutex_exit(lock);
517 error = uiomove(va, size, uio);
518 mutex_enter(lock);
519 if (error)
520 break;
521 nread += size;
522 rpipe->pipe_map.pos += size;
523 rpipe->pipe_map.cnt -= size;
524 if (rpipe->pipe_map.cnt == 0) {
525 rpipe->pipe_state &= ~PIPE_DIRECTR;
526 cv_broadcast(&rpipe->pipe_wcv);
527 }
528 continue;
529 }
530 #endif
531 /*
532 * Break if some data was read.
533 */
534 if (nread > 0)
535 break;
536
537 /*
538 * detect EOF condition
539 * read returns 0 on EOF, no need to set error
540 */
541 if (rpipe->pipe_state & PIPE_EOF)
542 break;
543
544 /*
545 * don't block on non-blocking I/O
546 */
547 if (fp->f_flag & FNONBLOCK) {
548 error = EAGAIN;
549 break;
550 }
551
552 /*
553 * Unlock the pipe buffer for our remaining processing.
554 * We will either break out with an error or we will
555 * sleep and relock to loop.
556 */
557 pipeunlock(rpipe);
558
559 /*
560 * Re-check to see if more direct writes are pending.
561 */
562 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
563 goto again;
564
565 /*
566 * We want to read more, wake up select/poll.
567 */
568 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
569
570 /*
571 * If the "write-side" is blocked, wake it up now.
572 */
573 cv_broadcast(&rpipe->pipe_wcv);
574
575 /* Now wait until the pipe is filled */
576 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
577 if (error != 0)
578 goto unlocked_error;
579 goto again;
580 }
581
582 if (error == 0)
583 getmicrotime(&rpipe->pipe_atime);
584 pipeunlock(rpipe);
585
586 unlocked_error:
587 --rpipe->pipe_busy;
588 if (rpipe->pipe_busy == 0) {
589 cv_broadcast(&rpipe->pipe_draincv);
590 }
591 if (bp->cnt < MINPIPESIZE) {
592 cv_broadcast(&rpipe->pipe_wcv);
593 }
594
595 /*
596 * If anything was read off the buffer, signal to the writer it's
597 * possible to write more data. Also send signal if we are here for the
598 * first time after last write.
599 */
600 if ((bp->size - bp->cnt) >= PIPE_BUF
601 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
602 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
603 rpipe->pipe_state &= ~PIPE_SIGNALR;
604 }
605
606 mutex_exit(lock);
607 return (error);
608 }
609
610 #ifndef PIPE_NODIRECT
611 /*
612 * Allocate structure for loan transfer.
613 */
614 static int
615 pipe_loan_alloc(struct pipe *wpipe, int npages)
616 {
617 vsize_t len;
618
619 len = (vsize_t)npages << PAGE_SHIFT;
620 atomic_add_int(&amountpipekva, len);
621 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
622 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
623 if (wpipe->pipe_map.kva == 0) {
624 atomic_add_int(&amountpipekva, -len);
625 return (ENOMEM);
626 }
627
628 wpipe->pipe_map.npages = npages;
629 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
630 KM_SLEEP);
631 return (0);
632 }
633
634 /*
635 * Free resources allocated for loan transfer.
636 */
637 static void
638 pipe_loan_free(struct pipe *wpipe)
639 {
640 vsize_t len;
641
642 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
643 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
644 wpipe->pipe_map.kva = 0;
645 atomic_add_int(&amountpipekva, -len);
646 kmem_free(wpipe->pipe_map.pgs,
647 wpipe->pipe_map.npages * sizeof(struct vm_page *));
648 wpipe->pipe_map.pgs = NULL;
649 }
650
651 /*
652 * NetBSD direct write, using uvm_loan() mechanism.
653 * This implements the pipe buffer write mechanism. Note that only
654 * a direct write OR a normal pipe write can be pending at any given time.
655 * If there are any characters in the pipe buffer, the direct write will
656 * be deferred until the receiving process grabs all of the bytes from
657 * the pipe buffer. Then the direct mapping write is set-up.
658 *
659 * Called with the long-term pipe lock held.
660 */
661 static int
662 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
663 {
664 int error, npages, j;
665 struct vm_page **pgs;
666 vaddr_t bbase, kva, base, bend;
667 vsize_t blen, bcnt;
668 voff_t bpos;
669 kmutex_t *lock = wpipe->pipe_lock;
670
671 KASSERT(mutex_owned(wpipe->pipe_lock));
672 KASSERT(wpipe->pipe_map.cnt == 0);
673
674 mutex_exit(lock);
675
676 /*
677 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
678 * not aligned to PAGE_SIZE.
679 */
680 bbase = (vaddr_t)uio->uio_iov->iov_base;
681 base = trunc_page(bbase);
682 bend = round_page(bbase + uio->uio_iov->iov_len);
683 blen = bend - base;
684 bpos = bbase - base;
685
686 if (blen > PIPE_DIRECT_CHUNK) {
687 blen = PIPE_DIRECT_CHUNK;
688 bend = base + blen;
689 bcnt = PIPE_DIRECT_CHUNK - bpos;
690 } else {
691 bcnt = uio->uio_iov->iov_len;
692 }
693 npages = blen >> PAGE_SHIFT;
694
695 /*
696 * Free the old kva if we need more pages than we have
697 * allocated.
698 */
699 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
700 pipe_loan_free(wpipe);
701
702 /* Allocate new kva. */
703 if (wpipe->pipe_map.kva == 0) {
704 error = pipe_loan_alloc(wpipe, npages);
705 if (error) {
706 mutex_enter(lock);
707 return (error);
708 }
709 }
710
711 /* Loan the write buffer memory from writer process */
712 pgs = wpipe->pipe_map.pgs;
713 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
714 pgs, UVM_LOAN_TOPAGE);
715 if (error) {
716 pipe_loan_free(wpipe);
717 mutex_enter(lock);
718 return (ENOMEM); /* so that caller fallback to ordinary write */
719 }
720
721 /* Enter the loaned pages to kva */
722 kva = wpipe->pipe_map.kva;
723 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
724 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
725 }
726 pmap_update(pmap_kernel());
727
728 /* Now we can put the pipe in direct write mode */
729 wpipe->pipe_map.pos = bpos;
730 wpipe->pipe_map.cnt = bcnt;
731
732 /*
733 * But before we can let someone do a direct read, we
734 * have to wait until the pipe is drained. Release the
735 * pipe lock while we wait.
736 */
737 mutex_enter(lock);
738 wpipe->pipe_state |= PIPE_DIRECTW;
739 pipeunlock(wpipe);
740
741 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
742 cv_broadcast(&wpipe->pipe_rcv);
743 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
744 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
745 error = EPIPE;
746 }
747
748 /* Pipe is drained; next read will off the direct buffer */
749 wpipe->pipe_state |= PIPE_DIRECTR;
750
751 /* Wait until the reader is done */
752 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
753 cv_broadcast(&wpipe->pipe_rcv);
754 pipeselwakeup(wpipe, wpipe, POLL_IN);
755 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
756 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
757 error = EPIPE;
758 }
759
760 /* Take pipe out of direct write mode */
761 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
762
763 /* Acquire the pipe lock and cleanup */
764 (void)pipelock(wpipe, 0);
765 mutex_exit(lock);
766
767 if (pgs != NULL) {
768 pmap_kremove(wpipe->pipe_map.kva, blen);
769 pmap_update(pmap_kernel());
770 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
771 }
772 if (error || amountpipekva > maxpipekva)
773 pipe_loan_free(wpipe);
774
775 mutex_enter(lock);
776 if (error) {
777 pipeselwakeup(wpipe, wpipe, POLL_ERR);
778
779 /*
780 * If nothing was read from what we offered, return error
781 * straight on. Otherwise update uio resid first. Caller
782 * will deal with the error condition, returning short
783 * write, error, or restarting the write(2) as appropriate.
784 */
785 if (wpipe->pipe_map.cnt == bcnt) {
786 wpipe->pipe_map.cnt = 0;
787 cv_broadcast(&wpipe->pipe_wcv);
788 return (error);
789 }
790
791 bcnt -= wpipe->pipe_map.cnt;
792 }
793
794 uio->uio_resid -= bcnt;
795 /* uio_offset not updated, not set/used for write(2) */
796 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
797 uio->uio_iov->iov_len -= bcnt;
798 if (uio->uio_iov->iov_len == 0) {
799 uio->uio_iov++;
800 uio->uio_iovcnt--;
801 }
802
803 wpipe->pipe_map.cnt = 0;
804 return (error);
805 }
806 #endif /* !PIPE_NODIRECT */
807
808 static int
809 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
810 int flags)
811 {
812 struct pipe *wpipe, *rpipe;
813 struct pipebuf *bp;
814 kmutex_t *lock;
815 int error;
816
817 /* We want to write to our peer */
818 rpipe = (struct pipe *) fp->f_data;
819 lock = rpipe->pipe_lock;
820 error = 0;
821
822 mutex_enter(lock);
823 wpipe = rpipe->pipe_peer;
824
825 /*
826 * Detect loss of pipe read side, issue SIGPIPE if lost.
827 */
828 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
829 mutex_exit(lock);
830 return EPIPE;
831 }
832 ++wpipe->pipe_busy;
833
834 /* Aquire the long-term pipe lock */
835 if ((error = pipelock(wpipe, 1)) != 0) {
836 --wpipe->pipe_busy;
837 if (wpipe->pipe_busy == 0) {
838 cv_broadcast(&wpipe->pipe_draincv);
839 }
840 mutex_exit(lock);
841 return (error);
842 }
843
844 bp = &wpipe->pipe_buffer;
845
846 /*
847 * If it is advantageous to resize the pipe buffer, do so.
848 */
849 if ((uio->uio_resid > PIPE_SIZE) &&
850 (nbigpipe < maxbigpipes) &&
851 #ifndef PIPE_NODIRECT
852 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
853 #endif
854 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
855
856 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
857 atomic_inc_uint(&nbigpipe);
858 }
859
860 while (uio->uio_resid) {
861 size_t space;
862
863 #ifndef PIPE_NODIRECT
864 /*
865 * Pipe buffered writes cannot be coincidental with
866 * direct writes. Also, only one direct write can be
867 * in progress at any one time. We wait until the currently
868 * executing direct write is completed before continuing.
869 *
870 * We break out if a signal occurs or the reader goes away.
871 */
872 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
873 cv_broadcast(&wpipe->pipe_rcv);
874 pipeunlock(wpipe);
875 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
876 (void)pipelock(wpipe, 0);
877 if (wpipe->pipe_state & PIPE_EOF)
878 error = EPIPE;
879 }
880 if (error)
881 break;
882
883 /*
884 * If the transfer is large, we can gain performance if
885 * we do process-to-process copies directly.
886 * If the write is non-blocking, we don't use the
887 * direct write mechanism.
888 *
889 * The direct write mechanism will detect the reader going
890 * away on us.
891 */
892 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
893 (fp->f_flag & FNONBLOCK) == 0 &&
894 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
895 error = pipe_direct_write(fp, wpipe, uio);
896
897 /*
898 * Break out if error occurred, unless it's ENOMEM.
899 * ENOMEM means we failed to allocate some resources
900 * for direct write, so we just fallback to ordinary
901 * write. If the direct write was successful,
902 * process rest of data via ordinary write.
903 */
904 if (error == 0)
905 continue;
906
907 if (error != ENOMEM)
908 break;
909 }
910 #endif /* PIPE_NODIRECT */
911
912 space = bp->size - bp->cnt;
913
914 /* Writes of size <= PIPE_BUF must be atomic. */
915 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
916 space = 0;
917
918 if (space > 0) {
919 int size; /* Transfer size */
920 int segsize; /* first segment to transfer */
921
922 /*
923 * Transfer size is minimum of uio transfer
924 * and free space in pipe buffer.
925 */
926 if (space > uio->uio_resid)
927 size = uio->uio_resid;
928 else
929 size = space;
930 /*
931 * First segment to transfer is minimum of
932 * transfer size and contiguous space in
933 * pipe buffer. If first segment to transfer
934 * is less than the transfer size, we've got
935 * a wraparound in the buffer.
936 */
937 segsize = bp->size - bp->in;
938 if (segsize > size)
939 segsize = size;
940
941 /* Transfer first segment */
942 mutex_exit(lock);
943 error = uiomove((char *)bp->buffer + bp->in, segsize,
944 uio);
945
946 if (error == 0 && segsize < size) {
947 /*
948 * Transfer remaining part now, to
949 * support atomic writes. Wraparound
950 * happened.
951 */
952 #ifdef DEBUG
953 if (bp->in + segsize != bp->size)
954 panic("Expected pipe buffer wraparound disappeared");
955 #endif
956
957 error = uiomove(bp->buffer,
958 size - segsize, uio);
959 }
960 mutex_enter(lock);
961 if (error)
962 break;
963
964 bp->in += size;
965 if (bp->in >= bp->size) {
966 #ifdef DEBUG
967 if (bp->in != size - segsize + bp->size)
968 panic("Expected wraparound bad");
969 #endif
970 bp->in = size - segsize;
971 }
972
973 bp->cnt += size;
974 #ifdef DEBUG
975 if (bp->cnt > bp->size)
976 panic("Pipe buffer overflow");
977 #endif
978 } else {
979 /*
980 * If the "read-side" has been blocked, wake it up now.
981 */
982 cv_broadcast(&wpipe->pipe_rcv);
983
984 /*
985 * don't block on non-blocking I/O
986 */
987 if (fp->f_flag & FNONBLOCK) {
988 error = EAGAIN;
989 break;
990 }
991
992 /*
993 * We have no more space and have something to offer,
994 * wake up select/poll.
995 */
996 if (bp->cnt)
997 pipeselwakeup(wpipe, wpipe, POLL_IN);
998
999 pipeunlock(wpipe);
1000 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1001 (void)pipelock(wpipe, 0);
1002 if (error != 0)
1003 break;
1004 /*
1005 * If read side wants to go away, we just issue a signal
1006 * to ourselves.
1007 */
1008 if (wpipe->pipe_state & PIPE_EOF) {
1009 error = EPIPE;
1010 break;
1011 }
1012 }
1013 }
1014
1015 --wpipe->pipe_busy;
1016 if (wpipe->pipe_busy == 0) {
1017 cv_broadcast(&wpipe->pipe_draincv);
1018 }
1019 if (bp->cnt > 0) {
1020 cv_broadcast(&wpipe->pipe_rcv);
1021 }
1022
1023 /*
1024 * Don't return EPIPE if I/O was successful
1025 */
1026 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1027 error = 0;
1028
1029 if (error == 0)
1030 getmicrotime(&wpipe->pipe_mtime);
1031
1032 /*
1033 * We have something to offer, wake up select/poll.
1034 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1035 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1036 */
1037 if (bp->cnt)
1038 pipeselwakeup(wpipe, wpipe, POLL_IN);
1039
1040 /*
1041 * Arrange for next read(2) to do a signal.
1042 */
1043 wpipe->pipe_state |= PIPE_SIGNALR;
1044
1045 pipeunlock(wpipe);
1046 mutex_exit(lock);
1047 return (error);
1048 }
1049
1050 /*
1051 * we implement a very minimal set of ioctls for compatibility with sockets.
1052 */
1053 int
1054 pipe_ioctl(struct file *fp, u_long cmd, void *data)
1055 {
1056 struct pipe *pipe = fp->f_data;
1057 kmutex_t *lock = pipe->pipe_lock;
1058
1059 switch (cmd) {
1060
1061 case FIONBIO:
1062 return (0);
1063
1064 case FIOASYNC:
1065 mutex_enter(lock);
1066 if (*(int *)data) {
1067 pipe->pipe_state |= PIPE_ASYNC;
1068 } else {
1069 pipe->pipe_state &= ~PIPE_ASYNC;
1070 }
1071 mutex_exit(lock);
1072 return (0);
1073
1074 case FIONREAD:
1075 mutex_enter(lock);
1076 #ifndef PIPE_NODIRECT
1077 if (pipe->pipe_state & PIPE_DIRECTW)
1078 *(int *)data = pipe->pipe_map.cnt;
1079 else
1080 #endif
1081 *(int *)data = pipe->pipe_buffer.cnt;
1082 mutex_exit(lock);
1083 return (0);
1084
1085 case FIONWRITE:
1086 /* Look at other side */
1087 pipe = pipe->pipe_peer;
1088 mutex_enter(lock);
1089 #ifndef PIPE_NODIRECT
1090 if (pipe->pipe_state & PIPE_DIRECTW)
1091 *(int *)data = pipe->pipe_map.cnt;
1092 else
1093 #endif
1094 *(int *)data = pipe->pipe_buffer.cnt;
1095 mutex_exit(lock);
1096 return (0);
1097
1098 case FIONSPACE:
1099 /* Look at other side */
1100 pipe = pipe->pipe_peer;
1101 mutex_enter(lock);
1102 #ifndef PIPE_NODIRECT
1103 /*
1104 * If we're in direct-mode, we don't really have a
1105 * send queue, and any other write will block. Thus
1106 * zero seems like the best answer.
1107 */
1108 if (pipe->pipe_state & PIPE_DIRECTW)
1109 *(int *)data = 0;
1110 else
1111 #endif
1112 *(int *)data = pipe->pipe_buffer.size -
1113 pipe->pipe_buffer.cnt;
1114 mutex_exit(lock);
1115 return (0);
1116
1117 case TIOCSPGRP:
1118 case FIOSETOWN:
1119 return fsetown(&pipe->pipe_pgid, cmd, data);
1120
1121 case TIOCGPGRP:
1122 case FIOGETOWN:
1123 return fgetown(pipe->pipe_pgid, cmd, data);
1124
1125 }
1126 return (EPASSTHROUGH);
1127 }
1128
1129 int
1130 pipe_poll(struct file *fp, int events)
1131 {
1132 struct pipe *rpipe = fp->f_data;
1133 struct pipe *wpipe;
1134 int eof = 0;
1135 int revents = 0;
1136
1137 mutex_enter(rpipe->pipe_lock);
1138 wpipe = rpipe->pipe_peer;
1139
1140 if (events & (POLLIN | POLLRDNORM))
1141 if ((rpipe->pipe_buffer.cnt > 0) ||
1142 #ifndef PIPE_NODIRECT
1143 (rpipe->pipe_state & PIPE_DIRECTR) ||
1144 #endif
1145 (rpipe->pipe_state & PIPE_EOF))
1146 revents |= events & (POLLIN | POLLRDNORM);
1147
1148 eof |= (rpipe->pipe_state & PIPE_EOF);
1149
1150 if (wpipe == NULL)
1151 revents |= events & (POLLOUT | POLLWRNORM);
1152 else {
1153 if (events & (POLLOUT | POLLWRNORM))
1154 if ((wpipe->pipe_state & PIPE_EOF) || (
1155 #ifndef PIPE_NODIRECT
1156 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1157 #endif
1158 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1159 revents |= events & (POLLOUT | POLLWRNORM);
1160
1161 eof |= (wpipe->pipe_state & PIPE_EOF);
1162 }
1163
1164 if (wpipe == NULL || eof)
1165 revents |= POLLHUP;
1166
1167 if (revents == 0) {
1168 if (events & (POLLIN | POLLRDNORM))
1169 selrecord(curlwp, &rpipe->pipe_sel);
1170
1171 if (events & (POLLOUT | POLLWRNORM))
1172 selrecord(curlwp, &wpipe->pipe_sel);
1173 }
1174 mutex_exit(rpipe->pipe_lock);
1175
1176 return (revents);
1177 }
1178
1179 static int
1180 pipe_stat(struct file *fp, struct stat *ub)
1181 {
1182 struct pipe *pipe = fp->f_data;
1183
1184 memset((void *)ub, 0, sizeof(*ub));
1185 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1186 ub->st_blksize = pipe->pipe_buffer.size;
1187 if (ub->st_blksize == 0 && pipe->pipe_peer)
1188 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1189 ub->st_size = pipe->pipe_buffer.cnt;
1190 ub->st_blocks = (ub->st_size) ? 1 : 0;
1191 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1192 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1193 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1194 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1195 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1196
1197 /*
1198 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1199 * XXX (st_dev, st_ino) should be unique.
1200 */
1201 return (0);
1202 }
1203
1204 /* ARGSUSED */
1205 static int
1206 pipe_close(struct file *fp)
1207 {
1208 struct pipe *pipe = fp->f_data;
1209
1210 fp->f_data = NULL;
1211 pipeclose(fp, pipe);
1212 return (0);
1213 }
1214
1215 static void
1216 pipe_free_kmem(struct pipe *pipe)
1217 {
1218
1219 if (pipe->pipe_buffer.buffer != NULL) {
1220 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1221 atomic_dec_uint(&nbigpipe);
1222 }
1223 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1224 uvm_km_free(kernel_map,
1225 (vaddr_t)pipe->pipe_buffer.buffer,
1226 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1227 atomic_add_int(&amountpipekva,
1228 -pipe->pipe_buffer.size);
1229 }
1230 pipe->pipe_buffer.buffer = NULL;
1231 }
1232 #ifndef PIPE_NODIRECT
1233 if (pipe->pipe_map.kva != 0) {
1234 pipe_loan_free(pipe);
1235 pipe->pipe_map.cnt = 0;
1236 pipe->pipe_map.kva = 0;
1237 pipe->pipe_map.pos = 0;
1238 pipe->pipe_map.npages = 0;
1239 }
1240 #endif /* !PIPE_NODIRECT */
1241 }
1242
1243 /*
1244 * shutdown the pipe
1245 */
1246 static void
1247 pipeclose(struct file *fp, struct pipe *pipe)
1248 {
1249 kmutex_t *lock;
1250 struct pipe *ppipe;
1251
1252 if (pipe == NULL)
1253 return;
1254
1255 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1256 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1257 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1258 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1259
1260 lock = pipe->pipe_lock;
1261 mutex_enter(lock);
1262 pipeselwakeup(pipe, pipe, POLL_HUP);
1263
1264 /*
1265 * If the other side is blocked, wake it up saying that
1266 * we want to close it down.
1267 */
1268 pipe->pipe_state |= PIPE_EOF;
1269 if (pipe->pipe_busy) {
1270 while (pipe->pipe_busy) {
1271 cv_broadcast(&pipe->pipe_wcv);
1272 cv_wait_sig(&pipe->pipe_draincv, lock);
1273 }
1274 }
1275
1276 /*
1277 * Disconnect from peer
1278 */
1279 if ((ppipe = pipe->pipe_peer) != NULL) {
1280 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1281 ppipe->pipe_state |= PIPE_EOF;
1282 cv_broadcast(&ppipe->pipe_rcv);
1283 ppipe->pipe_peer = NULL;
1284 }
1285
1286 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1287 mutex_exit(lock);
1288
1289 /*
1290 * free resources
1291 */
1292 pipe->pipe_pgid = 0;
1293 pipe->pipe_state = PIPE_SIGNALR;
1294 pipe_free_kmem(pipe);
1295 if (pipe->pipe_kmem != 0) {
1296 pool_cache_put(pipe_rd_cache, pipe);
1297 } else {
1298 pool_cache_put(pipe_wr_cache, pipe);
1299 }
1300 mutex_obj_free(lock);
1301 }
1302
1303 static void
1304 filt_pipedetach(struct knote *kn)
1305 {
1306 struct pipe *pipe;
1307 kmutex_t *lock;
1308
1309 pipe = ((file_t *)kn->kn_obj)->f_data;
1310 lock = pipe->pipe_lock;
1311
1312 mutex_enter(lock);
1313
1314 switch(kn->kn_filter) {
1315 case EVFILT_WRITE:
1316 /* need the peer structure, not our own */
1317 pipe = pipe->pipe_peer;
1318
1319 /* if reader end already closed, just return */
1320 if (pipe == NULL) {
1321 mutex_exit(lock);
1322 return;
1323 }
1324
1325 break;
1326 default:
1327 /* nothing to do */
1328 break;
1329 }
1330
1331 #ifdef DIAGNOSTIC
1332 if (kn->kn_hook != pipe)
1333 panic("filt_pipedetach: inconsistent knote");
1334 #endif
1335
1336 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1337 mutex_exit(lock);
1338 }
1339
1340 /*ARGSUSED*/
1341 static int
1342 filt_piperead(struct knote *kn, long hint)
1343 {
1344 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1345 struct pipe *wpipe;
1346
1347 if ((hint & NOTE_SUBMIT) == 0) {
1348 mutex_enter(rpipe->pipe_lock);
1349 }
1350 wpipe = rpipe->pipe_peer;
1351 kn->kn_data = rpipe->pipe_buffer.cnt;
1352
1353 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1354 kn->kn_data = rpipe->pipe_map.cnt;
1355
1356 if ((rpipe->pipe_state & PIPE_EOF) ||
1357 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1358 kn->kn_flags |= EV_EOF;
1359 if ((hint & NOTE_SUBMIT) == 0) {
1360 mutex_exit(rpipe->pipe_lock);
1361 }
1362 return (1);
1363 }
1364
1365 if ((hint & NOTE_SUBMIT) == 0) {
1366 mutex_exit(rpipe->pipe_lock);
1367 }
1368 return (kn->kn_data > 0);
1369 }
1370
1371 /*ARGSUSED*/
1372 static int
1373 filt_pipewrite(struct knote *kn, long hint)
1374 {
1375 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1376 struct pipe *wpipe;
1377
1378 if ((hint & NOTE_SUBMIT) == 0) {
1379 mutex_enter(rpipe->pipe_lock);
1380 }
1381 wpipe = rpipe->pipe_peer;
1382
1383 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1384 kn->kn_data = 0;
1385 kn->kn_flags |= EV_EOF;
1386 if ((hint & NOTE_SUBMIT) == 0) {
1387 mutex_exit(rpipe->pipe_lock);
1388 }
1389 return (1);
1390 }
1391 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1392 if (wpipe->pipe_state & PIPE_DIRECTW)
1393 kn->kn_data = 0;
1394
1395 if ((hint & NOTE_SUBMIT) == 0) {
1396 mutex_exit(rpipe->pipe_lock);
1397 }
1398 return (kn->kn_data >= PIPE_BUF);
1399 }
1400
1401 static const struct filterops pipe_rfiltops =
1402 { 1, NULL, filt_pipedetach, filt_piperead };
1403 static const struct filterops pipe_wfiltops =
1404 { 1, NULL, filt_pipedetach, filt_pipewrite };
1405
1406 /*ARGSUSED*/
1407 static int
1408 pipe_kqfilter(struct file *fp, struct knote *kn)
1409 {
1410 struct pipe *pipe;
1411 kmutex_t *lock;
1412
1413 pipe = ((file_t *)kn->kn_obj)->f_data;
1414 lock = pipe->pipe_lock;
1415
1416 mutex_enter(lock);
1417
1418 switch (kn->kn_filter) {
1419 case EVFILT_READ:
1420 kn->kn_fop = &pipe_rfiltops;
1421 break;
1422 case EVFILT_WRITE:
1423 kn->kn_fop = &pipe_wfiltops;
1424 pipe = pipe->pipe_peer;
1425 if (pipe == NULL) {
1426 /* other end of pipe has been closed */
1427 mutex_exit(lock);
1428 return (EBADF);
1429 }
1430 break;
1431 default:
1432 mutex_exit(lock);
1433 return (EINVAL);
1434 }
1435
1436 kn->kn_hook = pipe;
1437 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1438 mutex_exit(lock);
1439
1440 return (0);
1441 }
1442
1443 /*
1444 * Handle pipe sysctls.
1445 */
1446 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1447 {
1448
1449 sysctl_createv(clog, 0, NULL, NULL,
1450 CTLFLAG_PERMANENT,
1451 CTLTYPE_NODE, "kern", NULL,
1452 NULL, 0, NULL, 0,
1453 CTL_KERN, CTL_EOL);
1454 sysctl_createv(clog, 0, NULL, NULL,
1455 CTLFLAG_PERMANENT,
1456 CTLTYPE_NODE, "pipe",
1457 SYSCTL_DESCR("Pipe settings"),
1458 NULL, 0, NULL, 0,
1459 CTL_KERN, KERN_PIPE, CTL_EOL);
1460
1461 sysctl_createv(clog, 0, NULL, NULL,
1462 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1463 CTLTYPE_INT, "maxkvasz",
1464 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1465 "used for pipes"),
1466 NULL, 0, &maxpipekva, 0,
1467 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1468 sysctl_createv(clog, 0, NULL, NULL,
1469 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1470 CTLTYPE_INT, "maxloankvasz",
1471 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1472 NULL, 0, &limitpipekva, 0,
1473 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1474 sysctl_createv(clog, 0, NULL, NULL,
1475 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1476 CTLTYPE_INT, "maxbigpipes",
1477 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1478 NULL, 0, &maxbigpipes, 0,
1479 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1480 sysctl_createv(clog, 0, NULL, NULL,
1481 CTLFLAG_PERMANENT,
1482 CTLTYPE_INT, "nbigpipes",
1483 SYSCTL_DESCR("Number of \"big\" pipes"),
1484 NULL, 0, &nbigpipe, 0,
1485 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1486 sysctl_createv(clog, 0, NULL, NULL,
1487 CTLFLAG_PERMANENT,
1488 CTLTYPE_INT, "kvasize",
1489 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1490 "buffers"),
1491 NULL, 0, &amountpipekva, 0,
1492 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1493 }
1494