sys_pipe.c revision 1.104 1 /* $NetBSD: sys_pipe.c,v 1.104 2009/01/20 14:50:22 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 *
50 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
51 */
52
53 /*
54 * This file contains a high-performance replacement for the socket-based
55 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
56 * all features of sockets, but does do everything that pipes normally
57 * do.
58 *
59 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
60 * written by Jaromir Dolecek.
61 */
62
63 /*
64 * This code has two modes of operation, a small write mode and a large
65 * write mode. The small write mode acts like conventional pipes with
66 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
67 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
68 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
69 * using the UVM page loan facility from where the receiving process can copy
70 * the data directly from the pages in the sending process.
71 *
72 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
73 * happen for small transfers so that the system will not spend all of
74 * its time context switching. PIPE_SIZE is constrained by the
75 * amount of kernel virtual memory.
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.104 2009/01/20 14:50:22 yamt Exp $");
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/fcntl.h>
85 #include <sys/file.h>
86 #include <sys/filedesc.h>
87 #include <sys/filio.h>
88 #include <sys/kernel.h>
89 #include <sys/ttycom.h>
90 #include <sys/stat.h>
91 #include <sys/poll.h>
92 #include <sys/signalvar.h>
93 #include <sys/vnode.h>
94 #include <sys/uio.h>
95 #include <sys/select.h>
96 #include <sys/mount.h>
97 #include <sys/syscallargs.h>
98 #include <sys/sysctl.h>
99 #include <sys/kauth.h>
100 #include <sys/atomic.h>
101 #include <sys/pipe.h>
102
103 #include <uvm/uvm.h>
104
105 /*
106 * Use this define if you want to disable *fancy* VM things. Expect an
107 * approx 30% decrease in transfer rate.
108 */
109 /* #define PIPE_NODIRECT */
110
111 /*
112 * interfaces to the outside world
113 */
114 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
115 kauth_cred_t cred, int flags);
116 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
117 kauth_cred_t cred, int flags);
118 static int pipe_close(struct file *fp);
119 static int pipe_poll(struct file *fp, int events);
120 static int pipe_kqfilter(struct file *fp, struct knote *kn);
121 static int pipe_stat(struct file *fp, struct stat *sb);
122 static int pipe_ioctl(struct file *fp, u_long cmd, void *data);
123
124 static const struct fileops pipeops = {
125 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
126 pipe_stat, pipe_close, pipe_kqfilter
127 };
128
129 /*
130 * Single mutex shared between both ends of the pipe.
131 */
132
133 struct pipe_mutex {
134 kmutex_t pm_mutex;
135 u_int pm_refcnt;
136 };
137
138 /*
139 * Default pipe buffer size(s), this can be kind-of large now because pipe
140 * space is pageable. The pipe code will try to maintain locality of
141 * reference for performance reasons, so small amounts of outstanding I/O
142 * will not wipe the cache.
143 */
144 #define MINPIPESIZE (PIPE_SIZE/3)
145 #define MAXPIPESIZE (2*PIPE_SIZE/3)
146
147 /*
148 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
149 * is there so that on large systems, we don't exhaust it.
150 */
151 #define MAXPIPEKVA (8*1024*1024)
152 static u_int maxpipekva = MAXPIPEKVA;
153
154 /*
155 * Limit for direct transfers, we cannot, of course limit
156 * the amount of kva for pipes in general though.
157 */
158 #define LIMITPIPEKVA (16*1024*1024)
159 static u_int limitpipekva = LIMITPIPEKVA;
160
161 /*
162 * Limit the number of "big" pipes
163 */
164 #define LIMITBIGPIPES 32
165 static u_int maxbigpipes = LIMITBIGPIPES;
166 static u_int nbigpipe = 0;
167
168 /*
169 * Amount of KVA consumed by pipe buffers.
170 */
171 static u_int amountpipekva = 0;
172
173 static void pipeclose(struct file *fp, struct pipe *pipe);
174 static void pipe_free_kmem(struct pipe *pipe);
175 static int pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *);
176 static int pipelock(struct pipe *pipe, int catch);
177 static inline void pipeunlock(struct pipe *pipe);
178 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
179 #ifndef PIPE_NODIRECT
180 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
181 struct uio *uio);
182 #endif
183 static int pipespace(struct pipe *pipe, int size);
184
185 #ifndef PIPE_NODIRECT
186 static int pipe_loan_alloc(struct pipe *, int);
187 static void pipe_loan_free(struct pipe *);
188 #endif /* PIPE_NODIRECT */
189
190 static int pipe_mutex_ctor(void *, void *, int);
191 static void pipe_mutex_dtor(void *, void *);
192
193 static pool_cache_t pipe_cache;
194 static pool_cache_t pipe_mutex_cache;
195
196 void
197 pipe_init(void)
198 {
199
200 pipe_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipepl",
201 NULL, IPL_NONE, NULL, NULL, NULL);
202 KASSERT(pipe_cache != NULL);
203
204 pipe_mutex_cache = pool_cache_init(sizeof(struct pipe_mutex),
205 coherency_unit, 0, 0, "pipemtxpl", NULL, IPL_NONE, pipe_mutex_ctor,
206 pipe_mutex_dtor, NULL);
207 KASSERT(pipe_cache != NULL);
208 }
209
210 static int
211 pipe_mutex_ctor(void *arg, void *obj, int flag)
212 {
213 struct pipe_mutex *pm = obj;
214
215 mutex_init(&pm->pm_mutex, MUTEX_DEFAULT, IPL_NONE);
216 pm->pm_refcnt = 0;
217
218 return 0;
219 }
220
221 static void
222 pipe_mutex_dtor(void *arg, void *obj)
223 {
224 struct pipe_mutex *pm = obj;
225
226 KASSERT(pm->pm_refcnt == 0);
227
228 mutex_destroy(&pm->pm_mutex);
229 }
230
231 /*
232 * The pipe system call for the DTYPE_PIPE type of pipes
233 */
234
235 /* ARGSUSED */
236 int
237 sys_pipe(struct lwp *l, const void *v, register_t *retval)
238 {
239 struct file *rf, *wf;
240 struct pipe *rpipe, *wpipe;
241 struct pipe_mutex *mutex;
242 int fd, error;
243 proc_t *p;
244
245 p = curproc;
246 rpipe = wpipe = NULL;
247 mutex = pool_cache_get(pipe_mutex_cache, PR_WAITOK);
248 if (mutex == NULL)
249 return (ENOMEM);
250 if (pipe_create(&rpipe, 1, mutex) || pipe_create(&wpipe, 0, mutex)) {
251 pipeclose(NULL, rpipe);
252 pipeclose(NULL, wpipe);
253 return (ENFILE);
254 }
255
256 error = fd_allocfile(&rf, &fd);
257 if (error)
258 goto free2;
259 retval[0] = fd;
260 rf->f_flag = FREAD;
261 rf->f_type = DTYPE_PIPE;
262 rf->f_data = (void *)rpipe;
263 rf->f_ops = &pipeops;
264
265 error = fd_allocfile(&wf, &fd);
266 if (error)
267 goto free3;
268 retval[1] = fd;
269 wf->f_flag = FWRITE;
270 wf->f_type = DTYPE_PIPE;
271 wf->f_data = (void *)wpipe;
272 wf->f_ops = &pipeops;
273
274 rpipe->pipe_peer = wpipe;
275 wpipe->pipe_peer = rpipe;
276
277 fd_affix(p, rf, (int)retval[0]);
278 fd_affix(p, wf, (int)retval[1]);
279 return (0);
280 free3:
281 fd_abort(p, rf, (int)retval[0]);
282 free2:
283 pipeclose(NULL, wpipe);
284 pipeclose(NULL, rpipe);
285
286 return (error);
287 }
288
289 /*
290 * Allocate kva for pipe circular buffer, the space is pageable
291 * This routine will 'realloc' the size of a pipe safely, if it fails
292 * it will retain the old buffer.
293 * If it fails it will return ENOMEM.
294 */
295 static int
296 pipespace(struct pipe *pipe, int size)
297 {
298 void *buffer;
299 /*
300 * Allocate pageable virtual address space. Physical memory is
301 * allocated on demand.
302 */
303 buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
304 UVM_KMF_PAGEABLE);
305 if (buffer == NULL)
306 return (ENOMEM);
307
308 /* free old resources if we're resizing */
309 pipe_free_kmem(pipe);
310 pipe->pipe_buffer.buffer = buffer;
311 pipe->pipe_buffer.size = size;
312 pipe->pipe_buffer.in = 0;
313 pipe->pipe_buffer.out = 0;
314 pipe->pipe_buffer.cnt = 0;
315 atomic_add_int(&amountpipekva, pipe->pipe_buffer.size);
316 return (0);
317 }
318
319 /*
320 * Initialize and allocate VM and memory for pipe.
321 */
322 static int
323 pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *mutex)
324 {
325 struct pipe *pipe;
326 int error;
327
328 pipe = *pipep = pool_cache_get(pipe_cache, PR_WAITOK);
329 mutex->pm_refcnt++;
330
331 /* Initialize */
332 memset(pipe, 0, sizeof(struct pipe));
333 pipe->pipe_state = PIPE_SIGNALR;
334
335 getmicrotime(&pipe->pipe_ctime);
336 pipe->pipe_atime = pipe->pipe_ctime;
337 pipe->pipe_mtime = pipe->pipe_ctime;
338 pipe->pipe_lock = &mutex->pm_mutex;
339 cv_init(&pipe->pipe_rcv, "piperd");
340 cv_init(&pipe->pipe_wcv, "pipewr");
341 cv_init(&pipe->pipe_draincv, "pipedrain");
342 cv_init(&pipe->pipe_lkcv, "pipelk");
343 selinit(&pipe->pipe_sel);
344
345 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
346 return (error);
347
348 return (0);
349 }
350
351
352 /*
353 * Lock a pipe for I/O, blocking other access
354 * Called with pipe spin lock held.
355 * Return with pipe spin lock released on success.
356 */
357 static int
358 pipelock(struct pipe *pipe, int catch)
359 {
360 int error;
361
362 KASSERT(mutex_owned(pipe->pipe_lock));
363
364 while (pipe->pipe_state & PIPE_LOCKFL) {
365 pipe->pipe_state |= PIPE_LWANT;
366 if (catch) {
367 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
368 if (error != 0)
369 return error;
370 } else
371 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
372 }
373
374 pipe->pipe_state |= PIPE_LOCKFL;
375
376 return 0;
377 }
378
379 /*
380 * unlock a pipe I/O lock
381 */
382 static inline void
383 pipeunlock(struct pipe *pipe)
384 {
385
386 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
387
388 pipe->pipe_state &= ~PIPE_LOCKFL;
389 if (pipe->pipe_state & PIPE_LWANT) {
390 pipe->pipe_state &= ~PIPE_LWANT;
391 cv_broadcast(&pipe->pipe_lkcv);
392 }
393 }
394
395 /*
396 * Select/poll wakup. This also sends SIGIO to peer connected to
397 * 'sigpipe' side of pipe.
398 */
399 static void
400 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
401 {
402 int band;
403
404 switch (code) {
405 case POLL_IN:
406 band = POLLIN|POLLRDNORM;
407 break;
408 case POLL_OUT:
409 band = POLLOUT|POLLWRNORM;
410 break;
411 case POLL_HUP:
412 band = POLLHUP;
413 break;
414 case POLL_ERR:
415 band = POLLERR;
416 break;
417 default:
418 band = 0;
419 #ifdef DIAGNOSTIC
420 printf("bad siginfo code %d in pipe notification.\n", code);
421 #endif
422 break;
423 }
424
425 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
426
427 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
428 return;
429
430 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
431 }
432
433 /* ARGSUSED */
434 static int
435 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
436 int flags)
437 {
438 struct pipe *rpipe = (struct pipe *) fp->f_data;
439 struct pipebuf *bp = &rpipe->pipe_buffer;
440 kmutex_t *lock = rpipe->pipe_lock;
441 int error;
442 size_t nread = 0;
443 size_t size;
444 size_t ocnt;
445
446 mutex_enter(lock);
447 ++rpipe->pipe_busy;
448 ocnt = bp->cnt;
449
450 again:
451 error = pipelock(rpipe, 1);
452 if (error)
453 goto unlocked_error;
454
455 while (uio->uio_resid) {
456 /*
457 * normal pipe buffer receive
458 */
459 if (bp->cnt > 0) {
460 size = bp->size - bp->out;
461 if (size > bp->cnt)
462 size = bp->cnt;
463 if (size > uio->uio_resid)
464 size = uio->uio_resid;
465
466 mutex_exit(lock);
467 error = uiomove((char *)bp->buffer + bp->out, size, uio);
468 mutex_enter(lock);
469 if (error)
470 break;
471
472 bp->out += size;
473 if (bp->out >= bp->size)
474 bp->out = 0;
475
476 bp->cnt -= size;
477
478 /*
479 * If there is no more to read in the pipe, reset
480 * its pointers to the beginning. This improves
481 * cache hit stats.
482 */
483 if (bp->cnt == 0) {
484 bp->in = 0;
485 bp->out = 0;
486 }
487 nread += size;
488 continue;
489 }
490
491 #ifndef PIPE_NODIRECT
492 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
493 /*
494 * Direct copy, bypassing a kernel buffer.
495 */
496 void * va;
497
498 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
499
500 size = rpipe->pipe_map.cnt;
501 if (size > uio->uio_resid)
502 size = uio->uio_resid;
503
504 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
505 mutex_exit(lock);
506 error = uiomove(va, size, uio);
507 mutex_enter(lock);
508 if (error)
509 break;
510 nread += size;
511 rpipe->pipe_map.pos += size;
512 rpipe->pipe_map.cnt -= size;
513 if (rpipe->pipe_map.cnt == 0) {
514 rpipe->pipe_state &= ~PIPE_DIRECTR;
515 cv_broadcast(&rpipe->pipe_wcv);
516 }
517 continue;
518 }
519 #endif
520 /*
521 * Break if some data was read.
522 */
523 if (nread > 0)
524 break;
525
526 /*
527 * detect EOF condition
528 * read returns 0 on EOF, no need to set error
529 */
530 if (rpipe->pipe_state & PIPE_EOF)
531 break;
532
533 /*
534 * don't block on non-blocking I/O
535 */
536 if (fp->f_flag & FNONBLOCK) {
537 error = EAGAIN;
538 break;
539 }
540
541 /*
542 * Unlock the pipe buffer for our remaining processing.
543 * We will either break out with an error or we will
544 * sleep and relock to loop.
545 */
546 pipeunlock(rpipe);
547
548 /*
549 * Re-check to see if more direct writes are pending.
550 */
551 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
552 goto again;
553
554 /*
555 * We want to read more, wake up select/poll.
556 */
557 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
558
559 /*
560 * If the "write-side" is blocked, wake it up now.
561 */
562 cv_broadcast(&rpipe->pipe_wcv);
563
564 /* Now wait until the pipe is filled */
565 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
566 if (error != 0)
567 goto unlocked_error;
568 goto again;
569 }
570
571 if (error == 0)
572 getmicrotime(&rpipe->pipe_atime);
573 pipeunlock(rpipe);
574
575 unlocked_error:
576 --rpipe->pipe_busy;
577 if (rpipe->pipe_busy == 0) {
578 cv_broadcast(&rpipe->pipe_draincv);
579 }
580 if (bp->cnt < MINPIPESIZE) {
581 cv_broadcast(&rpipe->pipe_wcv);
582 }
583
584 /*
585 * If anything was read off the buffer, signal to the writer it's
586 * possible to write more data. Also send signal if we are here for the
587 * first time after last write.
588 */
589 if ((bp->size - bp->cnt) >= PIPE_BUF
590 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
591 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
592 rpipe->pipe_state &= ~PIPE_SIGNALR;
593 }
594
595 mutex_exit(lock);
596 return (error);
597 }
598
599 #ifndef PIPE_NODIRECT
600 /*
601 * Allocate structure for loan transfer.
602 */
603 static int
604 pipe_loan_alloc(struct pipe *wpipe, int npages)
605 {
606 vsize_t len;
607
608 len = (vsize_t)npages << PAGE_SHIFT;
609 atomic_add_int(&amountpipekva, len);
610 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
611 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
612 if (wpipe->pipe_map.kva == 0) {
613 atomic_add_int(&amountpipekva, -len);
614 return (ENOMEM);
615 }
616
617 wpipe->pipe_map.npages = npages;
618 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
619 KM_SLEEP);
620 return (0);
621 }
622
623 /*
624 * Free resources allocated for loan transfer.
625 */
626 static void
627 pipe_loan_free(struct pipe *wpipe)
628 {
629 vsize_t len;
630
631 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
632 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
633 wpipe->pipe_map.kva = 0;
634 atomic_add_int(&amountpipekva, -len);
635 kmem_free(wpipe->pipe_map.pgs,
636 wpipe->pipe_map.npages * sizeof(struct vm_page *));
637 wpipe->pipe_map.pgs = NULL;
638 }
639
640 /*
641 * NetBSD direct write, using uvm_loan() mechanism.
642 * This implements the pipe buffer write mechanism. Note that only
643 * a direct write OR a normal pipe write can be pending at any given time.
644 * If there are any characters in the pipe buffer, the direct write will
645 * be deferred until the receiving process grabs all of the bytes from
646 * the pipe buffer. Then the direct mapping write is set-up.
647 *
648 * Called with the long-term pipe lock held.
649 */
650 static int
651 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
652 {
653 int error, npages, j;
654 struct vm_page **pgs;
655 vaddr_t bbase, kva, base, bend;
656 vsize_t blen, bcnt;
657 voff_t bpos;
658 kmutex_t *lock = wpipe->pipe_lock;
659
660 KASSERT(mutex_owned(wpipe->pipe_lock));
661 KASSERT(wpipe->pipe_map.cnt == 0);
662
663 mutex_exit(lock);
664
665 /*
666 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
667 * not aligned to PAGE_SIZE.
668 */
669 bbase = (vaddr_t)uio->uio_iov->iov_base;
670 base = trunc_page(bbase);
671 bend = round_page(bbase + uio->uio_iov->iov_len);
672 blen = bend - base;
673 bpos = bbase - base;
674
675 if (blen > PIPE_DIRECT_CHUNK) {
676 blen = PIPE_DIRECT_CHUNK;
677 bend = base + blen;
678 bcnt = PIPE_DIRECT_CHUNK - bpos;
679 } else {
680 bcnt = uio->uio_iov->iov_len;
681 }
682 npages = blen >> PAGE_SHIFT;
683
684 /*
685 * Free the old kva if we need more pages than we have
686 * allocated.
687 */
688 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
689 pipe_loan_free(wpipe);
690
691 /* Allocate new kva. */
692 if (wpipe->pipe_map.kva == 0) {
693 error = pipe_loan_alloc(wpipe, npages);
694 if (error) {
695 mutex_enter(lock);
696 return (error);
697 }
698 }
699
700 /* Loan the write buffer memory from writer process */
701 pgs = wpipe->pipe_map.pgs;
702 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
703 pgs, UVM_LOAN_TOPAGE);
704 if (error) {
705 pipe_loan_free(wpipe);
706 mutex_enter(lock);
707 return (ENOMEM); /* so that caller fallback to ordinary write */
708 }
709
710 /* Enter the loaned pages to kva */
711 kva = wpipe->pipe_map.kva;
712 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
713 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
714 }
715 pmap_update(pmap_kernel());
716
717 /* Now we can put the pipe in direct write mode */
718 wpipe->pipe_map.pos = bpos;
719 wpipe->pipe_map.cnt = bcnt;
720
721 /*
722 * But before we can let someone do a direct read, we
723 * have to wait until the pipe is drained. Release the
724 * pipe lock while we wait.
725 */
726 mutex_enter(lock);
727 wpipe->pipe_state |= PIPE_DIRECTW;
728 pipeunlock(wpipe);
729
730 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
731 cv_broadcast(&wpipe->pipe_rcv);
732 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
733 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
734 error = EPIPE;
735 }
736
737 /* Pipe is drained; next read will off the direct buffer */
738 wpipe->pipe_state |= PIPE_DIRECTR;
739
740 /* Wait until the reader is done */
741 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
742 cv_broadcast(&wpipe->pipe_rcv);
743 pipeselwakeup(wpipe, wpipe, POLL_IN);
744 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
745 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
746 error = EPIPE;
747 }
748
749 /* Take pipe out of direct write mode */
750 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
751
752 /* Acquire the pipe lock and cleanup */
753 (void)pipelock(wpipe, 0);
754 mutex_exit(lock);
755
756 if (pgs != NULL) {
757 pmap_kremove(wpipe->pipe_map.kva, blen);
758 pmap_update(pmap_kernel());
759 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
760 }
761 if (error || amountpipekva > maxpipekva)
762 pipe_loan_free(wpipe);
763
764 mutex_enter(lock);
765 if (error) {
766 pipeselwakeup(wpipe, wpipe, POLL_ERR);
767
768 /*
769 * If nothing was read from what we offered, return error
770 * straight on. Otherwise update uio resid first. Caller
771 * will deal with the error condition, returning short
772 * write, error, or restarting the write(2) as appropriate.
773 */
774 if (wpipe->pipe_map.cnt == bcnt) {
775 wpipe->pipe_map.cnt = 0;
776 cv_broadcast(&wpipe->pipe_wcv);
777 return (error);
778 }
779
780 bcnt -= wpipe->pipe_map.cnt;
781 }
782
783 uio->uio_resid -= bcnt;
784 /* uio_offset not updated, not set/used for write(2) */
785 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
786 uio->uio_iov->iov_len -= bcnt;
787 if (uio->uio_iov->iov_len == 0) {
788 uio->uio_iov++;
789 uio->uio_iovcnt--;
790 }
791
792 wpipe->pipe_map.cnt = 0;
793 return (error);
794 }
795 #endif /* !PIPE_NODIRECT */
796
797 static int
798 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
799 int flags)
800 {
801 struct pipe *wpipe, *rpipe;
802 struct pipebuf *bp;
803 kmutex_t *lock;
804 int error;
805
806 /* We want to write to our peer */
807 rpipe = (struct pipe *) fp->f_data;
808 lock = rpipe->pipe_lock;
809 error = 0;
810
811 mutex_enter(lock);
812 wpipe = rpipe->pipe_peer;
813
814 /*
815 * Detect loss of pipe read side, issue SIGPIPE if lost.
816 */
817 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
818 mutex_exit(lock);
819 return EPIPE;
820 }
821 ++wpipe->pipe_busy;
822
823 /* Aquire the long-term pipe lock */
824 if ((error = pipelock(wpipe, 1)) != 0) {
825 --wpipe->pipe_busy;
826 if (wpipe->pipe_busy == 0) {
827 cv_broadcast(&wpipe->pipe_draincv);
828 }
829 mutex_exit(lock);
830 return (error);
831 }
832
833 bp = &wpipe->pipe_buffer;
834
835 /*
836 * If it is advantageous to resize the pipe buffer, do so.
837 */
838 if ((uio->uio_resid > PIPE_SIZE) &&
839 (nbigpipe < maxbigpipes) &&
840 #ifndef PIPE_NODIRECT
841 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
842 #endif
843 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
844
845 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
846 atomic_inc_uint(&nbigpipe);
847 }
848
849 while (uio->uio_resid) {
850 size_t space;
851
852 #ifndef PIPE_NODIRECT
853 /*
854 * Pipe buffered writes cannot be coincidental with
855 * direct writes. Also, only one direct write can be
856 * in progress at any one time. We wait until the currently
857 * executing direct write is completed before continuing.
858 *
859 * We break out if a signal occurs or the reader goes away.
860 */
861 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
862 cv_broadcast(&wpipe->pipe_rcv);
863 pipeunlock(wpipe);
864 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
865 (void)pipelock(wpipe, 0);
866 if (wpipe->pipe_state & PIPE_EOF)
867 error = EPIPE;
868 }
869 if (error)
870 break;
871
872 /*
873 * If the transfer is large, we can gain performance if
874 * we do process-to-process copies directly.
875 * If the write is non-blocking, we don't use the
876 * direct write mechanism.
877 *
878 * The direct write mechanism will detect the reader going
879 * away on us.
880 */
881 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
882 (fp->f_flag & FNONBLOCK) == 0 &&
883 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
884 error = pipe_direct_write(fp, wpipe, uio);
885
886 /*
887 * Break out if error occurred, unless it's ENOMEM.
888 * ENOMEM means we failed to allocate some resources
889 * for direct write, so we just fallback to ordinary
890 * write. If the direct write was successful,
891 * process rest of data via ordinary write.
892 */
893 if (error == 0)
894 continue;
895
896 if (error != ENOMEM)
897 break;
898 }
899 #endif /* PIPE_NODIRECT */
900
901 space = bp->size - bp->cnt;
902
903 /* Writes of size <= PIPE_BUF must be atomic. */
904 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
905 space = 0;
906
907 if (space > 0) {
908 int size; /* Transfer size */
909 int segsize; /* first segment to transfer */
910
911 /*
912 * Transfer size is minimum of uio transfer
913 * and free space in pipe buffer.
914 */
915 if (space > uio->uio_resid)
916 size = uio->uio_resid;
917 else
918 size = space;
919 /*
920 * First segment to transfer is minimum of
921 * transfer size and contiguous space in
922 * pipe buffer. If first segment to transfer
923 * is less than the transfer size, we've got
924 * a wraparound in the buffer.
925 */
926 segsize = bp->size - bp->in;
927 if (segsize > size)
928 segsize = size;
929
930 /* Transfer first segment */
931 mutex_exit(lock);
932 error = uiomove((char *)bp->buffer + bp->in, segsize,
933 uio);
934
935 if (error == 0 && segsize < size) {
936 /*
937 * Transfer remaining part now, to
938 * support atomic writes. Wraparound
939 * happened.
940 */
941 #ifdef DEBUG
942 if (bp->in + segsize != bp->size)
943 panic("Expected pipe buffer wraparound disappeared");
944 #endif
945
946 error = uiomove(bp->buffer,
947 size - segsize, uio);
948 }
949 mutex_enter(lock);
950 if (error)
951 break;
952
953 bp->in += size;
954 if (bp->in >= bp->size) {
955 #ifdef DEBUG
956 if (bp->in != size - segsize + bp->size)
957 panic("Expected wraparound bad");
958 #endif
959 bp->in = size - segsize;
960 }
961
962 bp->cnt += size;
963 #ifdef DEBUG
964 if (bp->cnt > bp->size)
965 panic("Pipe buffer overflow");
966 #endif
967 } else {
968 /*
969 * If the "read-side" has been blocked, wake it up now.
970 */
971 cv_broadcast(&wpipe->pipe_rcv);
972
973 /*
974 * don't block on non-blocking I/O
975 */
976 if (fp->f_flag & FNONBLOCK) {
977 error = EAGAIN;
978 break;
979 }
980
981 /*
982 * We have no more space and have something to offer,
983 * wake up select/poll.
984 */
985 if (bp->cnt)
986 pipeselwakeup(wpipe, wpipe, POLL_OUT);
987
988 pipeunlock(wpipe);
989 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
990 (void)pipelock(wpipe, 0);
991 if (error != 0)
992 break;
993 /*
994 * If read side wants to go away, we just issue a signal
995 * to ourselves.
996 */
997 if (wpipe->pipe_state & PIPE_EOF) {
998 error = EPIPE;
999 break;
1000 }
1001 }
1002 }
1003
1004 --wpipe->pipe_busy;
1005 if (wpipe->pipe_busy == 0) {
1006 cv_broadcast(&wpipe->pipe_draincv);
1007 }
1008 if (bp->cnt > 0) {
1009 cv_broadcast(&wpipe->pipe_rcv);
1010 }
1011
1012 /*
1013 * Don't return EPIPE if I/O was successful
1014 */
1015 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1016 error = 0;
1017
1018 if (error == 0)
1019 getmicrotime(&wpipe->pipe_mtime);
1020
1021 /*
1022 * We have something to offer, wake up select/poll.
1023 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1024 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1025 */
1026 if (bp->cnt)
1027 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1028
1029 /*
1030 * Arrange for next read(2) to do a signal.
1031 */
1032 wpipe->pipe_state |= PIPE_SIGNALR;
1033
1034 pipeunlock(wpipe);
1035 mutex_exit(lock);
1036 return (error);
1037 }
1038
1039 /*
1040 * we implement a very minimal set of ioctls for compatibility with sockets.
1041 */
1042 int
1043 pipe_ioctl(struct file *fp, u_long cmd, void *data)
1044 {
1045 struct pipe *pipe = fp->f_data;
1046 kmutex_t *lock = pipe->pipe_lock;
1047
1048 switch (cmd) {
1049
1050 case FIONBIO:
1051 return (0);
1052
1053 case FIOASYNC:
1054 mutex_enter(lock);
1055 if (*(int *)data) {
1056 pipe->pipe_state |= PIPE_ASYNC;
1057 } else {
1058 pipe->pipe_state &= ~PIPE_ASYNC;
1059 }
1060 mutex_exit(lock);
1061 return (0);
1062
1063 case FIONREAD:
1064 mutex_enter(lock);
1065 #ifndef PIPE_NODIRECT
1066 if (pipe->pipe_state & PIPE_DIRECTW)
1067 *(int *)data = pipe->pipe_map.cnt;
1068 else
1069 #endif
1070 *(int *)data = pipe->pipe_buffer.cnt;
1071 mutex_exit(lock);
1072 return (0);
1073
1074 case FIONWRITE:
1075 /* Look at other side */
1076 pipe = pipe->pipe_peer;
1077 mutex_enter(lock);
1078 #ifndef PIPE_NODIRECT
1079 if (pipe->pipe_state & PIPE_DIRECTW)
1080 *(int *)data = pipe->pipe_map.cnt;
1081 else
1082 #endif
1083 *(int *)data = pipe->pipe_buffer.cnt;
1084 mutex_exit(lock);
1085 return (0);
1086
1087 case FIONSPACE:
1088 /* Look at other side */
1089 pipe = pipe->pipe_peer;
1090 mutex_enter(lock);
1091 #ifndef PIPE_NODIRECT
1092 /*
1093 * If we're in direct-mode, we don't really have a
1094 * send queue, and any other write will block. Thus
1095 * zero seems like the best answer.
1096 */
1097 if (pipe->pipe_state & PIPE_DIRECTW)
1098 *(int *)data = 0;
1099 else
1100 #endif
1101 *(int *)data = pipe->pipe_buffer.size -
1102 pipe->pipe_buffer.cnt;
1103 mutex_exit(lock);
1104 return (0);
1105
1106 case TIOCSPGRP:
1107 case FIOSETOWN:
1108 return fsetown(&pipe->pipe_pgid, cmd, data);
1109
1110 case TIOCGPGRP:
1111 case FIOGETOWN:
1112 return fgetown(pipe->pipe_pgid, cmd, data);
1113
1114 }
1115 return (EPASSTHROUGH);
1116 }
1117
1118 int
1119 pipe_poll(struct file *fp, int events)
1120 {
1121 struct pipe *rpipe = fp->f_data;
1122 struct pipe *wpipe;
1123 int eof = 0;
1124 int revents = 0;
1125
1126 mutex_enter(rpipe->pipe_lock);
1127 wpipe = rpipe->pipe_peer;
1128
1129 if (events & (POLLIN | POLLRDNORM))
1130 if ((rpipe->pipe_buffer.cnt > 0) ||
1131 #ifndef PIPE_NODIRECT
1132 (rpipe->pipe_state & PIPE_DIRECTR) ||
1133 #endif
1134 (rpipe->pipe_state & PIPE_EOF))
1135 revents |= events & (POLLIN | POLLRDNORM);
1136
1137 eof |= (rpipe->pipe_state & PIPE_EOF);
1138
1139 if (wpipe == NULL)
1140 revents |= events & (POLLOUT | POLLWRNORM);
1141 else {
1142 if (events & (POLLOUT | POLLWRNORM))
1143 if ((wpipe->pipe_state & PIPE_EOF) || (
1144 #ifndef PIPE_NODIRECT
1145 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1146 #endif
1147 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1148 revents |= events & (POLLOUT | POLLWRNORM);
1149
1150 eof |= (wpipe->pipe_state & PIPE_EOF);
1151 }
1152
1153 if (wpipe == NULL || eof)
1154 revents |= POLLHUP;
1155
1156 if (revents == 0) {
1157 if (events & (POLLIN | POLLRDNORM))
1158 selrecord(curlwp, &rpipe->pipe_sel);
1159
1160 if (events & (POLLOUT | POLLWRNORM))
1161 selrecord(curlwp, &wpipe->pipe_sel);
1162 }
1163 mutex_exit(rpipe->pipe_lock);
1164
1165 return (revents);
1166 }
1167
1168 static int
1169 pipe_stat(struct file *fp, struct stat *ub)
1170 {
1171 struct pipe *pipe = fp->f_data;
1172
1173 memset((void *)ub, 0, sizeof(*ub));
1174 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1175 ub->st_blksize = pipe->pipe_buffer.size;
1176 if (ub->st_blksize == 0 && pipe->pipe_peer)
1177 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1178 ub->st_size = pipe->pipe_buffer.cnt;
1179 ub->st_blocks = (ub->st_size) ? 1 : 0;
1180 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1181 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1182 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1183 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1184 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1185
1186 /*
1187 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1188 * XXX (st_dev, st_ino) should be unique.
1189 */
1190 return (0);
1191 }
1192
1193 /* ARGSUSED */
1194 static int
1195 pipe_close(struct file *fp)
1196 {
1197 struct pipe *pipe = fp->f_data;
1198
1199 fp->f_data = NULL;
1200 pipeclose(fp, pipe);
1201 return (0);
1202 }
1203
1204 static void
1205 pipe_free_kmem(struct pipe *pipe)
1206 {
1207
1208 if (pipe->pipe_buffer.buffer != NULL) {
1209 if (pipe->pipe_buffer.size > PIPE_SIZE)
1210 atomic_dec_uint(&nbigpipe);
1211 uvm_km_free(kernel_map,
1212 (vaddr_t)pipe->pipe_buffer.buffer,
1213 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1214 atomic_add_int(&amountpipekva, -pipe->pipe_buffer.size);
1215 pipe->pipe_buffer.buffer = NULL;
1216 }
1217 #ifndef PIPE_NODIRECT
1218 if (pipe->pipe_map.kva != 0) {
1219 pipe_loan_free(pipe);
1220 pipe->pipe_map.cnt = 0;
1221 pipe->pipe_map.kva = 0;
1222 pipe->pipe_map.pos = 0;
1223 pipe->pipe_map.npages = 0;
1224 }
1225 #endif /* !PIPE_NODIRECT */
1226 }
1227
1228 /*
1229 * shutdown the pipe
1230 */
1231 static void
1232 pipeclose(struct file *fp, struct pipe *pipe)
1233 {
1234 struct pipe_mutex *mutex;
1235 kmutex_t *lock;
1236 struct pipe *ppipe;
1237 u_int refcnt;
1238
1239 if (pipe == NULL)
1240 return;
1241
1242 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1243 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1244 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1245 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1246
1247 lock = pipe->pipe_lock;
1248 mutex_enter(lock);
1249 pipeselwakeup(pipe, pipe, POLL_HUP);
1250
1251 /*
1252 * If the other side is blocked, wake it up saying that
1253 * we want to close it down.
1254 */
1255 pipe->pipe_state |= PIPE_EOF;
1256 if (pipe->pipe_busy) {
1257 while (pipe->pipe_busy) {
1258 cv_broadcast(&pipe->pipe_wcv);
1259 cv_wait_sig(&pipe->pipe_draincv, lock);
1260 }
1261 }
1262
1263 /*
1264 * Disconnect from peer
1265 */
1266 if ((ppipe = pipe->pipe_peer) != NULL) {
1267 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1268 ppipe->pipe_state |= PIPE_EOF;
1269 cv_broadcast(&ppipe->pipe_rcv);
1270 ppipe->pipe_peer = NULL;
1271 }
1272
1273 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1274
1275 mutex = (struct pipe_mutex *)lock;
1276 refcnt = --(mutex->pm_refcnt);
1277 KASSERT(refcnt == 0 || refcnt == 1);
1278 mutex_exit(lock);
1279
1280 /*
1281 * free resources
1282 */
1283 pipe_free_kmem(pipe);
1284 cv_destroy(&pipe->pipe_rcv);
1285 cv_destroy(&pipe->pipe_wcv);
1286 cv_destroy(&pipe->pipe_draincv);
1287 cv_destroy(&pipe->pipe_lkcv);
1288 seldestroy(&pipe->pipe_sel);
1289 pool_cache_put(pipe_cache, pipe);
1290 if (refcnt == 0)
1291 pool_cache_put(pipe_mutex_cache, mutex);
1292 }
1293
1294 static void
1295 filt_pipedetach(struct knote *kn)
1296 {
1297 struct pipe *pipe;
1298 kmutex_t *lock;
1299
1300 pipe = ((file_t *)kn->kn_obj)->f_data;
1301 lock = pipe->pipe_lock;
1302
1303 mutex_enter(lock);
1304
1305 switch(kn->kn_filter) {
1306 case EVFILT_WRITE:
1307 /* need the peer structure, not our own */
1308 pipe = pipe->pipe_peer;
1309
1310 /* if reader end already closed, just return */
1311 if (pipe == NULL) {
1312 mutex_exit(lock);
1313 return;
1314 }
1315
1316 break;
1317 default:
1318 /* nothing to do */
1319 break;
1320 }
1321
1322 #ifdef DIAGNOSTIC
1323 if (kn->kn_hook != pipe)
1324 panic("filt_pipedetach: inconsistent knote");
1325 #endif
1326
1327 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1328 mutex_exit(lock);
1329 }
1330
1331 /*ARGSUSED*/
1332 static int
1333 filt_piperead(struct knote *kn, long hint)
1334 {
1335 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1336 struct pipe *wpipe;
1337
1338 if ((hint & NOTE_SUBMIT) == 0) {
1339 mutex_enter(rpipe->pipe_lock);
1340 }
1341 wpipe = rpipe->pipe_peer;
1342 kn->kn_data = rpipe->pipe_buffer.cnt;
1343
1344 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1345 kn->kn_data = rpipe->pipe_map.cnt;
1346
1347 if ((rpipe->pipe_state & PIPE_EOF) ||
1348 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1349 kn->kn_flags |= EV_EOF;
1350 if ((hint & NOTE_SUBMIT) == 0) {
1351 mutex_exit(rpipe->pipe_lock);
1352 }
1353 return (1);
1354 }
1355
1356 if ((hint & NOTE_SUBMIT) == 0) {
1357 mutex_exit(rpipe->pipe_lock);
1358 }
1359 return (kn->kn_data > 0);
1360 }
1361
1362 /*ARGSUSED*/
1363 static int
1364 filt_pipewrite(struct knote *kn, long hint)
1365 {
1366 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1367 struct pipe *wpipe;
1368
1369 if ((hint & NOTE_SUBMIT) == 0) {
1370 mutex_enter(rpipe->pipe_lock);
1371 }
1372 wpipe = rpipe->pipe_peer;
1373
1374 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1375 kn->kn_data = 0;
1376 kn->kn_flags |= EV_EOF;
1377 if ((hint & NOTE_SUBMIT) == 0) {
1378 mutex_exit(rpipe->pipe_lock);
1379 }
1380 return (1);
1381 }
1382 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1383 if (wpipe->pipe_state & PIPE_DIRECTW)
1384 kn->kn_data = 0;
1385
1386 if ((hint & NOTE_SUBMIT) == 0) {
1387 mutex_exit(rpipe->pipe_lock);
1388 }
1389 return (kn->kn_data >= PIPE_BUF);
1390 }
1391
1392 static const struct filterops pipe_rfiltops =
1393 { 1, NULL, filt_pipedetach, filt_piperead };
1394 static const struct filterops pipe_wfiltops =
1395 { 1, NULL, filt_pipedetach, filt_pipewrite };
1396
1397 /*ARGSUSED*/
1398 static int
1399 pipe_kqfilter(struct file *fp, struct knote *kn)
1400 {
1401 struct pipe *pipe;
1402 kmutex_t *lock;
1403
1404 pipe = ((file_t *)kn->kn_obj)->f_data;
1405 lock = pipe->pipe_lock;
1406
1407 mutex_enter(lock);
1408
1409 switch (kn->kn_filter) {
1410 case EVFILT_READ:
1411 kn->kn_fop = &pipe_rfiltops;
1412 break;
1413 case EVFILT_WRITE:
1414 kn->kn_fop = &pipe_wfiltops;
1415 pipe = pipe->pipe_peer;
1416 if (pipe == NULL) {
1417 /* other end of pipe has been closed */
1418 mutex_exit(lock);
1419 return (EBADF);
1420 }
1421 break;
1422 default:
1423 mutex_exit(lock);
1424 return (EINVAL);
1425 }
1426
1427 kn->kn_hook = pipe;
1428 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1429 mutex_exit(lock);
1430
1431 return (0);
1432 }
1433
1434 /*
1435 * Handle pipe sysctls.
1436 */
1437 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1438 {
1439
1440 sysctl_createv(clog, 0, NULL, NULL,
1441 CTLFLAG_PERMANENT,
1442 CTLTYPE_NODE, "kern", NULL,
1443 NULL, 0, NULL, 0,
1444 CTL_KERN, CTL_EOL);
1445 sysctl_createv(clog, 0, NULL, NULL,
1446 CTLFLAG_PERMANENT,
1447 CTLTYPE_NODE, "pipe",
1448 SYSCTL_DESCR("Pipe settings"),
1449 NULL, 0, NULL, 0,
1450 CTL_KERN, KERN_PIPE, CTL_EOL);
1451
1452 sysctl_createv(clog, 0, NULL, NULL,
1453 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1454 CTLTYPE_INT, "maxkvasz",
1455 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1456 "used for pipes"),
1457 NULL, 0, &maxpipekva, 0,
1458 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1459 sysctl_createv(clog, 0, NULL, NULL,
1460 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1461 CTLTYPE_INT, "maxloankvasz",
1462 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1463 NULL, 0, &limitpipekva, 0,
1464 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1465 sysctl_createv(clog, 0, NULL, NULL,
1466 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1467 CTLTYPE_INT, "maxbigpipes",
1468 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1469 NULL, 0, &maxbigpipes, 0,
1470 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1471 sysctl_createv(clog, 0, NULL, NULL,
1472 CTLFLAG_PERMANENT,
1473 CTLTYPE_INT, "nbigpipes",
1474 SYSCTL_DESCR("Number of \"big\" pipes"),
1475 NULL, 0, &nbigpipe, 0,
1476 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1477 sysctl_createv(clog, 0, NULL, NULL,
1478 CTLFLAG_PERMANENT,
1479 CTLTYPE_INT, "kvasize",
1480 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1481 "buffers"),
1482 NULL, 0, &amountpipekva, 0,
1483 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1484 }
1485