sys_pipe.c revision 1.109 1 /* $NetBSD: sys_pipe.c,v 1.109 2009/04/04 10:12:51 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.109 2009/04/04 10:12:51 ad Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 #include <uvm/uvm.h>
96
97 /* Use this define if you want to disable *fancy* VM things. */
98 /* XXX Disabled for now; rare hangs switching between direct/buffered */
99 #define PIPE_NODIRECT
100
101 /*
102 * interfaces to the outside world
103 */
104 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
105 kauth_cred_t cred, int flags);
106 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
107 kauth_cred_t cred, int flags);
108 static int pipe_close(struct file *fp);
109 static int pipe_poll(struct file *fp, int events);
110 static int pipe_kqfilter(struct file *fp, struct knote *kn);
111 static int pipe_stat(struct file *fp, struct stat *sb);
112 static int pipe_ioctl(struct file *fp, u_long cmd, void *data);
113
114 static const struct fileops pipeops = {
115 .fo_read = pipe_read,
116 .fo_write = pipe_write,
117 .fo_ioctl = pipe_ioctl,
118 .fo_fcntl = fnullop_fcntl,
119 .fo_poll = pipe_poll,
120 .fo_stat = pipe_stat,
121 .fo_close = pipe_close,
122 .fo_kqfilter = pipe_kqfilter,
123 .fo_drain = fnullop_drain,
124 };
125
126 /*
127 * Default pipe buffer size(s), this can be kind-of large now because pipe
128 * space is pageable. The pipe code will try to maintain locality of
129 * reference for performance reasons, so small amounts of outstanding I/O
130 * will not wipe the cache.
131 */
132 #define MINPIPESIZE (PIPE_SIZE/3)
133 #define MAXPIPESIZE (2*PIPE_SIZE/3)
134
135 /*
136 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
137 * is there so that on large systems, we don't exhaust it.
138 */
139 #define MAXPIPEKVA (8*1024*1024)
140 static u_int maxpipekva = MAXPIPEKVA;
141
142 /*
143 * Limit for direct transfers, we cannot, of course limit
144 * the amount of kva for pipes in general though.
145 */
146 #define LIMITPIPEKVA (16*1024*1024)
147 static u_int limitpipekva = LIMITPIPEKVA;
148
149 /*
150 * Limit the number of "big" pipes
151 */
152 #define LIMITBIGPIPES 32
153 static u_int maxbigpipes = LIMITBIGPIPES;
154 static u_int nbigpipe = 0;
155
156 /*
157 * Amount of KVA consumed by pipe buffers.
158 */
159 static u_int amountpipekva = 0;
160
161 static void pipeclose(struct file *fp, struct pipe *pipe);
162 static void pipe_free_kmem(struct pipe *pipe);
163 static int pipe_create(struct pipe **pipep, pool_cache_t, kmutex_t *);
164 static int pipelock(struct pipe *pipe, int catch);
165 static inline void pipeunlock(struct pipe *pipe);
166 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
167 #ifndef PIPE_NODIRECT
168 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
169 struct uio *uio);
170 #endif
171 static int pipespace(struct pipe *pipe, int size);
172 static int pipe_ctor(void *, void *, int);
173 static void pipe_dtor(void *, void *);
174
175 #ifndef PIPE_NODIRECT
176 static int pipe_loan_alloc(struct pipe *, int);
177 static void pipe_loan_free(struct pipe *);
178 #endif /* PIPE_NODIRECT */
179
180 static pool_cache_t pipe_wr_cache;
181 static pool_cache_t pipe_rd_cache;
182
183 void
184 pipe_init(void)
185 {
186
187 /* Writer side is not automatically allocated KVA. */
188 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
189 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
190 KASSERT(pipe_wr_cache != NULL);
191
192 /* Reader side gets preallocated KVA. */
193 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
194 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
195 KASSERT(pipe_rd_cache != NULL);
196 }
197
198 static int
199 pipe_ctor(void *arg, void *obj, int flags)
200 {
201 struct pipe *pipe;
202 vaddr_t va;
203
204 pipe = obj;
205
206 memset(pipe, 0, sizeof(struct pipe));
207 if (arg != NULL) {
208 /* Preallocate space. */
209 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
210 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
211 KASSERT(va != 0);
212 pipe->pipe_kmem = va;
213 atomic_add_int(&amountpipekva, PIPE_SIZE);
214 }
215 cv_init(&pipe->pipe_rcv, "piperd");
216 cv_init(&pipe->pipe_wcv, "pipewr");
217 cv_init(&pipe->pipe_draincv, "pipedrain");
218 cv_init(&pipe->pipe_lkcv, "pipelk");
219 selinit(&pipe->pipe_sel);
220 pipe->pipe_state = PIPE_SIGNALR;
221
222 return 0;
223 }
224
225 static void
226 pipe_dtor(void *arg, void *obj)
227 {
228 struct pipe *pipe;
229
230 pipe = obj;
231
232 cv_destroy(&pipe->pipe_rcv);
233 cv_destroy(&pipe->pipe_wcv);
234 cv_destroy(&pipe->pipe_draincv);
235 cv_destroy(&pipe->pipe_lkcv);
236 seldestroy(&pipe->pipe_sel);
237 if (pipe->pipe_kmem != 0) {
238 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
239 UVM_KMF_PAGEABLE);
240 atomic_add_int(&amountpipekva, -PIPE_SIZE);
241 }
242 }
243
244 /*
245 * The pipe system call for the DTYPE_PIPE type of pipes
246 */
247
248 /* ARGSUSED */
249 int
250 sys_pipe(struct lwp *l, const void *v, register_t *retval)
251 {
252 struct file *rf, *wf;
253 struct pipe *rpipe, *wpipe;
254 kmutex_t *mutex;
255 int fd, error;
256 proc_t *p;
257
258 p = curproc;
259 rpipe = wpipe = NULL;
260 mutex = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
261 if (mutex == NULL)
262 return (ENOMEM);
263 mutex_obj_hold(mutex);
264 if (pipe_create(&rpipe, pipe_rd_cache, mutex) ||
265 pipe_create(&wpipe, pipe_wr_cache, mutex)) {
266 pipeclose(NULL, rpipe);
267 pipeclose(NULL, wpipe);
268 return (ENFILE);
269 }
270
271 error = fd_allocfile(&rf, &fd);
272 if (error)
273 goto free2;
274 retval[0] = fd;
275 rf->f_flag = FREAD;
276 rf->f_type = DTYPE_PIPE;
277 rf->f_data = (void *)rpipe;
278 rf->f_ops = &pipeops;
279
280 error = fd_allocfile(&wf, &fd);
281 if (error)
282 goto free3;
283 retval[1] = fd;
284 wf->f_flag = FWRITE;
285 wf->f_type = DTYPE_PIPE;
286 wf->f_data = (void *)wpipe;
287 wf->f_ops = &pipeops;
288
289 rpipe->pipe_peer = wpipe;
290 wpipe->pipe_peer = rpipe;
291
292 fd_affix(p, rf, (int)retval[0]);
293 fd_affix(p, wf, (int)retval[1]);
294 return (0);
295 free3:
296 fd_abort(p, rf, (int)retval[0]);
297 free2:
298 pipeclose(NULL, wpipe);
299 pipeclose(NULL, rpipe);
300
301 return (error);
302 }
303
304 /*
305 * Allocate kva for pipe circular buffer, the space is pageable
306 * This routine will 'realloc' the size of a pipe safely, if it fails
307 * it will retain the old buffer.
308 * If it fails it will return ENOMEM.
309 */
310 static int
311 pipespace(struct pipe *pipe, int size)
312 {
313 void *buffer;
314
315 /*
316 * Allocate pageable virtual address space. Physical memory is
317 * allocated on demand.
318 */
319 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
320 buffer = (void *)pipe->pipe_kmem;
321 } else {
322 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
323 0, UVM_KMF_PAGEABLE);
324 if (buffer == NULL)
325 return (ENOMEM);
326 atomic_add_int(&amountpipekva, size);
327 }
328
329 /* free old resources if we're resizing */
330 pipe_free_kmem(pipe);
331 pipe->pipe_buffer.buffer = buffer;
332 pipe->pipe_buffer.size = size;
333 pipe->pipe_buffer.in = 0;
334 pipe->pipe_buffer.out = 0;
335 pipe->pipe_buffer.cnt = 0;
336 return (0);
337 }
338
339 /*
340 * Initialize and allocate VM and memory for pipe.
341 */
342 static int
343 pipe_create(struct pipe **pipep, pool_cache_t cache, kmutex_t *mutex)
344 {
345 struct pipe *pipe;
346 int error;
347
348 pipe = pool_cache_get(cache, PR_WAITOK);
349 KASSERT(pipe != NULL);
350 *pipep = pipe;
351 error = 0;
352 getmicrotime(&pipe->pipe_ctime);
353 pipe->pipe_atime = pipe->pipe_ctime;
354 pipe->pipe_mtime = pipe->pipe_ctime;
355 pipe->pipe_lock = mutex;
356 if (cache == pipe_rd_cache) {
357 error = pipespace(pipe, PIPE_SIZE);
358 } else {
359 pipe->pipe_buffer.buffer = NULL;
360 pipe->pipe_buffer.size = 0;
361 pipe->pipe_buffer.in = 0;
362 pipe->pipe_buffer.out = 0;
363 pipe->pipe_buffer.cnt = 0;
364 }
365 return error;
366 }
367
368 /*
369 * Lock a pipe for I/O, blocking other access
370 * Called with pipe spin lock held.
371 * Return with pipe spin lock released on success.
372 */
373 static int
374 pipelock(struct pipe *pipe, int catch)
375 {
376 int error;
377
378 KASSERT(mutex_owned(pipe->pipe_lock));
379
380 while (pipe->pipe_state & PIPE_LOCKFL) {
381 pipe->pipe_state |= PIPE_LWANT;
382 if (catch) {
383 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
384 if (error != 0)
385 return error;
386 } else
387 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
388 }
389
390 pipe->pipe_state |= PIPE_LOCKFL;
391
392 return 0;
393 }
394
395 /*
396 * unlock a pipe I/O lock
397 */
398 static inline void
399 pipeunlock(struct pipe *pipe)
400 {
401
402 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
403
404 pipe->pipe_state &= ~PIPE_LOCKFL;
405 if (pipe->pipe_state & PIPE_LWANT) {
406 pipe->pipe_state &= ~PIPE_LWANT;
407 cv_broadcast(&pipe->pipe_lkcv);
408 }
409 }
410
411 /*
412 * Select/poll wakup. This also sends SIGIO to peer connected to
413 * 'sigpipe' side of pipe.
414 */
415 static void
416 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
417 {
418 int band;
419
420 switch (code) {
421 case POLL_IN:
422 band = POLLIN|POLLRDNORM;
423 break;
424 case POLL_OUT:
425 band = POLLOUT|POLLWRNORM;
426 break;
427 case POLL_HUP:
428 band = POLLHUP;
429 break;
430 case POLL_ERR:
431 band = POLLERR;
432 break;
433 default:
434 band = 0;
435 #ifdef DIAGNOSTIC
436 printf("bad siginfo code %d in pipe notification.\n", code);
437 #endif
438 break;
439 }
440
441 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
442
443 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
444 return;
445
446 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
447 }
448
449 /* ARGSUSED */
450 static int
451 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
452 int flags)
453 {
454 struct pipe *rpipe = (struct pipe *) fp->f_data;
455 struct pipebuf *bp = &rpipe->pipe_buffer;
456 kmutex_t *lock = rpipe->pipe_lock;
457 int error;
458 size_t nread = 0;
459 size_t size;
460 size_t ocnt;
461
462 mutex_enter(lock);
463 ++rpipe->pipe_busy;
464 ocnt = bp->cnt;
465
466 again:
467 error = pipelock(rpipe, 1);
468 if (error)
469 goto unlocked_error;
470
471 while (uio->uio_resid) {
472 /*
473 * normal pipe buffer receive
474 */
475 if (bp->cnt > 0) {
476 size = bp->size - bp->out;
477 if (size > bp->cnt)
478 size = bp->cnt;
479 if (size > uio->uio_resid)
480 size = uio->uio_resid;
481
482 mutex_exit(lock);
483 error = uiomove((char *)bp->buffer + bp->out, size, uio);
484 mutex_enter(lock);
485 if (error)
486 break;
487
488 bp->out += size;
489 if (bp->out >= bp->size)
490 bp->out = 0;
491
492 bp->cnt -= size;
493
494 /*
495 * If there is no more to read in the pipe, reset
496 * its pointers to the beginning. This improves
497 * cache hit stats.
498 */
499 if (bp->cnt == 0) {
500 bp->in = 0;
501 bp->out = 0;
502 }
503 nread += size;
504 continue;
505 }
506
507 #ifndef PIPE_NODIRECT
508 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
509 /*
510 * Direct copy, bypassing a kernel buffer.
511 */
512 void * va;
513
514 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
515
516 size = rpipe->pipe_map.cnt;
517 if (size > uio->uio_resid)
518 size = uio->uio_resid;
519
520 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
521 mutex_exit(lock);
522 error = uiomove(va, size, uio);
523 mutex_enter(lock);
524 if (error)
525 break;
526 nread += size;
527 rpipe->pipe_map.pos += size;
528 rpipe->pipe_map.cnt -= size;
529 if (rpipe->pipe_map.cnt == 0) {
530 rpipe->pipe_state &= ~PIPE_DIRECTR;
531 cv_broadcast(&rpipe->pipe_wcv);
532 }
533 continue;
534 }
535 #endif
536 /*
537 * Break if some data was read.
538 */
539 if (nread > 0)
540 break;
541
542 /*
543 * detect EOF condition
544 * read returns 0 on EOF, no need to set error
545 */
546 if (rpipe->pipe_state & PIPE_EOF)
547 break;
548
549 /*
550 * don't block on non-blocking I/O
551 */
552 if (fp->f_flag & FNONBLOCK) {
553 error = EAGAIN;
554 break;
555 }
556
557 /*
558 * Unlock the pipe buffer for our remaining processing.
559 * We will either break out with an error or we will
560 * sleep and relock to loop.
561 */
562 pipeunlock(rpipe);
563
564 /*
565 * Re-check to see if more direct writes are pending.
566 */
567 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
568 goto again;
569
570 /*
571 * We want to read more, wake up select/poll.
572 */
573 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
574
575 /*
576 * If the "write-side" is blocked, wake it up now.
577 */
578 cv_broadcast(&rpipe->pipe_wcv);
579
580 /* Now wait until the pipe is filled */
581 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
582 if (error != 0)
583 goto unlocked_error;
584 goto again;
585 }
586
587 if (error == 0)
588 getmicrotime(&rpipe->pipe_atime);
589 pipeunlock(rpipe);
590
591 unlocked_error:
592 --rpipe->pipe_busy;
593 if (rpipe->pipe_busy == 0) {
594 cv_broadcast(&rpipe->pipe_draincv);
595 }
596 if (bp->cnt < MINPIPESIZE) {
597 cv_broadcast(&rpipe->pipe_wcv);
598 }
599
600 /*
601 * If anything was read off the buffer, signal to the writer it's
602 * possible to write more data. Also send signal if we are here for the
603 * first time after last write.
604 */
605 if ((bp->size - bp->cnt) >= PIPE_BUF
606 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
607 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
608 rpipe->pipe_state &= ~PIPE_SIGNALR;
609 }
610
611 mutex_exit(lock);
612 return (error);
613 }
614
615 #ifndef PIPE_NODIRECT
616 /*
617 * Allocate structure for loan transfer.
618 */
619 static int
620 pipe_loan_alloc(struct pipe *wpipe, int npages)
621 {
622 vsize_t len;
623
624 len = (vsize_t)npages << PAGE_SHIFT;
625 atomic_add_int(&amountpipekva, len);
626 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
627 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
628 if (wpipe->pipe_map.kva == 0) {
629 atomic_add_int(&amountpipekva, -len);
630 return (ENOMEM);
631 }
632
633 wpipe->pipe_map.npages = npages;
634 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
635 KM_SLEEP);
636 return (0);
637 }
638
639 /*
640 * Free resources allocated for loan transfer.
641 */
642 static void
643 pipe_loan_free(struct pipe *wpipe)
644 {
645 vsize_t len;
646
647 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
648 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
649 wpipe->pipe_map.kva = 0;
650 atomic_add_int(&amountpipekva, -len);
651 kmem_free(wpipe->pipe_map.pgs,
652 wpipe->pipe_map.npages * sizeof(struct vm_page *));
653 wpipe->pipe_map.pgs = NULL;
654 }
655
656 /*
657 * NetBSD direct write, using uvm_loan() mechanism.
658 * This implements the pipe buffer write mechanism. Note that only
659 * a direct write OR a normal pipe write can be pending at any given time.
660 * If there are any characters in the pipe buffer, the direct write will
661 * be deferred until the receiving process grabs all of the bytes from
662 * the pipe buffer. Then the direct mapping write is set-up.
663 *
664 * Called with the long-term pipe lock held.
665 */
666 static int
667 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
668 {
669 int error, npages, j;
670 struct vm_page **pgs;
671 vaddr_t bbase, kva, base, bend;
672 vsize_t blen, bcnt;
673 voff_t bpos;
674 kmutex_t *lock = wpipe->pipe_lock;
675
676 KASSERT(mutex_owned(wpipe->pipe_lock));
677 KASSERT(wpipe->pipe_map.cnt == 0);
678
679 mutex_exit(lock);
680
681 /*
682 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
683 * not aligned to PAGE_SIZE.
684 */
685 bbase = (vaddr_t)uio->uio_iov->iov_base;
686 base = trunc_page(bbase);
687 bend = round_page(bbase + uio->uio_iov->iov_len);
688 blen = bend - base;
689 bpos = bbase - base;
690
691 if (blen > PIPE_DIRECT_CHUNK) {
692 blen = PIPE_DIRECT_CHUNK;
693 bend = base + blen;
694 bcnt = PIPE_DIRECT_CHUNK - bpos;
695 } else {
696 bcnt = uio->uio_iov->iov_len;
697 }
698 npages = blen >> PAGE_SHIFT;
699
700 /*
701 * Free the old kva if we need more pages than we have
702 * allocated.
703 */
704 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
705 pipe_loan_free(wpipe);
706
707 /* Allocate new kva. */
708 if (wpipe->pipe_map.kva == 0) {
709 error = pipe_loan_alloc(wpipe, npages);
710 if (error) {
711 mutex_enter(lock);
712 return (error);
713 }
714 }
715
716 /* Loan the write buffer memory from writer process */
717 pgs = wpipe->pipe_map.pgs;
718 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
719 pgs, UVM_LOAN_TOPAGE);
720 if (error) {
721 pipe_loan_free(wpipe);
722 mutex_enter(lock);
723 return (ENOMEM); /* so that caller fallback to ordinary write */
724 }
725
726 /* Enter the loaned pages to kva */
727 kva = wpipe->pipe_map.kva;
728 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
729 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
730 }
731 pmap_update(pmap_kernel());
732
733 /* Now we can put the pipe in direct write mode */
734 wpipe->pipe_map.pos = bpos;
735 wpipe->pipe_map.cnt = bcnt;
736
737 /*
738 * But before we can let someone do a direct read, we
739 * have to wait until the pipe is drained. Release the
740 * pipe lock while we wait.
741 */
742 mutex_enter(lock);
743 wpipe->pipe_state |= PIPE_DIRECTW;
744 pipeunlock(wpipe);
745
746 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
747 cv_broadcast(&wpipe->pipe_rcv);
748 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
749 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
750 error = EPIPE;
751 }
752
753 /* Pipe is drained; next read will off the direct buffer */
754 wpipe->pipe_state |= PIPE_DIRECTR;
755
756 /* Wait until the reader is done */
757 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
758 cv_broadcast(&wpipe->pipe_rcv);
759 pipeselwakeup(wpipe, wpipe, POLL_IN);
760 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
761 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
762 error = EPIPE;
763 }
764
765 /* Take pipe out of direct write mode */
766 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
767
768 /* Acquire the pipe lock and cleanup */
769 (void)pipelock(wpipe, 0);
770 mutex_exit(lock);
771
772 if (pgs != NULL) {
773 pmap_kremove(wpipe->pipe_map.kva, blen);
774 pmap_update(pmap_kernel());
775 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
776 }
777 if (error || amountpipekva > maxpipekva)
778 pipe_loan_free(wpipe);
779
780 mutex_enter(lock);
781 if (error) {
782 pipeselwakeup(wpipe, wpipe, POLL_ERR);
783
784 /*
785 * If nothing was read from what we offered, return error
786 * straight on. Otherwise update uio resid first. Caller
787 * will deal with the error condition, returning short
788 * write, error, or restarting the write(2) as appropriate.
789 */
790 if (wpipe->pipe_map.cnt == bcnt) {
791 wpipe->pipe_map.cnt = 0;
792 cv_broadcast(&wpipe->pipe_wcv);
793 return (error);
794 }
795
796 bcnt -= wpipe->pipe_map.cnt;
797 }
798
799 uio->uio_resid -= bcnt;
800 /* uio_offset not updated, not set/used for write(2) */
801 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
802 uio->uio_iov->iov_len -= bcnt;
803 if (uio->uio_iov->iov_len == 0) {
804 uio->uio_iov++;
805 uio->uio_iovcnt--;
806 }
807
808 wpipe->pipe_map.cnt = 0;
809 return (error);
810 }
811 #endif /* !PIPE_NODIRECT */
812
813 static int
814 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
815 int flags)
816 {
817 struct pipe *wpipe, *rpipe;
818 struct pipebuf *bp;
819 kmutex_t *lock;
820 int error;
821
822 /* We want to write to our peer */
823 rpipe = (struct pipe *) fp->f_data;
824 lock = rpipe->pipe_lock;
825 error = 0;
826
827 mutex_enter(lock);
828 wpipe = rpipe->pipe_peer;
829
830 /*
831 * Detect loss of pipe read side, issue SIGPIPE if lost.
832 */
833 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
834 mutex_exit(lock);
835 return EPIPE;
836 }
837 ++wpipe->pipe_busy;
838
839 /* Aquire the long-term pipe lock */
840 if ((error = pipelock(wpipe, 1)) != 0) {
841 --wpipe->pipe_busy;
842 if (wpipe->pipe_busy == 0) {
843 cv_broadcast(&wpipe->pipe_draincv);
844 }
845 mutex_exit(lock);
846 return (error);
847 }
848
849 bp = &wpipe->pipe_buffer;
850
851 /*
852 * If it is advantageous to resize the pipe buffer, do so.
853 */
854 if ((uio->uio_resid > PIPE_SIZE) &&
855 (nbigpipe < maxbigpipes) &&
856 #ifndef PIPE_NODIRECT
857 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
858 #endif
859 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
860
861 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
862 atomic_inc_uint(&nbigpipe);
863 }
864
865 while (uio->uio_resid) {
866 size_t space;
867
868 #ifndef PIPE_NODIRECT
869 /*
870 * Pipe buffered writes cannot be coincidental with
871 * direct writes. Also, only one direct write can be
872 * in progress at any one time. We wait until the currently
873 * executing direct write is completed before continuing.
874 *
875 * We break out if a signal occurs or the reader goes away.
876 */
877 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
878 cv_broadcast(&wpipe->pipe_rcv);
879 pipeunlock(wpipe);
880 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
881 (void)pipelock(wpipe, 0);
882 if (wpipe->pipe_state & PIPE_EOF)
883 error = EPIPE;
884 }
885 if (error)
886 break;
887
888 /*
889 * If the transfer is large, we can gain performance if
890 * we do process-to-process copies directly.
891 * If the write is non-blocking, we don't use the
892 * direct write mechanism.
893 *
894 * The direct write mechanism will detect the reader going
895 * away on us.
896 */
897 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
898 (fp->f_flag & FNONBLOCK) == 0 &&
899 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
900 error = pipe_direct_write(fp, wpipe, uio);
901
902 /*
903 * Break out if error occurred, unless it's ENOMEM.
904 * ENOMEM means we failed to allocate some resources
905 * for direct write, so we just fallback to ordinary
906 * write. If the direct write was successful,
907 * process rest of data via ordinary write.
908 */
909 if (error == 0)
910 continue;
911
912 if (error != ENOMEM)
913 break;
914 }
915 #endif /* PIPE_NODIRECT */
916
917 space = bp->size - bp->cnt;
918
919 /* Writes of size <= PIPE_BUF must be atomic. */
920 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
921 space = 0;
922
923 if (space > 0) {
924 int size; /* Transfer size */
925 int segsize; /* first segment to transfer */
926
927 /*
928 * Transfer size is minimum of uio transfer
929 * and free space in pipe buffer.
930 */
931 if (space > uio->uio_resid)
932 size = uio->uio_resid;
933 else
934 size = space;
935 /*
936 * First segment to transfer is minimum of
937 * transfer size and contiguous space in
938 * pipe buffer. If first segment to transfer
939 * is less than the transfer size, we've got
940 * a wraparound in the buffer.
941 */
942 segsize = bp->size - bp->in;
943 if (segsize > size)
944 segsize = size;
945
946 /* Transfer first segment */
947 mutex_exit(lock);
948 error = uiomove((char *)bp->buffer + bp->in, segsize,
949 uio);
950
951 if (error == 0 && segsize < size) {
952 /*
953 * Transfer remaining part now, to
954 * support atomic writes. Wraparound
955 * happened.
956 */
957 #ifdef DEBUG
958 if (bp->in + segsize != bp->size)
959 panic("Expected pipe buffer wraparound disappeared");
960 #endif
961
962 error = uiomove(bp->buffer,
963 size - segsize, uio);
964 }
965 mutex_enter(lock);
966 if (error)
967 break;
968
969 bp->in += size;
970 if (bp->in >= bp->size) {
971 #ifdef DEBUG
972 if (bp->in != size - segsize + bp->size)
973 panic("Expected wraparound bad");
974 #endif
975 bp->in = size - segsize;
976 }
977
978 bp->cnt += size;
979 #ifdef DEBUG
980 if (bp->cnt > bp->size)
981 panic("Pipe buffer overflow");
982 #endif
983 } else {
984 /*
985 * If the "read-side" has been blocked, wake it up now.
986 */
987 cv_broadcast(&wpipe->pipe_rcv);
988
989 /*
990 * don't block on non-blocking I/O
991 */
992 if (fp->f_flag & FNONBLOCK) {
993 error = EAGAIN;
994 break;
995 }
996
997 /*
998 * We have no more space and have something to offer,
999 * wake up select/poll.
1000 */
1001 if (bp->cnt)
1002 pipeselwakeup(wpipe, wpipe, POLL_IN);
1003
1004 pipeunlock(wpipe);
1005 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1006 (void)pipelock(wpipe, 0);
1007 if (error != 0)
1008 break;
1009 /*
1010 * If read side wants to go away, we just issue a signal
1011 * to ourselves.
1012 */
1013 if (wpipe->pipe_state & PIPE_EOF) {
1014 error = EPIPE;
1015 break;
1016 }
1017 }
1018 }
1019
1020 --wpipe->pipe_busy;
1021 if (wpipe->pipe_busy == 0) {
1022 cv_broadcast(&wpipe->pipe_draincv);
1023 }
1024 if (bp->cnt > 0) {
1025 cv_broadcast(&wpipe->pipe_rcv);
1026 }
1027
1028 /*
1029 * Don't return EPIPE if I/O was successful
1030 */
1031 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1032 error = 0;
1033
1034 if (error == 0)
1035 getmicrotime(&wpipe->pipe_mtime);
1036
1037 /*
1038 * We have something to offer, wake up select/poll.
1039 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1040 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1041 */
1042 if (bp->cnt)
1043 pipeselwakeup(wpipe, wpipe, POLL_IN);
1044
1045 /*
1046 * Arrange for next read(2) to do a signal.
1047 */
1048 wpipe->pipe_state |= PIPE_SIGNALR;
1049
1050 pipeunlock(wpipe);
1051 mutex_exit(lock);
1052 return (error);
1053 }
1054
1055 /*
1056 * we implement a very minimal set of ioctls for compatibility with sockets.
1057 */
1058 int
1059 pipe_ioctl(struct file *fp, u_long cmd, void *data)
1060 {
1061 struct pipe *pipe = fp->f_data;
1062 kmutex_t *lock = pipe->pipe_lock;
1063
1064 switch (cmd) {
1065
1066 case FIONBIO:
1067 return (0);
1068
1069 case FIOASYNC:
1070 mutex_enter(lock);
1071 if (*(int *)data) {
1072 pipe->pipe_state |= PIPE_ASYNC;
1073 } else {
1074 pipe->pipe_state &= ~PIPE_ASYNC;
1075 }
1076 mutex_exit(lock);
1077 return (0);
1078
1079 case FIONREAD:
1080 mutex_enter(lock);
1081 #ifndef PIPE_NODIRECT
1082 if (pipe->pipe_state & PIPE_DIRECTW)
1083 *(int *)data = pipe->pipe_map.cnt;
1084 else
1085 #endif
1086 *(int *)data = pipe->pipe_buffer.cnt;
1087 mutex_exit(lock);
1088 return (0);
1089
1090 case FIONWRITE:
1091 /* Look at other side */
1092 pipe = pipe->pipe_peer;
1093 mutex_enter(lock);
1094 #ifndef PIPE_NODIRECT
1095 if (pipe->pipe_state & PIPE_DIRECTW)
1096 *(int *)data = pipe->pipe_map.cnt;
1097 else
1098 #endif
1099 *(int *)data = pipe->pipe_buffer.cnt;
1100 mutex_exit(lock);
1101 return (0);
1102
1103 case FIONSPACE:
1104 /* Look at other side */
1105 pipe = pipe->pipe_peer;
1106 mutex_enter(lock);
1107 #ifndef PIPE_NODIRECT
1108 /*
1109 * If we're in direct-mode, we don't really have a
1110 * send queue, and any other write will block. Thus
1111 * zero seems like the best answer.
1112 */
1113 if (pipe->pipe_state & PIPE_DIRECTW)
1114 *(int *)data = 0;
1115 else
1116 #endif
1117 *(int *)data = pipe->pipe_buffer.size -
1118 pipe->pipe_buffer.cnt;
1119 mutex_exit(lock);
1120 return (0);
1121
1122 case TIOCSPGRP:
1123 case FIOSETOWN:
1124 return fsetown(&pipe->pipe_pgid, cmd, data);
1125
1126 case TIOCGPGRP:
1127 case FIOGETOWN:
1128 return fgetown(pipe->pipe_pgid, cmd, data);
1129
1130 }
1131 return (EPASSTHROUGH);
1132 }
1133
1134 int
1135 pipe_poll(struct file *fp, int events)
1136 {
1137 struct pipe *rpipe = fp->f_data;
1138 struct pipe *wpipe;
1139 int eof = 0;
1140 int revents = 0;
1141
1142 mutex_enter(rpipe->pipe_lock);
1143 wpipe = rpipe->pipe_peer;
1144
1145 if (events & (POLLIN | POLLRDNORM))
1146 if ((rpipe->pipe_buffer.cnt > 0) ||
1147 #ifndef PIPE_NODIRECT
1148 (rpipe->pipe_state & PIPE_DIRECTR) ||
1149 #endif
1150 (rpipe->pipe_state & PIPE_EOF))
1151 revents |= events & (POLLIN | POLLRDNORM);
1152
1153 eof |= (rpipe->pipe_state & PIPE_EOF);
1154
1155 if (wpipe == NULL)
1156 revents |= events & (POLLOUT | POLLWRNORM);
1157 else {
1158 if (events & (POLLOUT | POLLWRNORM))
1159 if ((wpipe->pipe_state & PIPE_EOF) || (
1160 #ifndef PIPE_NODIRECT
1161 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1162 #endif
1163 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1164 revents |= events & (POLLOUT | POLLWRNORM);
1165
1166 eof |= (wpipe->pipe_state & PIPE_EOF);
1167 }
1168
1169 if (wpipe == NULL || eof)
1170 revents |= POLLHUP;
1171
1172 if (revents == 0) {
1173 if (events & (POLLIN | POLLRDNORM))
1174 selrecord(curlwp, &rpipe->pipe_sel);
1175
1176 if (events & (POLLOUT | POLLWRNORM))
1177 selrecord(curlwp, &wpipe->pipe_sel);
1178 }
1179 mutex_exit(rpipe->pipe_lock);
1180
1181 return (revents);
1182 }
1183
1184 static int
1185 pipe_stat(struct file *fp, struct stat *ub)
1186 {
1187 struct pipe *pipe = fp->f_data;
1188
1189 memset((void *)ub, 0, sizeof(*ub));
1190 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1191 ub->st_blksize = pipe->pipe_buffer.size;
1192 if (ub->st_blksize == 0 && pipe->pipe_peer)
1193 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1194 ub->st_size = pipe->pipe_buffer.cnt;
1195 ub->st_blocks = (ub->st_size) ? 1 : 0;
1196 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1197 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1198 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1199 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1200 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1201
1202 /*
1203 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1204 * XXX (st_dev, st_ino) should be unique.
1205 */
1206 return (0);
1207 }
1208
1209 /* ARGSUSED */
1210 static int
1211 pipe_close(struct file *fp)
1212 {
1213 struct pipe *pipe = fp->f_data;
1214
1215 fp->f_data = NULL;
1216 pipeclose(fp, pipe);
1217 return (0);
1218 }
1219
1220 static void
1221 pipe_free_kmem(struct pipe *pipe)
1222 {
1223
1224 if (pipe->pipe_buffer.buffer != NULL) {
1225 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1226 atomic_dec_uint(&nbigpipe);
1227 }
1228 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1229 uvm_km_free(kernel_map,
1230 (vaddr_t)pipe->pipe_buffer.buffer,
1231 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1232 atomic_add_int(&amountpipekva,
1233 -pipe->pipe_buffer.size);
1234 }
1235 pipe->pipe_buffer.buffer = NULL;
1236 }
1237 #ifndef PIPE_NODIRECT
1238 if (pipe->pipe_map.kva != 0) {
1239 pipe_loan_free(pipe);
1240 pipe->pipe_map.cnt = 0;
1241 pipe->pipe_map.kva = 0;
1242 pipe->pipe_map.pos = 0;
1243 pipe->pipe_map.npages = 0;
1244 }
1245 #endif /* !PIPE_NODIRECT */
1246 }
1247
1248 /*
1249 * shutdown the pipe
1250 */
1251 static void
1252 pipeclose(struct file *fp, struct pipe *pipe)
1253 {
1254 kmutex_t *lock;
1255 struct pipe *ppipe;
1256
1257 if (pipe == NULL)
1258 return;
1259
1260 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1261 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1262 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1263 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1264
1265 lock = pipe->pipe_lock;
1266 mutex_enter(lock);
1267 pipeselwakeup(pipe, pipe, POLL_HUP);
1268
1269 /*
1270 * If the other side is blocked, wake it up saying that
1271 * we want to close it down.
1272 */
1273 pipe->pipe_state |= PIPE_EOF;
1274 if (pipe->pipe_busy) {
1275 while (pipe->pipe_busy) {
1276 cv_broadcast(&pipe->pipe_wcv);
1277 cv_wait_sig(&pipe->pipe_draincv, lock);
1278 }
1279 }
1280
1281 /*
1282 * Disconnect from peer
1283 */
1284 if ((ppipe = pipe->pipe_peer) != NULL) {
1285 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1286 ppipe->pipe_state |= PIPE_EOF;
1287 cv_broadcast(&ppipe->pipe_rcv);
1288 ppipe->pipe_peer = NULL;
1289 }
1290
1291 /*
1292 * Any knote objects still left in the list are
1293 * the one attached by peer. Since no one will
1294 * traverse this list, we just clear it.
1295 */
1296 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1297
1298 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1299 mutex_exit(lock);
1300
1301 /*
1302 * free resources
1303 */
1304 pipe->pipe_pgid = 0;
1305 pipe->pipe_state = PIPE_SIGNALR;
1306 pipe_free_kmem(pipe);
1307 if (pipe->pipe_kmem != 0) {
1308 pool_cache_put(pipe_rd_cache, pipe);
1309 } else {
1310 pool_cache_put(pipe_wr_cache, pipe);
1311 }
1312 mutex_obj_free(lock);
1313 }
1314
1315 static void
1316 filt_pipedetach(struct knote *kn)
1317 {
1318 struct pipe *pipe;
1319 kmutex_t *lock;
1320
1321 pipe = ((file_t *)kn->kn_obj)->f_data;
1322 lock = pipe->pipe_lock;
1323
1324 mutex_enter(lock);
1325
1326 switch(kn->kn_filter) {
1327 case EVFILT_WRITE:
1328 /* need the peer structure, not our own */
1329 pipe = pipe->pipe_peer;
1330
1331 /* if reader end already closed, just return */
1332 if (pipe == NULL) {
1333 mutex_exit(lock);
1334 return;
1335 }
1336
1337 break;
1338 default:
1339 /* nothing to do */
1340 break;
1341 }
1342
1343 #ifdef DIAGNOSTIC
1344 if (kn->kn_hook != pipe)
1345 panic("filt_pipedetach: inconsistent knote");
1346 #endif
1347
1348 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1349 mutex_exit(lock);
1350 }
1351
1352 /*ARGSUSED*/
1353 static int
1354 filt_piperead(struct knote *kn, long hint)
1355 {
1356 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1357 struct pipe *wpipe;
1358
1359 if ((hint & NOTE_SUBMIT) == 0) {
1360 mutex_enter(rpipe->pipe_lock);
1361 }
1362 wpipe = rpipe->pipe_peer;
1363 kn->kn_data = rpipe->pipe_buffer.cnt;
1364
1365 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1366 kn->kn_data = rpipe->pipe_map.cnt;
1367
1368 if ((rpipe->pipe_state & PIPE_EOF) ||
1369 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1370 kn->kn_flags |= EV_EOF;
1371 if ((hint & NOTE_SUBMIT) == 0) {
1372 mutex_exit(rpipe->pipe_lock);
1373 }
1374 return (1);
1375 }
1376
1377 if ((hint & NOTE_SUBMIT) == 0) {
1378 mutex_exit(rpipe->pipe_lock);
1379 }
1380 return (kn->kn_data > 0);
1381 }
1382
1383 /*ARGSUSED*/
1384 static int
1385 filt_pipewrite(struct knote *kn, long hint)
1386 {
1387 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1388 struct pipe *wpipe;
1389
1390 if ((hint & NOTE_SUBMIT) == 0) {
1391 mutex_enter(rpipe->pipe_lock);
1392 }
1393 wpipe = rpipe->pipe_peer;
1394
1395 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1396 kn->kn_data = 0;
1397 kn->kn_flags |= EV_EOF;
1398 if ((hint & NOTE_SUBMIT) == 0) {
1399 mutex_exit(rpipe->pipe_lock);
1400 }
1401 return (1);
1402 }
1403 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1404 if (wpipe->pipe_state & PIPE_DIRECTW)
1405 kn->kn_data = 0;
1406
1407 if ((hint & NOTE_SUBMIT) == 0) {
1408 mutex_exit(rpipe->pipe_lock);
1409 }
1410 return (kn->kn_data >= PIPE_BUF);
1411 }
1412
1413 static const struct filterops pipe_rfiltops =
1414 { 1, NULL, filt_pipedetach, filt_piperead };
1415 static const struct filterops pipe_wfiltops =
1416 { 1, NULL, filt_pipedetach, filt_pipewrite };
1417
1418 /*ARGSUSED*/
1419 static int
1420 pipe_kqfilter(struct file *fp, struct knote *kn)
1421 {
1422 struct pipe *pipe;
1423 kmutex_t *lock;
1424
1425 pipe = ((file_t *)kn->kn_obj)->f_data;
1426 lock = pipe->pipe_lock;
1427
1428 mutex_enter(lock);
1429
1430 switch (kn->kn_filter) {
1431 case EVFILT_READ:
1432 kn->kn_fop = &pipe_rfiltops;
1433 break;
1434 case EVFILT_WRITE:
1435 kn->kn_fop = &pipe_wfiltops;
1436 pipe = pipe->pipe_peer;
1437 if (pipe == NULL) {
1438 /* other end of pipe has been closed */
1439 mutex_exit(lock);
1440 return (EBADF);
1441 }
1442 break;
1443 default:
1444 mutex_exit(lock);
1445 return (EINVAL);
1446 }
1447
1448 kn->kn_hook = pipe;
1449 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1450 mutex_exit(lock);
1451
1452 return (0);
1453 }
1454
1455 /*
1456 * Handle pipe sysctls.
1457 */
1458 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1459 {
1460
1461 sysctl_createv(clog, 0, NULL, NULL,
1462 CTLFLAG_PERMANENT,
1463 CTLTYPE_NODE, "kern", NULL,
1464 NULL, 0, NULL, 0,
1465 CTL_KERN, CTL_EOL);
1466 sysctl_createv(clog, 0, NULL, NULL,
1467 CTLFLAG_PERMANENT,
1468 CTLTYPE_NODE, "pipe",
1469 SYSCTL_DESCR("Pipe settings"),
1470 NULL, 0, NULL, 0,
1471 CTL_KERN, KERN_PIPE, CTL_EOL);
1472
1473 sysctl_createv(clog, 0, NULL, NULL,
1474 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1475 CTLTYPE_INT, "maxkvasz",
1476 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1477 "used for pipes"),
1478 NULL, 0, &maxpipekva, 0,
1479 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1480 sysctl_createv(clog, 0, NULL, NULL,
1481 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1482 CTLTYPE_INT, "maxloankvasz",
1483 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1484 NULL, 0, &limitpipekva, 0,
1485 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1486 sysctl_createv(clog, 0, NULL, NULL,
1487 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1488 CTLTYPE_INT, "maxbigpipes",
1489 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1490 NULL, 0, &maxbigpipes, 0,
1491 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1492 sysctl_createv(clog, 0, NULL, NULL,
1493 CTLFLAG_PERMANENT,
1494 CTLTYPE_INT, "nbigpipes",
1495 SYSCTL_DESCR("Number of \"big\" pipes"),
1496 NULL, 0, &nbigpipe, 0,
1497 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1498 sysctl_createv(clog, 0, NULL, NULL,
1499 CTLFLAG_PERMANENT,
1500 CTLTYPE_INT, "kvasize",
1501 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1502 "buffers"),
1503 NULL, 0, &amountpipekva, 0,
1504 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1505 }
1506