sys_pipe.c revision 1.112 1 /* $NetBSD: sys_pipe.c,v 1.112 2009/04/11 23:05:26 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.112 2009/04/11 23:05:26 christos Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 #include <uvm/uvm.h>
96
97 /* Use this define if you want to disable *fancy* VM things. */
98 /* XXX Disabled for now; rare hangs switching between direct/buffered */
99 #define PIPE_NODIRECT
100
101 /*
102 * interfaces to the outside world
103 */
104 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
105 kauth_cred_t cred, int flags);
106 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
107 kauth_cred_t cred, int flags);
108 static int pipe_close(struct file *fp);
109 static int pipe_poll(struct file *fp, int events);
110 static int pipe_kqfilter(struct file *fp, struct knote *kn);
111 static int pipe_stat(struct file *fp, struct stat *sb);
112 static int pipe_ioctl(struct file *fp, u_long cmd, void *data);
113
114 static const struct fileops pipeops = {
115 .fo_read = pipe_read,
116 .fo_write = pipe_write,
117 .fo_ioctl = pipe_ioctl,
118 .fo_fcntl = fnullop_fcntl,
119 .fo_poll = pipe_poll,
120 .fo_stat = pipe_stat,
121 .fo_close = pipe_close,
122 .fo_kqfilter = pipe_kqfilter,
123 .fo_drain = fnullop_drain,
124 };
125
126 /*
127 * Default pipe buffer size(s), this can be kind-of large now because pipe
128 * space is pageable. The pipe code will try to maintain locality of
129 * reference for performance reasons, so small amounts of outstanding I/O
130 * will not wipe the cache.
131 */
132 #define MINPIPESIZE (PIPE_SIZE/3)
133 #define MAXPIPESIZE (2*PIPE_SIZE/3)
134
135 /*
136 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
137 * is there so that on large systems, we don't exhaust it.
138 */
139 #define MAXPIPEKVA (8*1024*1024)
140 static u_int maxpipekva = MAXPIPEKVA;
141
142 /*
143 * Limit for direct transfers, we cannot, of course limit
144 * the amount of kva for pipes in general though.
145 */
146 #define LIMITPIPEKVA (16*1024*1024)
147 static u_int limitpipekva = LIMITPIPEKVA;
148
149 /*
150 * Limit the number of "big" pipes
151 */
152 #define LIMITBIGPIPES 32
153 static u_int maxbigpipes = LIMITBIGPIPES;
154 static u_int nbigpipe = 0;
155
156 /*
157 * Amount of KVA consumed by pipe buffers.
158 */
159 static u_int amountpipekva = 0;
160
161 static void pipeclose(struct file *fp, struct pipe *pipe);
162 static void pipe_free_kmem(struct pipe *pipe);
163 static int pipe_create(struct pipe **pipep, pool_cache_t, kmutex_t *);
164 static int pipelock(struct pipe *pipe, int catch);
165 static inline void pipeunlock(struct pipe *pipe);
166 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
167 #ifndef PIPE_NODIRECT
168 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
169 struct uio *uio);
170 #endif
171 static int pipespace(struct pipe *pipe, int size);
172 static int pipe_ctor(void *, void *, int);
173 static void pipe_dtor(void *, void *);
174
175 #ifndef PIPE_NODIRECT
176 static int pipe_loan_alloc(struct pipe *, int);
177 static void pipe_loan_free(struct pipe *);
178 #endif /* PIPE_NODIRECT */
179
180 static pool_cache_t pipe_wr_cache;
181 static pool_cache_t pipe_rd_cache;
182
183 void
184 pipe_init(void)
185 {
186
187 /* Writer side is not automatically allocated KVA. */
188 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
189 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
190 KASSERT(pipe_wr_cache != NULL);
191
192 /* Reader side gets preallocated KVA. */
193 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
194 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
195 KASSERT(pipe_rd_cache != NULL);
196 }
197
198 static int
199 pipe_ctor(void *arg, void *obj, int flags)
200 {
201 struct pipe *pipe;
202 vaddr_t va;
203
204 pipe = obj;
205
206 memset(pipe, 0, sizeof(struct pipe));
207 if (arg != NULL) {
208 /* Preallocate space. */
209 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
210 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
211 KASSERT(va != 0);
212 pipe->pipe_kmem = va;
213 atomic_add_int(&amountpipekva, PIPE_SIZE);
214 }
215 cv_init(&pipe->pipe_rcv, "piperd");
216 cv_init(&pipe->pipe_wcv, "pipewr");
217 cv_init(&pipe->pipe_draincv, "pipedrain");
218 cv_init(&pipe->pipe_lkcv, "pipelk");
219 selinit(&pipe->pipe_sel);
220 pipe->pipe_state = PIPE_SIGNALR;
221
222 return 0;
223 }
224
225 static void
226 pipe_dtor(void *arg, void *obj)
227 {
228 struct pipe *pipe;
229
230 pipe = obj;
231
232 cv_destroy(&pipe->pipe_rcv);
233 cv_destroy(&pipe->pipe_wcv);
234 cv_destroy(&pipe->pipe_draincv);
235 cv_destroy(&pipe->pipe_lkcv);
236 seldestroy(&pipe->pipe_sel);
237 if (pipe->pipe_kmem != 0) {
238 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
239 UVM_KMF_PAGEABLE);
240 atomic_add_int(&amountpipekva, -PIPE_SIZE);
241 }
242 }
243
244 /*
245 * The pipe system call for the DTYPE_PIPE type of pipes
246 */
247
248 /* ARGSUSED */
249 int
250 sys_pipe(struct lwp *l, const void *v, register_t *retval)
251 {
252 struct file *rf, *wf;
253 struct pipe *rpipe, *wpipe;
254 kmutex_t *mutex;
255 int fd, error;
256 proc_t *p;
257
258 p = curproc;
259 rpipe = wpipe = NULL;
260 mutex = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
261 if (mutex == NULL)
262 return (ENOMEM);
263 mutex_obj_hold(mutex);
264 if (pipe_create(&rpipe, pipe_rd_cache, mutex) ||
265 pipe_create(&wpipe, pipe_wr_cache, mutex)) {
266 pipeclose(NULL, rpipe);
267 pipeclose(NULL, wpipe);
268 return (ENFILE);
269 }
270
271 error = fd_allocfile(&rf, &fd);
272 if (error)
273 goto free2;
274 retval[0] = fd;
275 rf->f_flag = FREAD;
276 rf->f_type = DTYPE_PIPE;
277 rf->f_data = (void *)rpipe;
278 rf->f_ops = &pipeops;
279
280 error = fd_allocfile(&wf, &fd);
281 if (error)
282 goto free3;
283 retval[1] = fd;
284 wf->f_flag = FWRITE;
285 wf->f_type = DTYPE_PIPE;
286 wf->f_data = (void *)wpipe;
287 wf->f_ops = &pipeops;
288
289 rpipe->pipe_peer = wpipe;
290 wpipe->pipe_peer = rpipe;
291
292 fd_affix(p, rf, (int)retval[0]);
293 fd_affix(p, wf, (int)retval[1]);
294 return (0);
295 free3:
296 fd_abort(p, rf, (int)retval[0]);
297 free2:
298 pipeclose(NULL, wpipe);
299 pipeclose(NULL, rpipe);
300
301 return (error);
302 }
303
304 /*
305 * Allocate kva for pipe circular buffer, the space is pageable
306 * This routine will 'realloc' the size of a pipe safely, if it fails
307 * it will retain the old buffer.
308 * If it fails it will return ENOMEM.
309 */
310 static int
311 pipespace(struct pipe *pipe, int size)
312 {
313 void *buffer;
314
315 /*
316 * Allocate pageable virtual address space. Physical memory is
317 * allocated on demand.
318 */
319 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
320 buffer = (void *)pipe->pipe_kmem;
321 } else {
322 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
323 0, UVM_KMF_PAGEABLE);
324 if (buffer == NULL)
325 return (ENOMEM);
326 atomic_add_int(&amountpipekva, size);
327 }
328
329 /* free old resources if we're resizing */
330 pipe_free_kmem(pipe);
331 pipe->pipe_buffer.buffer = buffer;
332 pipe->pipe_buffer.size = size;
333 pipe->pipe_buffer.in = 0;
334 pipe->pipe_buffer.out = 0;
335 pipe->pipe_buffer.cnt = 0;
336 return (0);
337 }
338
339 /*
340 * Initialize and allocate VM and memory for pipe.
341 */
342 static int
343 pipe_create(struct pipe **pipep, pool_cache_t cache, kmutex_t *mutex)
344 {
345 struct pipe *pipe;
346 int error;
347
348 pipe = pool_cache_get(cache, PR_WAITOK);
349 KASSERT(pipe != NULL);
350 *pipep = pipe;
351 error = 0;
352 getnanotime(&pipe->pipe_btime);
353 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
354 pipe->pipe_lock = mutex;
355 if (cache == pipe_rd_cache) {
356 error = pipespace(pipe, PIPE_SIZE);
357 } else {
358 pipe->pipe_buffer.buffer = NULL;
359 pipe->pipe_buffer.size = 0;
360 pipe->pipe_buffer.in = 0;
361 pipe->pipe_buffer.out = 0;
362 pipe->pipe_buffer.cnt = 0;
363 }
364 return error;
365 }
366
367 /*
368 * Lock a pipe for I/O, blocking other access
369 * Called with pipe spin lock held.
370 * Return with pipe spin lock released on success.
371 */
372 static int
373 pipelock(struct pipe *pipe, int catch)
374 {
375 int error;
376
377 KASSERT(mutex_owned(pipe->pipe_lock));
378
379 while (pipe->pipe_state & PIPE_LOCKFL) {
380 pipe->pipe_state |= PIPE_LWANT;
381 if (catch) {
382 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
383 if (error != 0)
384 return error;
385 } else
386 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
387 }
388
389 pipe->pipe_state |= PIPE_LOCKFL;
390
391 return 0;
392 }
393
394 /*
395 * unlock a pipe I/O lock
396 */
397 static inline void
398 pipeunlock(struct pipe *pipe)
399 {
400
401 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
402
403 pipe->pipe_state &= ~PIPE_LOCKFL;
404 if (pipe->pipe_state & PIPE_LWANT) {
405 pipe->pipe_state &= ~PIPE_LWANT;
406 cv_broadcast(&pipe->pipe_lkcv);
407 }
408 }
409
410 /*
411 * Select/poll wakup. This also sends SIGIO to peer connected to
412 * 'sigpipe' side of pipe.
413 */
414 static void
415 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
416 {
417 int band;
418
419 switch (code) {
420 case POLL_IN:
421 band = POLLIN|POLLRDNORM;
422 break;
423 case POLL_OUT:
424 band = POLLOUT|POLLWRNORM;
425 break;
426 case POLL_HUP:
427 band = POLLHUP;
428 break;
429 case POLL_ERR:
430 band = POLLERR;
431 break;
432 default:
433 band = 0;
434 #ifdef DIAGNOSTIC
435 printf("bad siginfo code %d in pipe notification.\n", code);
436 #endif
437 break;
438 }
439
440 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
441
442 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
443 return;
444
445 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
446 }
447
448 /* ARGSUSED */
449 static int
450 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
451 int flags)
452 {
453 struct pipe *rpipe = (struct pipe *) fp->f_data;
454 struct pipebuf *bp = &rpipe->pipe_buffer;
455 kmutex_t *lock = rpipe->pipe_lock;
456 int error;
457 size_t nread = 0;
458 size_t size;
459 size_t ocnt;
460
461 mutex_enter(lock);
462 ++rpipe->pipe_busy;
463 ocnt = bp->cnt;
464
465 again:
466 error = pipelock(rpipe, 1);
467 if (error)
468 goto unlocked_error;
469
470 while (uio->uio_resid) {
471 /*
472 * normal pipe buffer receive
473 */
474 if (bp->cnt > 0) {
475 size = bp->size - bp->out;
476 if (size > bp->cnt)
477 size = bp->cnt;
478 if (size > uio->uio_resid)
479 size = uio->uio_resid;
480
481 mutex_exit(lock);
482 error = uiomove((char *)bp->buffer + bp->out, size, uio);
483 mutex_enter(lock);
484 if (error)
485 break;
486
487 bp->out += size;
488 if (bp->out >= bp->size)
489 bp->out = 0;
490
491 bp->cnt -= size;
492
493 /*
494 * If there is no more to read in the pipe, reset
495 * its pointers to the beginning. This improves
496 * cache hit stats.
497 */
498 if (bp->cnt == 0) {
499 bp->in = 0;
500 bp->out = 0;
501 }
502 nread += size;
503 continue;
504 }
505
506 #ifndef PIPE_NODIRECT
507 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
508 /*
509 * Direct copy, bypassing a kernel buffer.
510 */
511 void * va;
512
513 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
514
515 size = rpipe->pipe_map.cnt;
516 if (size > uio->uio_resid)
517 size = uio->uio_resid;
518
519 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
520 mutex_exit(lock);
521 error = uiomove(va, size, uio);
522 mutex_enter(lock);
523 if (error)
524 break;
525 nread += size;
526 rpipe->pipe_map.pos += size;
527 rpipe->pipe_map.cnt -= size;
528 if (rpipe->pipe_map.cnt == 0) {
529 rpipe->pipe_state &= ~PIPE_DIRECTR;
530 cv_broadcast(&rpipe->pipe_wcv);
531 }
532 continue;
533 }
534 #endif
535 /*
536 * Break if some data was read.
537 */
538 if (nread > 0)
539 break;
540
541 /*
542 * detect EOF condition
543 * read returns 0 on EOF, no need to set error
544 */
545 if (rpipe->pipe_state & PIPE_EOF)
546 break;
547
548 /*
549 * don't block on non-blocking I/O
550 */
551 if (fp->f_flag & FNONBLOCK) {
552 error = EAGAIN;
553 break;
554 }
555
556 /*
557 * Unlock the pipe buffer for our remaining processing.
558 * We will either break out with an error or we will
559 * sleep and relock to loop.
560 */
561 pipeunlock(rpipe);
562
563 /*
564 * Re-check to see if more direct writes are pending.
565 */
566 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
567 goto again;
568
569 /*
570 * We want to read more, wake up select/poll.
571 */
572 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
573
574 /*
575 * If the "write-side" is blocked, wake it up now.
576 */
577 cv_broadcast(&rpipe->pipe_wcv);
578
579 /* Now wait until the pipe is filled */
580 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
581 if (error != 0)
582 goto unlocked_error;
583 goto again;
584 }
585
586 if (error == 0)
587 getnanotime(&rpipe->pipe_atime);
588 pipeunlock(rpipe);
589
590 unlocked_error:
591 --rpipe->pipe_busy;
592 if (rpipe->pipe_busy == 0) {
593 cv_broadcast(&rpipe->pipe_draincv);
594 }
595 if (bp->cnt < MINPIPESIZE) {
596 cv_broadcast(&rpipe->pipe_wcv);
597 }
598
599 /*
600 * If anything was read off the buffer, signal to the writer it's
601 * possible to write more data. Also send signal if we are here for the
602 * first time after last write.
603 */
604 if ((bp->size - bp->cnt) >= PIPE_BUF
605 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
606 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
607 rpipe->pipe_state &= ~PIPE_SIGNALR;
608 }
609
610 mutex_exit(lock);
611 return (error);
612 }
613
614 #ifndef PIPE_NODIRECT
615 /*
616 * Allocate structure for loan transfer.
617 */
618 static int
619 pipe_loan_alloc(struct pipe *wpipe, int npages)
620 {
621 vsize_t len;
622
623 len = (vsize_t)npages << PAGE_SHIFT;
624 atomic_add_int(&amountpipekva, len);
625 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
626 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
627 if (wpipe->pipe_map.kva == 0) {
628 atomic_add_int(&amountpipekva, -len);
629 return (ENOMEM);
630 }
631
632 wpipe->pipe_map.npages = npages;
633 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
634 KM_SLEEP);
635 return (0);
636 }
637
638 /*
639 * Free resources allocated for loan transfer.
640 */
641 static void
642 pipe_loan_free(struct pipe *wpipe)
643 {
644 vsize_t len;
645
646 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
647 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
648 wpipe->pipe_map.kva = 0;
649 atomic_add_int(&amountpipekva, -len);
650 kmem_free(wpipe->pipe_map.pgs,
651 wpipe->pipe_map.npages * sizeof(struct vm_page *));
652 wpipe->pipe_map.pgs = NULL;
653 }
654
655 /*
656 * NetBSD direct write, using uvm_loan() mechanism.
657 * This implements the pipe buffer write mechanism. Note that only
658 * a direct write OR a normal pipe write can be pending at any given time.
659 * If there are any characters in the pipe buffer, the direct write will
660 * be deferred until the receiving process grabs all of the bytes from
661 * the pipe buffer. Then the direct mapping write is set-up.
662 *
663 * Called with the long-term pipe lock held.
664 */
665 static int
666 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
667 {
668 int error, npages, j;
669 struct vm_page **pgs;
670 vaddr_t bbase, kva, base, bend;
671 vsize_t blen, bcnt;
672 voff_t bpos;
673 kmutex_t *lock = wpipe->pipe_lock;
674
675 KASSERT(mutex_owned(wpipe->pipe_lock));
676 KASSERT(wpipe->pipe_map.cnt == 0);
677
678 mutex_exit(lock);
679
680 /*
681 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
682 * not aligned to PAGE_SIZE.
683 */
684 bbase = (vaddr_t)uio->uio_iov->iov_base;
685 base = trunc_page(bbase);
686 bend = round_page(bbase + uio->uio_iov->iov_len);
687 blen = bend - base;
688 bpos = bbase - base;
689
690 if (blen > PIPE_DIRECT_CHUNK) {
691 blen = PIPE_DIRECT_CHUNK;
692 bend = base + blen;
693 bcnt = PIPE_DIRECT_CHUNK - bpos;
694 } else {
695 bcnt = uio->uio_iov->iov_len;
696 }
697 npages = blen >> PAGE_SHIFT;
698
699 /*
700 * Free the old kva if we need more pages than we have
701 * allocated.
702 */
703 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
704 pipe_loan_free(wpipe);
705
706 /* Allocate new kva. */
707 if (wpipe->pipe_map.kva == 0) {
708 error = pipe_loan_alloc(wpipe, npages);
709 if (error) {
710 mutex_enter(lock);
711 return (error);
712 }
713 }
714
715 /* Loan the write buffer memory from writer process */
716 pgs = wpipe->pipe_map.pgs;
717 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
718 pgs, UVM_LOAN_TOPAGE);
719 if (error) {
720 pipe_loan_free(wpipe);
721 mutex_enter(lock);
722 return (ENOMEM); /* so that caller fallback to ordinary write */
723 }
724
725 /* Enter the loaned pages to kva */
726 kva = wpipe->pipe_map.kva;
727 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
728 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
729 }
730 pmap_update(pmap_kernel());
731
732 /* Now we can put the pipe in direct write mode */
733 wpipe->pipe_map.pos = bpos;
734 wpipe->pipe_map.cnt = bcnt;
735
736 /*
737 * But before we can let someone do a direct read, we
738 * have to wait until the pipe is drained. Release the
739 * pipe lock while we wait.
740 */
741 mutex_enter(lock);
742 wpipe->pipe_state |= PIPE_DIRECTW;
743 pipeunlock(wpipe);
744
745 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
746 cv_broadcast(&wpipe->pipe_rcv);
747 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
748 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
749 error = EPIPE;
750 }
751
752 /* Pipe is drained; next read will off the direct buffer */
753 wpipe->pipe_state |= PIPE_DIRECTR;
754
755 /* Wait until the reader is done */
756 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
757 cv_broadcast(&wpipe->pipe_rcv);
758 pipeselwakeup(wpipe, wpipe, POLL_IN);
759 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
760 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
761 error = EPIPE;
762 }
763
764 /* Take pipe out of direct write mode */
765 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
766
767 /* Acquire the pipe lock and cleanup */
768 (void)pipelock(wpipe, 0);
769 mutex_exit(lock);
770
771 if (pgs != NULL) {
772 pmap_kremove(wpipe->pipe_map.kva, blen);
773 pmap_update(pmap_kernel());
774 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
775 }
776 if (error || amountpipekva > maxpipekva)
777 pipe_loan_free(wpipe);
778
779 mutex_enter(lock);
780 if (error) {
781 pipeselwakeup(wpipe, wpipe, POLL_ERR);
782
783 /*
784 * If nothing was read from what we offered, return error
785 * straight on. Otherwise update uio resid first. Caller
786 * will deal with the error condition, returning short
787 * write, error, or restarting the write(2) as appropriate.
788 */
789 if (wpipe->pipe_map.cnt == bcnt) {
790 wpipe->pipe_map.cnt = 0;
791 cv_broadcast(&wpipe->pipe_wcv);
792 return (error);
793 }
794
795 bcnt -= wpipe->pipe_map.cnt;
796 }
797
798 uio->uio_resid -= bcnt;
799 /* uio_offset not updated, not set/used for write(2) */
800 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
801 uio->uio_iov->iov_len -= bcnt;
802 if (uio->uio_iov->iov_len == 0) {
803 uio->uio_iov++;
804 uio->uio_iovcnt--;
805 }
806
807 wpipe->pipe_map.cnt = 0;
808 return (error);
809 }
810 #endif /* !PIPE_NODIRECT */
811
812 static int
813 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
814 int flags)
815 {
816 struct pipe *wpipe, *rpipe;
817 struct pipebuf *bp;
818 kmutex_t *lock;
819 int error;
820
821 /* We want to write to our peer */
822 rpipe = (struct pipe *) fp->f_data;
823 lock = rpipe->pipe_lock;
824 error = 0;
825
826 mutex_enter(lock);
827 wpipe = rpipe->pipe_peer;
828
829 /*
830 * Detect loss of pipe read side, issue SIGPIPE if lost.
831 */
832 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
833 mutex_exit(lock);
834 return EPIPE;
835 }
836 ++wpipe->pipe_busy;
837
838 /* Aquire the long-term pipe lock */
839 if ((error = pipelock(wpipe, 1)) != 0) {
840 --wpipe->pipe_busy;
841 if (wpipe->pipe_busy == 0) {
842 cv_broadcast(&wpipe->pipe_draincv);
843 }
844 mutex_exit(lock);
845 return (error);
846 }
847
848 bp = &wpipe->pipe_buffer;
849
850 /*
851 * If it is advantageous to resize the pipe buffer, do so.
852 */
853 if ((uio->uio_resid > PIPE_SIZE) &&
854 (nbigpipe < maxbigpipes) &&
855 #ifndef PIPE_NODIRECT
856 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
857 #endif
858 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
859
860 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
861 atomic_inc_uint(&nbigpipe);
862 }
863
864 while (uio->uio_resid) {
865 size_t space;
866
867 #ifndef PIPE_NODIRECT
868 /*
869 * Pipe buffered writes cannot be coincidental with
870 * direct writes. Also, only one direct write can be
871 * in progress at any one time. We wait until the currently
872 * executing direct write is completed before continuing.
873 *
874 * We break out if a signal occurs or the reader goes away.
875 */
876 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
877 cv_broadcast(&wpipe->pipe_rcv);
878 pipeunlock(wpipe);
879 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
880 (void)pipelock(wpipe, 0);
881 if (wpipe->pipe_state & PIPE_EOF)
882 error = EPIPE;
883 }
884 if (error)
885 break;
886
887 /*
888 * If the transfer is large, we can gain performance if
889 * we do process-to-process copies directly.
890 * If the write is non-blocking, we don't use the
891 * direct write mechanism.
892 *
893 * The direct write mechanism will detect the reader going
894 * away on us.
895 */
896 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
897 (fp->f_flag & FNONBLOCK) == 0 &&
898 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
899 error = pipe_direct_write(fp, wpipe, uio);
900
901 /*
902 * Break out if error occurred, unless it's ENOMEM.
903 * ENOMEM means we failed to allocate some resources
904 * for direct write, so we just fallback to ordinary
905 * write. If the direct write was successful,
906 * process rest of data via ordinary write.
907 */
908 if (error == 0)
909 continue;
910
911 if (error != ENOMEM)
912 break;
913 }
914 #endif /* PIPE_NODIRECT */
915
916 space = bp->size - bp->cnt;
917
918 /* Writes of size <= PIPE_BUF must be atomic. */
919 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
920 space = 0;
921
922 if (space > 0) {
923 int size; /* Transfer size */
924 int segsize; /* first segment to transfer */
925
926 /*
927 * Transfer size is minimum of uio transfer
928 * and free space in pipe buffer.
929 */
930 if (space > uio->uio_resid)
931 size = uio->uio_resid;
932 else
933 size = space;
934 /*
935 * First segment to transfer is minimum of
936 * transfer size and contiguous space in
937 * pipe buffer. If first segment to transfer
938 * is less than the transfer size, we've got
939 * a wraparound in the buffer.
940 */
941 segsize = bp->size - bp->in;
942 if (segsize > size)
943 segsize = size;
944
945 /* Transfer first segment */
946 mutex_exit(lock);
947 error = uiomove((char *)bp->buffer + bp->in, segsize,
948 uio);
949
950 if (error == 0 && segsize < size) {
951 /*
952 * Transfer remaining part now, to
953 * support atomic writes. Wraparound
954 * happened.
955 */
956 #ifdef DEBUG
957 if (bp->in + segsize != bp->size)
958 panic("Expected pipe buffer wraparound disappeared");
959 #endif
960
961 error = uiomove(bp->buffer,
962 size - segsize, uio);
963 }
964 mutex_enter(lock);
965 if (error)
966 break;
967
968 bp->in += size;
969 if (bp->in >= bp->size) {
970 #ifdef DEBUG
971 if (bp->in != size - segsize + bp->size)
972 panic("Expected wraparound bad");
973 #endif
974 bp->in = size - segsize;
975 }
976
977 bp->cnt += size;
978 #ifdef DEBUG
979 if (bp->cnt > bp->size)
980 panic("Pipe buffer overflow");
981 #endif
982 } else {
983 /*
984 * If the "read-side" has been blocked, wake it up now.
985 */
986 cv_broadcast(&wpipe->pipe_rcv);
987
988 /*
989 * don't block on non-blocking I/O
990 */
991 if (fp->f_flag & FNONBLOCK) {
992 error = EAGAIN;
993 break;
994 }
995
996 /*
997 * We have no more space and have something to offer,
998 * wake up select/poll.
999 */
1000 if (bp->cnt)
1001 pipeselwakeup(wpipe, wpipe, POLL_IN);
1002
1003 pipeunlock(wpipe);
1004 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1005 (void)pipelock(wpipe, 0);
1006 if (error != 0)
1007 break;
1008 /*
1009 * If read side wants to go away, we just issue a signal
1010 * to ourselves.
1011 */
1012 if (wpipe->pipe_state & PIPE_EOF) {
1013 error = EPIPE;
1014 break;
1015 }
1016 }
1017 }
1018
1019 --wpipe->pipe_busy;
1020 if (wpipe->pipe_busy == 0) {
1021 cv_broadcast(&wpipe->pipe_draincv);
1022 }
1023 if (bp->cnt > 0) {
1024 cv_broadcast(&wpipe->pipe_rcv);
1025 }
1026
1027 /*
1028 * Don't return EPIPE if I/O was successful
1029 */
1030 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1031 error = 0;
1032
1033 if (error == 0)
1034 getnanotime(&wpipe->pipe_mtime);
1035
1036 /*
1037 * We have something to offer, wake up select/poll.
1038 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1039 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1040 */
1041 if (bp->cnt)
1042 pipeselwakeup(wpipe, wpipe, POLL_IN);
1043
1044 /*
1045 * Arrange for next read(2) to do a signal.
1046 */
1047 wpipe->pipe_state |= PIPE_SIGNALR;
1048
1049 pipeunlock(wpipe);
1050 mutex_exit(lock);
1051 return (error);
1052 }
1053
1054 /*
1055 * we implement a very minimal set of ioctls for compatibility with sockets.
1056 */
1057 int
1058 pipe_ioctl(struct file *fp, u_long cmd, void *data)
1059 {
1060 struct pipe *pipe = fp->f_data;
1061 kmutex_t *lock = pipe->pipe_lock;
1062
1063 switch (cmd) {
1064
1065 case FIONBIO:
1066 return (0);
1067
1068 case FIOASYNC:
1069 mutex_enter(lock);
1070 if (*(int *)data) {
1071 pipe->pipe_state |= PIPE_ASYNC;
1072 } else {
1073 pipe->pipe_state &= ~PIPE_ASYNC;
1074 }
1075 mutex_exit(lock);
1076 return (0);
1077
1078 case FIONREAD:
1079 mutex_enter(lock);
1080 #ifndef PIPE_NODIRECT
1081 if (pipe->pipe_state & PIPE_DIRECTW)
1082 *(int *)data = pipe->pipe_map.cnt;
1083 else
1084 #endif
1085 *(int *)data = pipe->pipe_buffer.cnt;
1086 mutex_exit(lock);
1087 return (0);
1088
1089 case FIONWRITE:
1090 /* Look at other side */
1091 pipe = pipe->pipe_peer;
1092 mutex_enter(lock);
1093 #ifndef PIPE_NODIRECT
1094 if (pipe->pipe_state & PIPE_DIRECTW)
1095 *(int *)data = pipe->pipe_map.cnt;
1096 else
1097 #endif
1098 *(int *)data = pipe->pipe_buffer.cnt;
1099 mutex_exit(lock);
1100 return (0);
1101
1102 case FIONSPACE:
1103 /* Look at other side */
1104 pipe = pipe->pipe_peer;
1105 mutex_enter(lock);
1106 #ifndef PIPE_NODIRECT
1107 /*
1108 * If we're in direct-mode, we don't really have a
1109 * send queue, and any other write will block. Thus
1110 * zero seems like the best answer.
1111 */
1112 if (pipe->pipe_state & PIPE_DIRECTW)
1113 *(int *)data = 0;
1114 else
1115 #endif
1116 *(int *)data = pipe->pipe_buffer.size -
1117 pipe->pipe_buffer.cnt;
1118 mutex_exit(lock);
1119 return (0);
1120
1121 case TIOCSPGRP:
1122 case FIOSETOWN:
1123 return fsetown(&pipe->pipe_pgid, cmd, data);
1124
1125 case TIOCGPGRP:
1126 case FIOGETOWN:
1127 return fgetown(pipe->pipe_pgid, cmd, data);
1128
1129 }
1130 return (EPASSTHROUGH);
1131 }
1132
1133 int
1134 pipe_poll(struct file *fp, int events)
1135 {
1136 struct pipe *rpipe = fp->f_data;
1137 struct pipe *wpipe;
1138 int eof = 0;
1139 int revents = 0;
1140
1141 mutex_enter(rpipe->pipe_lock);
1142 wpipe = rpipe->pipe_peer;
1143
1144 if (events & (POLLIN | POLLRDNORM))
1145 if ((rpipe->pipe_buffer.cnt > 0) ||
1146 #ifndef PIPE_NODIRECT
1147 (rpipe->pipe_state & PIPE_DIRECTR) ||
1148 #endif
1149 (rpipe->pipe_state & PIPE_EOF))
1150 revents |= events & (POLLIN | POLLRDNORM);
1151
1152 eof |= (rpipe->pipe_state & PIPE_EOF);
1153
1154 if (wpipe == NULL)
1155 revents |= events & (POLLOUT | POLLWRNORM);
1156 else {
1157 if (events & (POLLOUT | POLLWRNORM))
1158 if ((wpipe->pipe_state & PIPE_EOF) || (
1159 #ifndef PIPE_NODIRECT
1160 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1161 #endif
1162 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1163 revents |= events & (POLLOUT | POLLWRNORM);
1164
1165 eof |= (wpipe->pipe_state & PIPE_EOF);
1166 }
1167
1168 if (wpipe == NULL || eof)
1169 revents |= POLLHUP;
1170
1171 if (revents == 0) {
1172 if (events & (POLLIN | POLLRDNORM))
1173 selrecord(curlwp, &rpipe->pipe_sel);
1174
1175 if (events & (POLLOUT | POLLWRNORM))
1176 selrecord(curlwp, &wpipe->pipe_sel);
1177 }
1178 mutex_exit(rpipe->pipe_lock);
1179
1180 return (revents);
1181 }
1182
1183 static int
1184 pipe_stat(struct file *fp, struct stat *ub)
1185 {
1186 struct pipe *pipe = fp->f_data;
1187
1188 mutex_enter(pipe->pipe_lock);
1189 memset(ub, 0, sizeof(*ub));
1190 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1191 ub->st_blksize = pipe->pipe_buffer.size;
1192 if (ub->st_blksize == 0 && pipe->pipe_peer)
1193 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1194 ub->st_size = pipe->pipe_buffer.cnt;
1195 ub->st_blocks = (ub->st_size) ? 1 : 0;
1196 ub->st_atimespec = pipe->pipe_atime;
1197 ub->st_mtimespec = pipe->pipe_mtime;
1198 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1199 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1200 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1201
1202 /*
1203 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1204 * XXX (st_dev, st_ino) should be unique.
1205 */
1206 mutex_exit(pipe->pipe_lock);
1207 return 0;
1208 }
1209
1210 /* ARGSUSED */
1211 static int
1212 pipe_close(struct file *fp)
1213 {
1214 struct pipe *pipe = fp->f_data;
1215
1216 fp->f_data = NULL;
1217 pipeclose(fp, pipe);
1218 return (0);
1219 }
1220
1221 static void
1222 pipe_free_kmem(struct pipe *pipe)
1223 {
1224
1225 if (pipe->pipe_buffer.buffer != NULL) {
1226 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1227 atomic_dec_uint(&nbigpipe);
1228 }
1229 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1230 uvm_km_free(kernel_map,
1231 (vaddr_t)pipe->pipe_buffer.buffer,
1232 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1233 atomic_add_int(&amountpipekva,
1234 -pipe->pipe_buffer.size);
1235 }
1236 pipe->pipe_buffer.buffer = NULL;
1237 }
1238 #ifndef PIPE_NODIRECT
1239 if (pipe->pipe_map.kva != 0) {
1240 pipe_loan_free(pipe);
1241 pipe->pipe_map.cnt = 0;
1242 pipe->pipe_map.kva = 0;
1243 pipe->pipe_map.pos = 0;
1244 pipe->pipe_map.npages = 0;
1245 }
1246 #endif /* !PIPE_NODIRECT */
1247 }
1248
1249 /*
1250 * shutdown the pipe
1251 */
1252 static void
1253 pipeclose(struct file *fp, struct pipe *pipe)
1254 {
1255 kmutex_t *lock;
1256 struct pipe *ppipe;
1257
1258 if (pipe == NULL)
1259 return;
1260
1261 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1262 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1263 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1264 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1265
1266 lock = pipe->pipe_lock;
1267 mutex_enter(lock);
1268 pipeselwakeup(pipe, pipe, POLL_HUP);
1269
1270 /*
1271 * If the other side is blocked, wake it up saying that
1272 * we want to close it down.
1273 */
1274 pipe->pipe_state |= PIPE_EOF;
1275 if (pipe->pipe_busy) {
1276 while (pipe->pipe_busy) {
1277 cv_broadcast(&pipe->pipe_wcv);
1278 cv_wait_sig(&pipe->pipe_draincv, lock);
1279 }
1280 }
1281
1282 /*
1283 * Disconnect from peer
1284 */
1285 if ((ppipe = pipe->pipe_peer) != NULL) {
1286 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1287 ppipe->pipe_state |= PIPE_EOF;
1288 cv_broadcast(&ppipe->pipe_rcv);
1289 ppipe->pipe_peer = NULL;
1290 }
1291
1292 /*
1293 * Any knote objects still left in the list are
1294 * the one attached by peer. Since no one will
1295 * traverse this list, we just clear it.
1296 */
1297 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1298
1299 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1300 mutex_exit(lock);
1301
1302 /*
1303 * free resources
1304 */
1305 pipe->pipe_pgid = 0;
1306 pipe->pipe_state = PIPE_SIGNALR;
1307 pipe_free_kmem(pipe);
1308 if (pipe->pipe_kmem != 0) {
1309 pool_cache_put(pipe_rd_cache, pipe);
1310 } else {
1311 pool_cache_put(pipe_wr_cache, pipe);
1312 }
1313 mutex_obj_free(lock);
1314 }
1315
1316 static void
1317 filt_pipedetach(struct knote *kn)
1318 {
1319 struct pipe *pipe;
1320 kmutex_t *lock;
1321
1322 pipe = ((file_t *)kn->kn_obj)->f_data;
1323 lock = pipe->pipe_lock;
1324
1325 mutex_enter(lock);
1326
1327 switch(kn->kn_filter) {
1328 case EVFILT_WRITE:
1329 /* need the peer structure, not our own */
1330 pipe = pipe->pipe_peer;
1331
1332 /* if reader end already closed, just return */
1333 if (pipe == NULL) {
1334 mutex_exit(lock);
1335 return;
1336 }
1337
1338 break;
1339 default:
1340 /* nothing to do */
1341 break;
1342 }
1343
1344 #ifdef DIAGNOSTIC
1345 if (kn->kn_hook != pipe)
1346 panic("filt_pipedetach: inconsistent knote");
1347 #endif
1348
1349 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1350 mutex_exit(lock);
1351 }
1352
1353 /*ARGSUSED*/
1354 static int
1355 filt_piperead(struct knote *kn, long hint)
1356 {
1357 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1358 struct pipe *wpipe;
1359
1360 if ((hint & NOTE_SUBMIT) == 0) {
1361 mutex_enter(rpipe->pipe_lock);
1362 }
1363 wpipe = rpipe->pipe_peer;
1364 kn->kn_data = rpipe->pipe_buffer.cnt;
1365
1366 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1367 kn->kn_data = rpipe->pipe_map.cnt;
1368
1369 if ((rpipe->pipe_state & PIPE_EOF) ||
1370 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1371 kn->kn_flags |= EV_EOF;
1372 if ((hint & NOTE_SUBMIT) == 0) {
1373 mutex_exit(rpipe->pipe_lock);
1374 }
1375 return (1);
1376 }
1377
1378 if ((hint & NOTE_SUBMIT) == 0) {
1379 mutex_exit(rpipe->pipe_lock);
1380 }
1381 return (kn->kn_data > 0);
1382 }
1383
1384 /*ARGSUSED*/
1385 static int
1386 filt_pipewrite(struct knote *kn, long hint)
1387 {
1388 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1389 struct pipe *wpipe;
1390
1391 if ((hint & NOTE_SUBMIT) == 0) {
1392 mutex_enter(rpipe->pipe_lock);
1393 }
1394 wpipe = rpipe->pipe_peer;
1395
1396 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1397 kn->kn_data = 0;
1398 kn->kn_flags |= EV_EOF;
1399 if ((hint & NOTE_SUBMIT) == 0) {
1400 mutex_exit(rpipe->pipe_lock);
1401 }
1402 return (1);
1403 }
1404 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1405 if (wpipe->pipe_state & PIPE_DIRECTW)
1406 kn->kn_data = 0;
1407
1408 if ((hint & NOTE_SUBMIT) == 0) {
1409 mutex_exit(rpipe->pipe_lock);
1410 }
1411 return (kn->kn_data >= PIPE_BUF);
1412 }
1413
1414 static const struct filterops pipe_rfiltops =
1415 { 1, NULL, filt_pipedetach, filt_piperead };
1416 static const struct filterops pipe_wfiltops =
1417 { 1, NULL, filt_pipedetach, filt_pipewrite };
1418
1419 /*ARGSUSED*/
1420 static int
1421 pipe_kqfilter(struct file *fp, struct knote *kn)
1422 {
1423 struct pipe *pipe;
1424 kmutex_t *lock;
1425
1426 pipe = ((file_t *)kn->kn_obj)->f_data;
1427 lock = pipe->pipe_lock;
1428
1429 mutex_enter(lock);
1430
1431 switch (kn->kn_filter) {
1432 case EVFILT_READ:
1433 kn->kn_fop = &pipe_rfiltops;
1434 break;
1435 case EVFILT_WRITE:
1436 kn->kn_fop = &pipe_wfiltops;
1437 pipe = pipe->pipe_peer;
1438 if (pipe == NULL) {
1439 /* other end of pipe has been closed */
1440 mutex_exit(lock);
1441 return (EBADF);
1442 }
1443 break;
1444 default:
1445 mutex_exit(lock);
1446 return (EINVAL);
1447 }
1448
1449 kn->kn_hook = pipe;
1450 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1451 mutex_exit(lock);
1452
1453 return (0);
1454 }
1455
1456 /*
1457 * Handle pipe sysctls.
1458 */
1459 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1460 {
1461
1462 sysctl_createv(clog, 0, NULL, NULL,
1463 CTLFLAG_PERMANENT,
1464 CTLTYPE_NODE, "kern", NULL,
1465 NULL, 0, NULL, 0,
1466 CTL_KERN, CTL_EOL);
1467 sysctl_createv(clog, 0, NULL, NULL,
1468 CTLFLAG_PERMANENT,
1469 CTLTYPE_NODE, "pipe",
1470 SYSCTL_DESCR("Pipe settings"),
1471 NULL, 0, NULL, 0,
1472 CTL_KERN, KERN_PIPE, CTL_EOL);
1473
1474 sysctl_createv(clog, 0, NULL, NULL,
1475 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1476 CTLTYPE_INT, "maxkvasz",
1477 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1478 "used for pipes"),
1479 NULL, 0, &maxpipekva, 0,
1480 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1481 sysctl_createv(clog, 0, NULL, NULL,
1482 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1483 CTLTYPE_INT, "maxloankvasz",
1484 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1485 NULL, 0, &limitpipekva, 0,
1486 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1487 sysctl_createv(clog, 0, NULL, NULL,
1488 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1489 CTLTYPE_INT, "maxbigpipes",
1490 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1491 NULL, 0, &maxbigpipes, 0,
1492 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1493 sysctl_createv(clog, 0, NULL, NULL,
1494 CTLFLAG_PERMANENT,
1495 CTLTYPE_INT, "nbigpipes",
1496 SYSCTL_DESCR("Number of \"big\" pipes"),
1497 NULL, 0, &nbigpipe, 0,
1498 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1499 sysctl_createv(clog, 0, NULL, NULL,
1500 CTLFLAG_PERMANENT,
1501 CTLTYPE_INT, "kvasize",
1502 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1503 "buffers"),
1504 NULL, 0, &amountpipekva, 0,
1505 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1506 }
1507