sys_pipe.c revision 1.114 1 /* $NetBSD: sys_pipe.c,v 1.114 2009/06/28 14:34:48 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.114 2009/06/28 14:34:48 rmind Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 #include <uvm/uvm.h>
96
97 /* Use this define if you want to disable *fancy* VM things. */
98 /* XXX Disabled for now; rare hangs switching between direct/buffered */
99 #define PIPE_NODIRECT
100
101 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
102 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
103 static int pipe_close(file_t *);
104 static int pipe_poll(file_t *, int);
105 static int pipe_kqfilter(file_t *, struct knote *);
106 static int pipe_stat(file_t *, struct stat *);
107 static int pipe_ioctl(file_t *, u_long, void *);
108
109 static const struct fileops pipeops = {
110 .fo_read = pipe_read,
111 .fo_write = pipe_write,
112 .fo_ioctl = pipe_ioctl,
113 .fo_fcntl = fnullop_fcntl,
114 .fo_poll = pipe_poll,
115 .fo_stat = pipe_stat,
116 .fo_close = pipe_close,
117 .fo_kqfilter = pipe_kqfilter,
118 .fo_drain = fnullop_drain,
119 };
120
121 /*
122 * Default pipe buffer size(s), this can be kind-of large now because pipe
123 * space is pageable. The pipe code will try to maintain locality of
124 * reference for performance reasons, so small amounts of outstanding I/O
125 * will not wipe the cache.
126 */
127 #define MINPIPESIZE (PIPE_SIZE / 3)
128 #define MAXPIPESIZE (2 * PIPE_SIZE / 3)
129
130 /*
131 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
132 * is there so that on large systems, we don't exhaust it.
133 */
134 #define MAXPIPEKVA (8 * 1024 * 1024)
135 static u_int maxpipekva = MAXPIPEKVA;
136
137 /*
138 * Limit for direct transfers, we cannot, of course limit
139 * the amount of kva for pipes in general though.
140 */
141 #define LIMITPIPEKVA (16 * 1024 * 1024)
142 static u_int limitpipekva = LIMITPIPEKVA;
143
144 /*
145 * Limit the number of "big" pipes
146 */
147 #define LIMITBIGPIPES 32
148 static u_int maxbigpipes = LIMITBIGPIPES;
149 static u_int nbigpipe = 0;
150
151 /*
152 * Amount of KVA consumed by pipe buffers.
153 */
154 static u_int amountpipekva = 0;
155
156 static void pipeclose(file_t *, struct pipe *);
157 static void pipe_free_kmem(struct pipe *);
158 static int pipe_create(struct pipe **, pool_cache_t, kmutex_t *);
159 static int pipelock(struct pipe *, int);
160 static inline void pipeunlock(struct pipe *);
161 static void pipeselwakeup(struct pipe *, struct pipe *, int);
162 #ifndef PIPE_NODIRECT
163 static int pipe_direct_write(file_t *, struct pipe *, struct uio *);
164 #endif
165 static int pipespace(struct pipe *, int);
166 static int pipe_ctor(void *, void *, int);
167 static void pipe_dtor(void *, void *);
168
169 #ifndef PIPE_NODIRECT
170 static int pipe_loan_alloc(struct pipe *, int);
171 static void pipe_loan_free(struct pipe *);
172 #endif /* PIPE_NODIRECT */
173
174 static pool_cache_t pipe_wr_cache;
175 static pool_cache_t pipe_rd_cache;
176
177 void
178 pipe_init(void)
179 {
180
181 /* Writer side is not automatically allocated KVA. */
182 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
183 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
184 KASSERT(pipe_wr_cache != NULL);
185
186 /* Reader side gets preallocated KVA. */
187 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
188 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
189 KASSERT(pipe_rd_cache != NULL);
190 }
191
192 static int
193 pipe_ctor(void *arg, void *obj, int flags)
194 {
195 struct pipe *pipe;
196 vaddr_t va;
197
198 pipe = obj;
199
200 memset(pipe, 0, sizeof(struct pipe));
201 if (arg != NULL) {
202 /* Preallocate space. */
203 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
204 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
205 KASSERT(va != 0);
206 pipe->pipe_kmem = va;
207 atomic_add_int(&amountpipekva, PIPE_SIZE);
208 }
209 cv_init(&pipe->pipe_rcv, "piperd");
210 cv_init(&pipe->pipe_wcv, "pipewr");
211 cv_init(&pipe->pipe_draincv, "pipedrain");
212 cv_init(&pipe->pipe_lkcv, "pipelk");
213 selinit(&pipe->pipe_sel);
214 pipe->pipe_state = PIPE_SIGNALR;
215
216 return 0;
217 }
218
219 static void
220 pipe_dtor(void *arg, void *obj)
221 {
222 struct pipe *pipe;
223
224 pipe = obj;
225
226 cv_destroy(&pipe->pipe_rcv);
227 cv_destroy(&pipe->pipe_wcv);
228 cv_destroy(&pipe->pipe_draincv);
229 cv_destroy(&pipe->pipe_lkcv);
230 seldestroy(&pipe->pipe_sel);
231 if (pipe->pipe_kmem != 0) {
232 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
233 UVM_KMF_PAGEABLE);
234 atomic_add_int(&amountpipekva, -PIPE_SIZE);
235 }
236 }
237
238 /*
239 * The pipe system call for the DTYPE_PIPE type of pipes
240 */
241 int
242 sys_pipe(struct lwp *l, const void *v, register_t *retval)
243 {
244 struct pipe *rpipe, *wpipe;
245 file_t *rf, *wf;
246 kmutex_t *mutex;
247 int fd, error;
248 proc_t *p;
249
250 p = curproc;
251 rpipe = wpipe = NULL;
252 mutex = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
253 if (mutex == NULL)
254 return (ENOMEM);
255 mutex_obj_hold(mutex);
256 if (pipe_create(&rpipe, pipe_rd_cache, mutex) ||
257 pipe_create(&wpipe, pipe_wr_cache, mutex)) {
258 pipeclose(NULL, rpipe);
259 pipeclose(NULL, wpipe);
260 return (ENFILE);
261 }
262
263 error = fd_allocfile(&rf, &fd);
264 if (error)
265 goto free2;
266 retval[0] = fd;
267 rf->f_flag = FREAD;
268 rf->f_type = DTYPE_PIPE;
269 rf->f_data = (void *)rpipe;
270 rf->f_ops = &pipeops;
271
272 error = fd_allocfile(&wf, &fd);
273 if (error)
274 goto free3;
275 retval[1] = fd;
276 wf->f_flag = FWRITE;
277 wf->f_type = DTYPE_PIPE;
278 wf->f_data = (void *)wpipe;
279 wf->f_ops = &pipeops;
280
281 rpipe->pipe_peer = wpipe;
282 wpipe->pipe_peer = rpipe;
283
284 fd_affix(p, rf, (int)retval[0]);
285 fd_affix(p, wf, (int)retval[1]);
286 return (0);
287 free3:
288 fd_abort(p, rf, (int)retval[0]);
289 free2:
290 pipeclose(NULL, wpipe);
291 pipeclose(NULL, rpipe);
292
293 return (error);
294 }
295
296 /*
297 * Allocate kva for pipe circular buffer, the space is pageable
298 * This routine will 'realloc' the size of a pipe safely, if it fails
299 * it will retain the old buffer.
300 * If it fails it will return ENOMEM.
301 */
302 static int
303 pipespace(struct pipe *pipe, int size)
304 {
305 void *buffer;
306
307 /*
308 * Allocate pageable virtual address space. Physical memory is
309 * allocated on demand.
310 */
311 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
312 buffer = (void *)pipe->pipe_kmem;
313 } else {
314 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
315 0, UVM_KMF_PAGEABLE);
316 if (buffer == NULL)
317 return (ENOMEM);
318 atomic_add_int(&amountpipekva, size);
319 }
320
321 /* free old resources if we're resizing */
322 pipe_free_kmem(pipe);
323 pipe->pipe_buffer.buffer = buffer;
324 pipe->pipe_buffer.size = size;
325 pipe->pipe_buffer.in = 0;
326 pipe->pipe_buffer.out = 0;
327 pipe->pipe_buffer.cnt = 0;
328 return (0);
329 }
330
331 /*
332 * Initialize and allocate VM and memory for pipe.
333 */
334 static int
335 pipe_create(struct pipe **pipep, pool_cache_t cache, kmutex_t *mutex)
336 {
337 struct pipe *pipe;
338 int error;
339
340 pipe = pool_cache_get(cache, PR_WAITOK);
341 KASSERT(pipe != NULL);
342 *pipep = pipe;
343 error = 0;
344 getnanotime(&pipe->pipe_btime);
345 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
346 pipe->pipe_lock = mutex;
347 if (cache == pipe_rd_cache) {
348 error = pipespace(pipe, PIPE_SIZE);
349 } else {
350 pipe->pipe_buffer.buffer = NULL;
351 pipe->pipe_buffer.size = 0;
352 pipe->pipe_buffer.in = 0;
353 pipe->pipe_buffer.out = 0;
354 pipe->pipe_buffer.cnt = 0;
355 }
356 return error;
357 }
358
359 /*
360 * Lock a pipe for I/O, blocking other access
361 * Called with pipe spin lock held.
362 * Return with pipe spin lock released on success.
363 */
364 static int
365 pipelock(struct pipe *pipe, int catch)
366 {
367 int error;
368
369 KASSERT(mutex_owned(pipe->pipe_lock));
370
371 while (pipe->pipe_state & PIPE_LOCKFL) {
372 pipe->pipe_state |= PIPE_LWANT;
373 if (catch) {
374 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
375 if (error != 0)
376 return error;
377 } else
378 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
379 }
380
381 pipe->pipe_state |= PIPE_LOCKFL;
382
383 return 0;
384 }
385
386 /*
387 * unlock a pipe I/O lock
388 */
389 static inline void
390 pipeunlock(struct pipe *pipe)
391 {
392
393 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
394
395 pipe->pipe_state &= ~PIPE_LOCKFL;
396 if (pipe->pipe_state & PIPE_LWANT) {
397 pipe->pipe_state &= ~PIPE_LWANT;
398 cv_broadcast(&pipe->pipe_lkcv);
399 }
400 }
401
402 /*
403 * Select/poll wakup. This also sends SIGIO to peer connected to
404 * 'sigpipe' side of pipe.
405 */
406 static void
407 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
408 {
409 int band;
410
411 switch (code) {
412 case POLL_IN:
413 band = POLLIN|POLLRDNORM;
414 break;
415 case POLL_OUT:
416 band = POLLOUT|POLLWRNORM;
417 break;
418 case POLL_HUP:
419 band = POLLHUP;
420 break;
421 case POLL_ERR:
422 band = POLLERR;
423 break;
424 default:
425 band = 0;
426 #ifdef DIAGNOSTIC
427 printf("bad siginfo code %d in pipe notification.\n", code);
428 #endif
429 break;
430 }
431
432 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
433
434 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
435 return;
436
437 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
438 }
439
440 static int
441 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
442 int flags)
443 {
444 struct pipe *rpipe = (struct pipe *) fp->f_data;
445 struct pipebuf *bp = &rpipe->pipe_buffer;
446 kmutex_t *lock = rpipe->pipe_lock;
447 int error;
448 size_t nread = 0;
449 size_t size;
450 size_t ocnt;
451
452 mutex_enter(lock);
453 ++rpipe->pipe_busy;
454 ocnt = bp->cnt;
455
456 again:
457 error = pipelock(rpipe, 1);
458 if (error)
459 goto unlocked_error;
460
461 while (uio->uio_resid) {
462 /*
463 * Normal pipe buffer receive.
464 */
465 if (bp->cnt > 0) {
466 size = bp->size - bp->out;
467 if (size > bp->cnt)
468 size = bp->cnt;
469 if (size > uio->uio_resid)
470 size = uio->uio_resid;
471
472 mutex_exit(lock);
473 error = uiomove((char *)bp->buffer + bp->out, size, uio);
474 mutex_enter(lock);
475 if (error)
476 break;
477
478 bp->out += size;
479 if (bp->out >= bp->size)
480 bp->out = 0;
481
482 bp->cnt -= size;
483
484 /*
485 * If there is no more to read in the pipe, reset
486 * its pointers to the beginning. This improves
487 * cache hit stats.
488 */
489 if (bp->cnt == 0) {
490 bp->in = 0;
491 bp->out = 0;
492 }
493 nread += size;
494 continue;
495 }
496
497 #ifndef PIPE_NODIRECT
498 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
499 /*
500 * Direct copy, bypassing a kernel buffer.
501 */
502 void *va;
503
504 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
505
506 size = rpipe->pipe_map.cnt;
507 if (size > uio->uio_resid)
508 size = uio->uio_resid;
509
510 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
511 mutex_exit(lock);
512 error = uiomove(va, size, uio);
513 mutex_enter(lock);
514 if (error)
515 break;
516 nread += size;
517 rpipe->pipe_map.pos += size;
518 rpipe->pipe_map.cnt -= size;
519 if (rpipe->pipe_map.cnt == 0) {
520 rpipe->pipe_state &= ~PIPE_DIRECTR;
521 cv_broadcast(&rpipe->pipe_wcv);
522 }
523 continue;
524 }
525 #endif
526 /*
527 * Break if some data was read.
528 */
529 if (nread > 0)
530 break;
531
532 /*
533 * Detect EOF condition.
534 * Read returns 0 on EOF, no need to set error.
535 */
536 if (rpipe->pipe_state & PIPE_EOF)
537 break;
538
539 /*
540 * Don't block on non-blocking I/O.
541 */
542 if (fp->f_flag & FNONBLOCK) {
543 error = EAGAIN;
544 break;
545 }
546
547 /*
548 * Unlock the pipe buffer for our remaining processing.
549 * We will either break out with an error or we will
550 * sleep and relock to loop.
551 */
552 pipeunlock(rpipe);
553
554 /*
555 * Re-check to see if more direct writes are pending.
556 */
557 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
558 goto again;
559
560 /*
561 * We want to read more, wake up select/poll.
562 */
563 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
564
565 /*
566 * If the "write-side" is blocked, wake it up now.
567 */
568 cv_broadcast(&rpipe->pipe_wcv);
569
570 /* Now wait until the pipe is filled */
571 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
572 if (error != 0)
573 goto unlocked_error;
574 goto again;
575 }
576
577 if (error == 0)
578 getnanotime(&rpipe->pipe_atime);
579 pipeunlock(rpipe);
580
581 unlocked_error:
582 --rpipe->pipe_busy;
583 if (rpipe->pipe_busy == 0) {
584 cv_broadcast(&rpipe->pipe_draincv);
585 }
586 if (bp->cnt < MINPIPESIZE) {
587 cv_broadcast(&rpipe->pipe_wcv);
588 }
589
590 /*
591 * If anything was read off the buffer, signal to the writer it's
592 * possible to write more data. Also send signal if we are here for the
593 * first time after last write.
594 */
595 if ((bp->size - bp->cnt) >= PIPE_BUF
596 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
597 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
598 rpipe->pipe_state &= ~PIPE_SIGNALR;
599 }
600
601 mutex_exit(lock);
602 return (error);
603 }
604
605 #ifndef PIPE_NODIRECT
606 /*
607 * Allocate structure for loan transfer.
608 */
609 static int
610 pipe_loan_alloc(struct pipe *wpipe, int npages)
611 {
612 vsize_t len;
613
614 len = (vsize_t)npages << PAGE_SHIFT;
615 atomic_add_int(&amountpipekva, len);
616 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
617 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
618 if (wpipe->pipe_map.kva == 0) {
619 atomic_add_int(&amountpipekva, -len);
620 return (ENOMEM);
621 }
622
623 wpipe->pipe_map.npages = npages;
624 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
625 KM_SLEEP);
626 return (0);
627 }
628
629 /*
630 * Free resources allocated for loan transfer.
631 */
632 static void
633 pipe_loan_free(struct pipe *wpipe)
634 {
635 vsize_t len;
636
637 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
638 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
639 wpipe->pipe_map.kva = 0;
640 atomic_add_int(&amountpipekva, -len);
641 kmem_free(wpipe->pipe_map.pgs,
642 wpipe->pipe_map.npages * sizeof(struct vm_page *));
643 wpipe->pipe_map.pgs = NULL;
644 }
645
646 /*
647 * NetBSD direct write, using uvm_loan() mechanism.
648 * This implements the pipe buffer write mechanism. Note that only
649 * a direct write OR a normal pipe write can be pending at any given time.
650 * If there are any characters in the pipe buffer, the direct write will
651 * be deferred until the receiving process grabs all of the bytes from
652 * the pipe buffer. Then the direct mapping write is set-up.
653 *
654 * Called with the long-term pipe lock held.
655 */
656 static int
657 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
658 {
659 int error, npages, j;
660 struct vm_page **pgs;
661 vaddr_t bbase, kva, base, bend;
662 vsize_t blen, bcnt;
663 voff_t bpos;
664 kmutex_t *lock = wpipe->pipe_lock;
665
666 KASSERT(mutex_owned(wpipe->pipe_lock));
667 KASSERT(wpipe->pipe_map.cnt == 0);
668
669 mutex_exit(lock);
670
671 /*
672 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
673 * not aligned to PAGE_SIZE.
674 */
675 bbase = (vaddr_t)uio->uio_iov->iov_base;
676 base = trunc_page(bbase);
677 bend = round_page(bbase + uio->uio_iov->iov_len);
678 blen = bend - base;
679 bpos = bbase - base;
680
681 if (blen > PIPE_DIRECT_CHUNK) {
682 blen = PIPE_DIRECT_CHUNK;
683 bend = base + blen;
684 bcnt = PIPE_DIRECT_CHUNK - bpos;
685 } else {
686 bcnt = uio->uio_iov->iov_len;
687 }
688 npages = blen >> PAGE_SHIFT;
689
690 /*
691 * Free the old kva if we need more pages than we have
692 * allocated.
693 */
694 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
695 pipe_loan_free(wpipe);
696
697 /* Allocate new kva. */
698 if (wpipe->pipe_map.kva == 0) {
699 error = pipe_loan_alloc(wpipe, npages);
700 if (error) {
701 mutex_enter(lock);
702 return (error);
703 }
704 }
705
706 /* Loan the write buffer memory from writer process */
707 pgs = wpipe->pipe_map.pgs;
708 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
709 pgs, UVM_LOAN_TOPAGE);
710 if (error) {
711 pipe_loan_free(wpipe);
712 mutex_enter(lock);
713 return (ENOMEM); /* so that caller fallback to ordinary write */
714 }
715
716 /* Enter the loaned pages to kva */
717 kva = wpipe->pipe_map.kva;
718 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
719 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
720 }
721 pmap_update(pmap_kernel());
722
723 /* Now we can put the pipe in direct write mode */
724 wpipe->pipe_map.pos = bpos;
725 wpipe->pipe_map.cnt = bcnt;
726
727 /*
728 * But before we can let someone do a direct read, we
729 * have to wait until the pipe is drained. Release the
730 * pipe lock while we wait.
731 */
732 mutex_enter(lock);
733 wpipe->pipe_state |= PIPE_DIRECTW;
734 pipeunlock(wpipe);
735
736 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
737 cv_broadcast(&wpipe->pipe_rcv);
738 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
739 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
740 error = EPIPE;
741 }
742
743 /* Pipe is drained; next read will off the direct buffer */
744 wpipe->pipe_state |= PIPE_DIRECTR;
745
746 /* Wait until the reader is done */
747 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
748 cv_broadcast(&wpipe->pipe_rcv);
749 pipeselwakeup(wpipe, wpipe, POLL_IN);
750 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
751 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
752 error = EPIPE;
753 }
754
755 /* Take pipe out of direct write mode */
756 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
757
758 /* Acquire the pipe lock and cleanup */
759 (void)pipelock(wpipe, 0);
760 mutex_exit(lock);
761
762 if (pgs != NULL) {
763 pmap_kremove(wpipe->pipe_map.kva, blen);
764 pmap_update(pmap_kernel());
765 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
766 }
767 if (error || amountpipekva > maxpipekva)
768 pipe_loan_free(wpipe);
769
770 mutex_enter(lock);
771 if (error) {
772 pipeselwakeup(wpipe, wpipe, POLL_ERR);
773
774 /*
775 * If nothing was read from what we offered, return error
776 * straight on. Otherwise update uio resid first. Caller
777 * will deal with the error condition, returning short
778 * write, error, or restarting the write(2) as appropriate.
779 */
780 if (wpipe->pipe_map.cnt == bcnt) {
781 wpipe->pipe_map.cnt = 0;
782 cv_broadcast(&wpipe->pipe_wcv);
783 return (error);
784 }
785
786 bcnt -= wpipe->pipe_map.cnt;
787 }
788
789 uio->uio_resid -= bcnt;
790 /* uio_offset not updated, not set/used for write(2) */
791 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
792 uio->uio_iov->iov_len -= bcnt;
793 if (uio->uio_iov->iov_len == 0) {
794 uio->uio_iov++;
795 uio->uio_iovcnt--;
796 }
797
798 wpipe->pipe_map.cnt = 0;
799 return (error);
800 }
801 #endif /* !PIPE_NODIRECT */
802
803 static int
804 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
805 int flags)
806 {
807 struct pipe *wpipe, *rpipe;
808 struct pipebuf *bp;
809 kmutex_t *lock;
810 int error;
811
812 /* We want to write to our peer */
813 rpipe = (struct pipe *) fp->f_data;
814 lock = rpipe->pipe_lock;
815 error = 0;
816
817 mutex_enter(lock);
818 wpipe = rpipe->pipe_peer;
819
820 /*
821 * Detect loss of pipe read side, issue SIGPIPE if lost.
822 */
823 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
824 mutex_exit(lock);
825 return EPIPE;
826 }
827 ++wpipe->pipe_busy;
828
829 /* Aquire the long-term pipe lock */
830 if ((error = pipelock(wpipe, 1)) != 0) {
831 --wpipe->pipe_busy;
832 if (wpipe->pipe_busy == 0) {
833 cv_broadcast(&wpipe->pipe_draincv);
834 }
835 mutex_exit(lock);
836 return (error);
837 }
838
839 bp = &wpipe->pipe_buffer;
840
841 /*
842 * If it is advantageous to resize the pipe buffer, do so.
843 */
844 if ((uio->uio_resid > PIPE_SIZE) &&
845 (nbigpipe < maxbigpipes) &&
846 #ifndef PIPE_NODIRECT
847 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
848 #endif
849 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
850
851 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
852 atomic_inc_uint(&nbigpipe);
853 }
854
855 while (uio->uio_resid) {
856 size_t space;
857
858 #ifndef PIPE_NODIRECT
859 /*
860 * Pipe buffered writes cannot be coincidental with
861 * direct writes. Also, only one direct write can be
862 * in progress at any one time. We wait until the currently
863 * executing direct write is completed before continuing.
864 *
865 * We break out if a signal occurs or the reader goes away.
866 */
867 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
868 cv_broadcast(&wpipe->pipe_rcv);
869 pipeunlock(wpipe);
870 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
871 (void)pipelock(wpipe, 0);
872 if (wpipe->pipe_state & PIPE_EOF)
873 error = EPIPE;
874 }
875 if (error)
876 break;
877
878 /*
879 * If the transfer is large, we can gain performance if
880 * we do process-to-process copies directly.
881 * If the write is non-blocking, we don't use the
882 * direct write mechanism.
883 *
884 * The direct write mechanism will detect the reader going
885 * away on us.
886 */
887 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
888 (fp->f_flag & FNONBLOCK) == 0 &&
889 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
890 error = pipe_direct_write(fp, wpipe, uio);
891
892 /*
893 * Break out if error occurred, unless it's ENOMEM.
894 * ENOMEM means we failed to allocate some resources
895 * for direct write, so we just fallback to ordinary
896 * write. If the direct write was successful,
897 * process rest of data via ordinary write.
898 */
899 if (error == 0)
900 continue;
901
902 if (error != ENOMEM)
903 break;
904 }
905 #endif /* PIPE_NODIRECT */
906
907 space = bp->size - bp->cnt;
908
909 /* Writes of size <= PIPE_BUF must be atomic. */
910 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
911 space = 0;
912
913 if (space > 0) {
914 int size; /* Transfer size */
915 int segsize; /* first segment to transfer */
916
917 /*
918 * Transfer size is minimum of uio transfer
919 * and free space in pipe buffer.
920 */
921 if (space > uio->uio_resid)
922 size = uio->uio_resid;
923 else
924 size = space;
925 /*
926 * First segment to transfer is minimum of
927 * transfer size and contiguous space in
928 * pipe buffer. If first segment to transfer
929 * is less than the transfer size, we've got
930 * a wraparound in the buffer.
931 */
932 segsize = bp->size - bp->in;
933 if (segsize > size)
934 segsize = size;
935
936 /* Transfer first segment */
937 mutex_exit(lock);
938 error = uiomove((char *)bp->buffer + bp->in, segsize,
939 uio);
940
941 if (error == 0 && segsize < size) {
942 /*
943 * Transfer remaining part now, to
944 * support atomic writes. Wraparound
945 * happened.
946 */
947 KASSERT(bp->in + segsize == bp->size);
948 error = uiomove(bp->buffer,
949 size - segsize, uio);
950 }
951 mutex_enter(lock);
952 if (error)
953 break;
954
955 bp->in += size;
956 if (bp->in >= bp->size) {
957 KASSERT(bp->in == size - segsize + bp->size);
958 bp->in = size - segsize;
959 }
960
961 bp->cnt += size;
962 KASSERT(bp->cnt <= bp->size);
963 } else {
964 /*
965 * If the "read-side" has been blocked, wake it up now.
966 */
967 cv_broadcast(&wpipe->pipe_rcv);
968
969 /*
970 * Don't block on non-blocking I/O.
971 */
972 if (fp->f_flag & FNONBLOCK) {
973 error = EAGAIN;
974 break;
975 }
976
977 /*
978 * We have no more space and have something to offer,
979 * wake up select/poll.
980 */
981 if (bp->cnt)
982 pipeselwakeup(wpipe, wpipe, POLL_IN);
983
984 pipeunlock(wpipe);
985 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
986 (void)pipelock(wpipe, 0);
987 if (error != 0)
988 break;
989 /*
990 * If read side wants to go away, we just issue a signal
991 * to ourselves.
992 */
993 if (wpipe->pipe_state & PIPE_EOF) {
994 error = EPIPE;
995 break;
996 }
997 }
998 }
999
1000 --wpipe->pipe_busy;
1001 if (wpipe->pipe_busy == 0) {
1002 cv_broadcast(&wpipe->pipe_draincv);
1003 }
1004 if (bp->cnt > 0) {
1005 cv_broadcast(&wpipe->pipe_rcv);
1006 }
1007
1008 /*
1009 * Don't return EPIPE if I/O was successful
1010 */
1011 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1012 error = 0;
1013
1014 if (error == 0)
1015 getnanotime(&wpipe->pipe_mtime);
1016
1017 /*
1018 * We have something to offer, wake up select/poll.
1019 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1020 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1021 */
1022 if (bp->cnt)
1023 pipeselwakeup(wpipe, wpipe, POLL_IN);
1024
1025 /*
1026 * Arrange for next read(2) to do a signal.
1027 */
1028 wpipe->pipe_state |= PIPE_SIGNALR;
1029
1030 pipeunlock(wpipe);
1031 mutex_exit(lock);
1032 return (error);
1033 }
1034
1035 /*
1036 * We implement a very minimal set of ioctls for compatibility with sockets.
1037 */
1038 int
1039 pipe_ioctl(file_t *fp, u_long cmd, void *data)
1040 {
1041 struct pipe *pipe = fp->f_data;
1042 kmutex_t *lock = pipe->pipe_lock;
1043
1044 switch (cmd) {
1045
1046 case FIONBIO:
1047 return (0);
1048
1049 case FIOASYNC:
1050 mutex_enter(lock);
1051 if (*(int *)data) {
1052 pipe->pipe_state |= PIPE_ASYNC;
1053 } else {
1054 pipe->pipe_state &= ~PIPE_ASYNC;
1055 }
1056 mutex_exit(lock);
1057 return (0);
1058
1059 case FIONREAD:
1060 mutex_enter(lock);
1061 #ifndef PIPE_NODIRECT
1062 if (pipe->pipe_state & PIPE_DIRECTW)
1063 *(int *)data = pipe->pipe_map.cnt;
1064 else
1065 #endif
1066 *(int *)data = pipe->pipe_buffer.cnt;
1067 mutex_exit(lock);
1068 return (0);
1069
1070 case FIONWRITE:
1071 /* Look at other side */
1072 pipe = pipe->pipe_peer;
1073 mutex_enter(lock);
1074 #ifndef PIPE_NODIRECT
1075 if (pipe->pipe_state & PIPE_DIRECTW)
1076 *(int *)data = pipe->pipe_map.cnt;
1077 else
1078 #endif
1079 *(int *)data = pipe->pipe_buffer.cnt;
1080 mutex_exit(lock);
1081 return (0);
1082
1083 case FIONSPACE:
1084 /* Look at other side */
1085 pipe = pipe->pipe_peer;
1086 mutex_enter(lock);
1087 #ifndef PIPE_NODIRECT
1088 /*
1089 * If we're in direct-mode, we don't really have a
1090 * send queue, and any other write will block. Thus
1091 * zero seems like the best answer.
1092 */
1093 if (pipe->pipe_state & PIPE_DIRECTW)
1094 *(int *)data = 0;
1095 else
1096 #endif
1097 *(int *)data = pipe->pipe_buffer.size -
1098 pipe->pipe_buffer.cnt;
1099 mutex_exit(lock);
1100 return (0);
1101
1102 case TIOCSPGRP:
1103 case FIOSETOWN:
1104 return fsetown(&pipe->pipe_pgid, cmd, data);
1105
1106 case TIOCGPGRP:
1107 case FIOGETOWN:
1108 return fgetown(pipe->pipe_pgid, cmd, data);
1109
1110 }
1111 return (EPASSTHROUGH);
1112 }
1113
1114 int
1115 pipe_poll(file_t *fp, int events)
1116 {
1117 struct pipe *rpipe = fp->f_data;
1118 struct pipe *wpipe;
1119 int eof = 0;
1120 int revents = 0;
1121
1122 mutex_enter(rpipe->pipe_lock);
1123 wpipe = rpipe->pipe_peer;
1124
1125 if (events & (POLLIN | POLLRDNORM))
1126 if ((rpipe->pipe_buffer.cnt > 0) ||
1127 #ifndef PIPE_NODIRECT
1128 (rpipe->pipe_state & PIPE_DIRECTR) ||
1129 #endif
1130 (rpipe->pipe_state & PIPE_EOF))
1131 revents |= events & (POLLIN | POLLRDNORM);
1132
1133 eof |= (rpipe->pipe_state & PIPE_EOF);
1134
1135 if (wpipe == NULL)
1136 revents |= events & (POLLOUT | POLLWRNORM);
1137 else {
1138 if (events & (POLLOUT | POLLWRNORM))
1139 if ((wpipe->pipe_state & PIPE_EOF) || (
1140 #ifndef PIPE_NODIRECT
1141 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1142 #endif
1143 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1144 revents |= events & (POLLOUT | POLLWRNORM);
1145
1146 eof |= (wpipe->pipe_state & PIPE_EOF);
1147 }
1148
1149 if (wpipe == NULL || eof)
1150 revents |= POLLHUP;
1151
1152 if (revents == 0) {
1153 if (events & (POLLIN | POLLRDNORM))
1154 selrecord(curlwp, &rpipe->pipe_sel);
1155
1156 if (events & (POLLOUT | POLLWRNORM))
1157 selrecord(curlwp, &wpipe->pipe_sel);
1158 }
1159 mutex_exit(rpipe->pipe_lock);
1160
1161 return (revents);
1162 }
1163
1164 static int
1165 pipe_stat(file_t *fp, struct stat *ub)
1166 {
1167 struct pipe *pipe = fp->f_data;
1168
1169 mutex_enter(pipe->pipe_lock);
1170 memset(ub, 0, sizeof(*ub));
1171 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1172 ub->st_blksize = pipe->pipe_buffer.size;
1173 if (ub->st_blksize == 0 && pipe->pipe_peer)
1174 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1175 ub->st_size = pipe->pipe_buffer.cnt;
1176 ub->st_blocks = (ub->st_size) ? 1 : 0;
1177 ub->st_atimespec = pipe->pipe_atime;
1178 ub->st_mtimespec = pipe->pipe_mtime;
1179 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1180 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1181 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1182
1183 /*
1184 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1185 * XXX (st_dev, st_ino) should be unique.
1186 */
1187 mutex_exit(pipe->pipe_lock);
1188 return 0;
1189 }
1190
1191 static int
1192 pipe_close(file_t *fp)
1193 {
1194 struct pipe *pipe = fp->f_data;
1195
1196 fp->f_data = NULL;
1197 pipeclose(fp, pipe);
1198 return (0);
1199 }
1200
1201 static void
1202 pipe_free_kmem(struct pipe *pipe)
1203 {
1204
1205 if (pipe->pipe_buffer.buffer != NULL) {
1206 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1207 atomic_dec_uint(&nbigpipe);
1208 }
1209 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1210 uvm_km_free(kernel_map,
1211 (vaddr_t)pipe->pipe_buffer.buffer,
1212 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1213 atomic_add_int(&amountpipekva,
1214 -pipe->pipe_buffer.size);
1215 }
1216 pipe->pipe_buffer.buffer = NULL;
1217 }
1218 #ifndef PIPE_NODIRECT
1219 if (pipe->pipe_map.kva != 0) {
1220 pipe_loan_free(pipe);
1221 pipe->pipe_map.cnt = 0;
1222 pipe->pipe_map.kva = 0;
1223 pipe->pipe_map.pos = 0;
1224 pipe->pipe_map.npages = 0;
1225 }
1226 #endif /* !PIPE_NODIRECT */
1227 }
1228
1229 /*
1230 * Shutdown the pipe.
1231 */
1232 static void
1233 pipeclose(file_t *fp, struct pipe *pipe)
1234 {
1235 kmutex_t *lock;
1236 struct pipe *ppipe;
1237
1238 if (pipe == NULL)
1239 return;
1240
1241 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1242 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1243 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1244 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1245
1246 lock = pipe->pipe_lock;
1247 mutex_enter(lock);
1248 pipeselwakeup(pipe, pipe, POLL_HUP);
1249
1250 /*
1251 * If the other side is blocked, wake it up saying that
1252 * we want to close it down.
1253 */
1254 pipe->pipe_state |= PIPE_EOF;
1255 if (pipe->pipe_busy) {
1256 while (pipe->pipe_busy) {
1257 cv_broadcast(&pipe->pipe_wcv);
1258 cv_wait_sig(&pipe->pipe_draincv, lock);
1259 }
1260 }
1261
1262 /*
1263 * Disconnect from peer.
1264 */
1265 if ((ppipe = pipe->pipe_peer) != NULL) {
1266 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1267 ppipe->pipe_state |= PIPE_EOF;
1268 cv_broadcast(&ppipe->pipe_rcv);
1269 ppipe->pipe_peer = NULL;
1270 }
1271
1272 /*
1273 * Any knote objects still left in the list are
1274 * the one attached by peer. Since no one will
1275 * traverse this list, we just clear it.
1276 */
1277 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1278
1279 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1280 mutex_exit(lock);
1281
1282 /*
1283 * Free resources.
1284 */
1285 pipe->pipe_pgid = 0;
1286 pipe->pipe_state = PIPE_SIGNALR;
1287 pipe_free_kmem(pipe);
1288 if (pipe->pipe_kmem != 0) {
1289 pool_cache_put(pipe_rd_cache, pipe);
1290 } else {
1291 pool_cache_put(pipe_wr_cache, pipe);
1292 }
1293 mutex_obj_free(lock);
1294 }
1295
1296 static void
1297 filt_pipedetach(struct knote *kn)
1298 {
1299 struct pipe *pipe;
1300 kmutex_t *lock;
1301
1302 pipe = ((file_t *)kn->kn_obj)->f_data;
1303 lock = pipe->pipe_lock;
1304
1305 mutex_enter(lock);
1306
1307 switch(kn->kn_filter) {
1308 case EVFILT_WRITE:
1309 /* Need the peer structure, not our own. */
1310 pipe = pipe->pipe_peer;
1311
1312 /* If reader end already closed, just return. */
1313 if (pipe == NULL) {
1314 mutex_exit(lock);
1315 return;
1316 }
1317
1318 break;
1319 default:
1320 /* Nothing to do. */
1321 break;
1322 }
1323
1324 KASSERT(kn->kn_hook == pipe);
1325 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1326 mutex_exit(lock);
1327 }
1328
1329 static int
1330 filt_piperead(struct knote *kn, long hint)
1331 {
1332 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1333 struct pipe *wpipe;
1334
1335 if ((hint & NOTE_SUBMIT) == 0) {
1336 mutex_enter(rpipe->pipe_lock);
1337 }
1338 wpipe = rpipe->pipe_peer;
1339 kn->kn_data = rpipe->pipe_buffer.cnt;
1340
1341 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1342 kn->kn_data = rpipe->pipe_map.cnt;
1343
1344 if ((rpipe->pipe_state & PIPE_EOF) ||
1345 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1346 kn->kn_flags |= EV_EOF;
1347 if ((hint & NOTE_SUBMIT) == 0) {
1348 mutex_exit(rpipe->pipe_lock);
1349 }
1350 return (1);
1351 }
1352
1353 if ((hint & NOTE_SUBMIT) == 0) {
1354 mutex_exit(rpipe->pipe_lock);
1355 }
1356 return (kn->kn_data > 0);
1357 }
1358
1359 static int
1360 filt_pipewrite(struct knote *kn, long hint)
1361 {
1362 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1363 struct pipe *wpipe;
1364
1365 if ((hint & NOTE_SUBMIT) == 0) {
1366 mutex_enter(rpipe->pipe_lock);
1367 }
1368 wpipe = rpipe->pipe_peer;
1369
1370 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1371 kn->kn_data = 0;
1372 kn->kn_flags |= EV_EOF;
1373 if ((hint & NOTE_SUBMIT) == 0) {
1374 mutex_exit(rpipe->pipe_lock);
1375 }
1376 return (1);
1377 }
1378 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1379 if (wpipe->pipe_state & PIPE_DIRECTW)
1380 kn->kn_data = 0;
1381
1382 if ((hint & NOTE_SUBMIT) == 0) {
1383 mutex_exit(rpipe->pipe_lock);
1384 }
1385 return (kn->kn_data >= PIPE_BUF);
1386 }
1387
1388 static const struct filterops pipe_rfiltops =
1389 { 1, NULL, filt_pipedetach, filt_piperead };
1390 static const struct filterops pipe_wfiltops =
1391 { 1, NULL, filt_pipedetach, filt_pipewrite };
1392
1393 static int
1394 pipe_kqfilter(file_t *fp, struct knote *kn)
1395 {
1396 struct pipe *pipe;
1397 kmutex_t *lock;
1398
1399 pipe = ((file_t *)kn->kn_obj)->f_data;
1400 lock = pipe->pipe_lock;
1401
1402 mutex_enter(lock);
1403
1404 switch (kn->kn_filter) {
1405 case EVFILT_READ:
1406 kn->kn_fop = &pipe_rfiltops;
1407 break;
1408 case EVFILT_WRITE:
1409 kn->kn_fop = &pipe_wfiltops;
1410 pipe = pipe->pipe_peer;
1411 if (pipe == NULL) {
1412 /* Other end of pipe has been closed. */
1413 mutex_exit(lock);
1414 return (EBADF);
1415 }
1416 break;
1417 default:
1418 mutex_exit(lock);
1419 return (EINVAL);
1420 }
1421
1422 kn->kn_hook = pipe;
1423 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1424 mutex_exit(lock);
1425
1426 return (0);
1427 }
1428
1429 /*
1430 * Handle pipe sysctls.
1431 */
1432 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1433 {
1434
1435 sysctl_createv(clog, 0, NULL, NULL,
1436 CTLFLAG_PERMANENT,
1437 CTLTYPE_NODE, "kern", NULL,
1438 NULL, 0, NULL, 0,
1439 CTL_KERN, CTL_EOL);
1440 sysctl_createv(clog, 0, NULL, NULL,
1441 CTLFLAG_PERMANENT,
1442 CTLTYPE_NODE, "pipe",
1443 SYSCTL_DESCR("Pipe settings"),
1444 NULL, 0, NULL, 0,
1445 CTL_KERN, KERN_PIPE, CTL_EOL);
1446
1447 sysctl_createv(clog, 0, NULL, NULL,
1448 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1449 CTLTYPE_INT, "maxkvasz",
1450 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1451 "used for pipes"),
1452 NULL, 0, &maxpipekva, 0,
1453 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1454 sysctl_createv(clog, 0, NULL, NULL,
1455 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1456 CTLTYPE_INT, "maxloankvasz",
1457 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1458 NULL, 0, &limitpipekva, 0,
1459 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1460 sysctl_createv(clog, 0, NULL, NULL,
1461 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1462 CTLTYPE_INT, "maxbigpipes",
1463 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1464 NULL, 0, &maxbigpipes, 0,
1465 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1466 sysctl_createv(clog, 0, NULL, NULL,
1467 CTLFLAG_PERMANENT,
1468 CTLTYPE_INT, "nbigpipes",
1469 SYSCTL_DESCR("Number of \"big\" pipes"),
1470 NULL, 0, &nbigpipe, 0,
1471 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1472 sysctl_createv(clog, 0, NULL, NULL,
1473 CTLFLAG_PERMANENT,
1474 CTLTYPE_INT, "kvasize",
1475 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1476 "buffers"),
1477 NULL, 0, &amountpipekva, 0,
1478 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1479 }
1480