sys_pipe.c revision 1.115 1 /* $NetBSD: sys_pipe.c,v 1.115 2009/06/28 15:18:50 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.115 2009/06/28 15:18:50 rmind Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 #include <uvm/uvm.h>
96
97 /*
98 * Use this to disable direct I/O and decrease the code size:
99 * #define PIPE_NODIRECT
100 */
101
102 /* XXX Disabled for now; rare hangs switching between direct/buffered */
103 #define PIPE_NODIRECT
104
105 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
106 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
107 static int pipe_close(file_t *);
108 static int pipe_poll(file_t *, int);
109 static int pipe_kqfilter(file_t *, struct knote *);
110 static int pipe_stat(file_t *, struct stat *);
111 static int pipe_ioctl(file_t *, u_long, void *);
112
113 static const struct fileops pipeops = {
114 .fo_read = pipe_read,
115 .fo_write = pipe_write,
116 .fo_ioctl = pipe_ioctl,
117 .fo_fcntl = fnullop_fcntl,
118 .fo_poll = pipe_poll,
119 .fo_stat = pipe_stat,
120 .fo_close = pipe_close,
121 .fo_kqfilter = pipe_kqfilter,
122 .fo_drain = fnullop_drain,
123 };
124
125 /*
126 * Default pipe buffer size(s), this can be kind-of large now because pipe
127 * space is pageable. The pipe code will try to maintain locality of
128 * reference for performance reasons, so small amounts of outstanding I/O
129 * will not wipe the cache.
130 */
131 #define MINPIPESIZE (PIPE_SIZE / 3)
132 #define MAXPIPESIZE (2 * PIPE_SIZE / 3)
133
134 /*
135 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
136 * is there so that on large systems, we don't exhaust it.
137 */
138 #define MAXPIPEKVA (8 * 1024 * 1024)
139 static u_int maxpipekva = MAXPIPEKVA;
140
141 /*
142 * Limit for direct transfers, we cannot, of course limit
143 * the amount of kva for pipes in general though.
144 */
145 #define LIMITPIPEKVA (16 * 1024 * 1024)
146 static u_int limitpipekva = LIMITPIPEKVA;
147
148 /*
149 * Limit the number of "big" pipes
150 */
151 #define LIMITBIGPIPES 32
152 static u_int maxbigpipes = LIMITBIGPIPES;
153 static u_int nbigpipe = 0;
154
155 /*
156 * Amount of KVA consumed by pipe buffers.
157 */
158 static u_int amountpipekva = 0;
159
160 static void pipeclose(file_t *, struct pipe *);
161 static void pipe_free_kmem(struct pipe *);
162 static int pipe_create(struct pipe **, pool_cache_t, kmutex_t *);
163 static int pipelock(struct pipe *, int);
164 static inline void pipeunlock(struct pipe *);
165 static void pipeselwakeup(struct pipe *, struct pipe *, int);
166 #ifndef PIPE_NODIRECT
167 static int pipe_direct_write(file_t *, struct pipe *, struct uio *);
168 #endif
169 static int pipespace(struct pipe *, int);
170 static int pipe_ctor(void *, void *, int);
171 static void pipe_dtor(void *, void *);
172
173 #ifndef PIPE_NODIRECT
174 static int pipe_loan_alloc(struct pipe *, int);
175 static void pipe_loan_free(struct pipe *);
176 #endif /* PIPE_NODIRECT */
177
178 static pool_cache_t pipe_wr_cache;
179 static pool_cache_t pipe_rd_cache;
180
181 void
182 pipe_init(void)
183 {
184
185 /* Writer side is not automatically allocated KVA. */
186 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
187 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
188 KASSERT(pipe_wr_cache != NULL);
189
190 /* Reader side gets preallocated KVA. */
191 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
192 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
193 KASSERT(pipe_rd_cache != NULL);
194 }
195
196 static int
197 pipe_ctor(void *arg, void *obj, int flags)
198 {
199 struct pipe *pipe;
200 vaddr_t va;
201
202 pipe = obj;
203
204 memset(pipe, 0, sizeof(struct pipe));
205 if (arg != NULL) {
206 /* Preallocate space. */
207 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
208 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
209 KASSERT(va != 0);
210 pipe->pipe_kmem = va;
211 atomic_add_int(&amountpipekva, PIPE_SIZE);
212 }
213 cv_init(&pipe->pipe_rcv, "piperd");
214 cv_init(&pipe->pipe_wcv, "pipewr");
215 cv_init(&pipe->pipe_draincv, "pipedrain");
216 cv_init(&pipe->pipe_lkcv, "pipelk");
217 selinit(&pipe->pipe_sel);
218 pipe->pipe_state = PIPE_SIGNALR;
219
220 return 0;
221 }
222
223 static void
224 pipe_dtor(void *arg, void *obj)
225 {
226 struct pipe *pipe;
227
228 pipe = obj;
229
230 cv_destroy(&pipe->pipe_rcv);
231 cv_destroy(&pipe->pipe_wcv);
232 cv_destroy(&pipe->pipe_draincv);
233 cv_destroy(&pipe->pipe_lkcv);
234 seldestroy(&pipe->pipe_sel);
235 if (pipe->pipe_kmem != 0) {
236 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
237 UVM_KMF_PAGEABLE);
238 atomic_add_int(&amountpipekva, -PIPE_SIZE);
239 }
240 }
241
242 /*
243 * The pipe system call for the DTYPE_PIPE type of pipes
244 */
245 int
246 sys_pipe(struct lwp *l, const void *v, register_t *retval)
247 {
248 struct pipe *rpipe, *wpipe;
249 file_t *rf, *wf;
250 kmutex_t *mutex;
251 int fd, error;
252 proc_t *p;
253
254 p = curproc;
255 rpipe = wpipe = NULL;
256 mutex = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
257 if (mutex == NULL)
258 return (ENOMEM);
259 mutex_obj_hold(mutex);
260 if (pipe_create(&rpipe, pipe_rd_cache, mutex) ||
261 pipe_create(&wpipe, pipe_wr_cache, mutex)) {
262 pipeclose(NULL, rpipe);
263 pipeclose(NULL, wpipe);
264 return (ENFILE);
265 }
266
267 error = fd_allocfile(&rf, &fd);
268 if (error)
269 goto free2;
270 retval[0] = fd;
271 rf->f_flag = FREAD;
272 rf->f_type = DTYPE_PIPE;
273 rf->f_data = (void *)rpipe;
274 rf->f_ops = &pipeops;
275
276 error = fd_allocfile(&wf, &fd);
277 if (error)
278 goto free3;
279 retval[1] = fd;
280 wf->f_flag = FWRITE;
281 wf->f_type = DTYPE_PIPE;
282 wf->f_data = (void *)wpipe;
283 wf->f_ops = &pipeops;
284
285 rpipe->pipe_peer = wpipe;
286 wpipe->pipe_peer = rpipe;
287
288 fd_affix(p, rf, (int)retval[0]);
289 fd_affix(p, wf, (int)retval[1]);
290 return (0);
291 free3:
292 fd_abort(p, rf, (int)retval[0]);
293 free2:
294 pipeclose(NULL, wpipe);
295 pipeclose(NULL, rpipe);
296
297 return (error);
298 }
299
300 /*
301 * Allocate kva for pipe circular buffer, the space is pageable
302 * This routine will 'realloc' the size of a pipe safely, if it fails
303 * it will retain the old buffer.
304 * If it fails it will return ENOMEM.
305 */
306 static int
307 pipespace(struct pipe *pipe, int size)
308 {
309 void *buffer;
310
311 /*
312 * Allocate pageable virtual address space. Physical memory is
313 * allocated on demand.
314 */
315 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
316 buffer = (void *)pipe->pipe_kmem;
317 } else {
318 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
319 0, UVM_KMF_PAGEABLE);
320 if (buffer == NULL)
321 return (ENOMEM);
322 atomic_add_int(&amountpipekva, size);
323 }
324
325 /* free old resources if we're resizing */
326 pipe_free_kmem(pipe);
327 pipe->pipe_buffer.buffer = buffer;
328 pipe->pipe_buffer.size = size;
329 pipe->pipe_buffer.in = 0;
330 pipe->pipe_buffer.out = 0;
331 pipe->pipe_buffer.cnt = 0;
332 return (0);
333 }
334
335 /*
336 * Initialize and allocate VM and memory for pipe.
337 */
338 static int
339 pipe_create(struct pipe **pipep, pool_cache_t cache, kmutex_t *mutex)
340 {
341 struct pipe *pipe;
342 int error;
343
344 pipe = pool_cache_get(cache, PR_WAITOK);
345 KASSERT(pipe != NULL);
346 *pipep = pipe;
347 error = 0;
348 getnanotime(&pipe->pipe_btime);
349 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
350 pipe->pipe_lock = mutex;
351 if (cache == pipe_rd_cache) {
352 error = pipespace(pipe, PIPE_SIZE);
353 } else {
354 pipe->pipe_buffer.buffer = NULL;
355 pipe->pipe_buffer.size = 0;
356 pipe->pipe_buffer.in = 0;
357 pipe->pipe_buffer.out = 0;
358 pipe->pipe_buffer.cnt = 0;
359 }
360 return error;
361 }
362
363 /*
364 * Lock a pipe for I/O, blocking other access
365 * Called with pipe spin lock held.
366 * Return with pipe spin lock released on success.
367 */
368 static int
369 pipelock(struct pipe *pipe, int catch)
370 {
371 int error;
372
373 KASSERT(mutex_owned(pipe->pipe_lock));
374
375 while (pipe->pipe_state & PIPE_LOCKFL) {
376 pipe->pipe_state |= PIPE_LWANT;
377 if (catch) {
378 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
379 if (error != 0)
380 return error;
381 } else
382 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
383 }
384
385 pipe->pipe_state |= PIPE_LOCKFL;
386
387 return 0;
388 }
389
390 /*
391 * unlock a pipe I/O lock
392 */
393 static inline void
394 pipeunlock(struct pipe *pipe)
395 {
396
397 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
398
399 pipe->pipe_state &= ~PIPE_LOCKFL;
400 if (pipe->pipe_state & PIPE_LWANT) {
401 pipe->pipe_state &= ~PIPE_LWANT;
402 cv_broadcast(&pipe->pipe_lkcv);
403 }
404 }
405
406 /*
407 * Select/poll wakup. This also sends SIGIO to peer connected to
408 * 'sigpipe' side of pipe.
409 */
410 static void
411 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
412 {
413 int band;
414
415 switch (code) {
416 case POLL_IN:
417 band = POLLIN|POLLRDNORM;
418 break;
419 case POLL_OUT:
420 band = POLLOUT|POLLWRNORM;
421 break;
422 case POLL_HUP:
423 band = POLLHUP;
424 break;
425 case POLL_ERR:
426 band = POLLERR;
427 break;
428 default:
429 band = 0;
430 #ifdef DIAGNOSTIC
431 printf("bad siginfo code %d in pipe notification.\n", code);
432 #endif
433 break;
434 }
435
436 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
437
438 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
439 return;
440
441 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
442 }
443
444 static int
445 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
446 int flags)
447 {
448 struct pipe *rpipe = (struct pipe *) fp->f_data;
449 struct pipebuf *bp = &rpipe->pipe_buffer;
450 kmutex_t *lock = rpipe->pipe_lock;
451 int error;
452 size_t nread = 0;
453 size_t size;
454 size_t ocnt;
455
456 mutex_enter(lock);
457 ++rpipe->pipe_busy;
458 ocnt = bp->cnt;
459
460 again:
461 error = pipelock(rpipe, 1);
462 if (error)
463 goto unlocked_error;
464
465 while (uio->uio_resid) {
466 /*
467 * Normal pipe buffer receive.
468 */
469 if (bp->cnt > 0) {
470 size = bp->size - bp->out;
471 if (size > bp->cnt)
472 size = bp->cnt;
473 if (size > uio->uio_resid)
474 size = uio->uio_resid;
475
476 mutex_exit(lock);
477 error = uiomove((char *)bp->buffer + bp->out, size, uio);
478 mutex_enter(lock);
479 if (error)
480 break;
481
482 bp->out += size;
483 if (bp->out >= bp->size)
484 bp->out = 0;
485
486 bp->cnt -= size;
487
488 /*
489 * If there is no more to read in the pipe, reset
490 * its pointers to the beginning. This improves
491 * cache hit stats.
492 */
493 if (bp->cnt == 0) {
494 bp->in = 0;
495 bp->out = 0;
496 }
497 nread += size;
498 continue;
499 }
500
501 #ifndef PIPE_NODIRECT
502 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
503 /*
504 * Direct copy, bypassing a kernel buffer.
505 */
506 void *va;
507 u_int gen;
508
509 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
510
511 size = rpipe->pipe_map.cnt;
512 if (size > uio->uio_resid)
513 size = uio->uio_resid;
514
515 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
516 gen = rpipe->pipe_map.egen;
517 mutex_exit(lock);
518
519 /*
520 * Consume emap and read the data from loaned pages.
521 */
522 uvm_emap_consume(gen);
523 error = uiomove(va, size, uio);
524
525 mutex_enter(lock);
526 if (error)
527 break;
528 nread += size;
529 rpipe->pipe_map.pos += size;
530 rpipe->pipe_map.cnt -= size;
531 if (rpipe->pipe_map.cnt == 0) {
532 rpipe->pipe_state &= ~PIPE_DIRECTR;
533 cv_broadcast(&rpipe->pipe_wcv);
534 }
535 continue;
536 }
537 #endif
538 /*
539 * Break if some data was read.
540 */
541 if (nread > 0)
542 break;
543
544 /*
545 * Detect EOF condition.
546 * Read returns 0 on EOF, no need to set error.
547 */
548 if (rpipe->pipe_state & PIPE_EOF)
549 break;
550
551 /*
552 * Don't block on non-blocking I/O.
553 */
554 if (fp->f_flag & FNONBLOCK) {
555 error = EAGAIN;
556 break;
557 }
558
559 /*
560 * Unlock the pipe buffer for our remaining processing.
561 * We will either break out with an error or we will
562 * sleep and relock to loop.
563 */
564 pipeunlock(rpipe);
565
566 /*
567 * Re-check to see if more direct writes are pending.
568 */
569 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
570 goto again;
571
572 /*
573 * We want to read more, wake up select/poll.
574 */
575 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
576
577 /*
578 * If the "write-side" is blocked, wake it up now.
579 */
580 cv_broadcast(&rpipe->pipe_wcv);
581
582 /* Now wait until the pipe is filled */
583 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
584 if (error != 0)
585 goto unlocked_error;
586 goto again;
587 }
588
589 if (error == 0)
590 getnanotime(&rpipe->pipe_atime);
591 pipeunlock(rpipe);
592
593 unlocked_error:
594 --rpipe->pipe_busy;
595 if (rpipe->pipe_busy == 0) {
596 cv_broadcast(&rpipe->pipe_draincv);
597 }
598 if (bp->cnt < MINPIPESIZE) {
599 cv_broadcast(&rpipe->pipe_wcv);
600 }
601
602 /*
603 * If anything was read off the buffer, signal to the writer it's
604 * possible to write more data. Also send signal if we are here for the
605 * first time after last write.
606 */
607 if ((bp->size - bp->cnt) >= PIPE_BUF
608 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
609 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
610 rpipe->pipe_state &= ~PIPE_SIGNALR;
611 }
612
613 mutex_exit(lock);
614 return (error);
615 }
616
617 #ifndef PIPE_NODIRECT
618 /*
619 * Allocate structure for loan transfer.
620 */
621 static int
622 pipe_loan_alloc(struct pipe *wpipe, int npages)
623 {
624 vsize_t len;
625
626 len = (vsize_t)npages << PAGE_SHIFT;
627 atomic_add_int(&amountpipekva, len);
628 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
629 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
630 if (wpipe->pipe_map.kva == 0) {
631 atomic_add_int(&amountpipekva, -len);
632 return (ENOMEM);
633 }
634
635 wpipe->pipe_map.npages = npages;
636 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
637 KM_SLEEP);
638 return (0);
639 }
640
641 /*
642 * Free resources allocated for loan transfer.
643 */
644 static void
645 pipe_loan_free(struct pipe *wpipe)
646 {
647 vsize_t len;
648
649 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
650 uvm_emap_remove(wpipe->pipe_map.kva, len); /* XXX */
651 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
652 wpipe->pipe_map.kva = 0;
653 atomic_add_int(&amountpipekva, -len);
654 kmem_free(wpipe->pipe_map.pgs,
655 wpipe->pipe_map.npages * sizeof(struct vm_page *));
656 wpipe->pipe_map.pgs = NULL;
657 }
658
659 /*
660 * NetBSD direct write, using uvm_loan() mechanism.
661 * This implements the pipe buffer write mechanism. Note that only
662 * a direct write OR a normal pipe write can be pending at any given time.
663 * If there are any characters in the pipe buffer, the direct write will
664 * be deferred until the receiving process grabs all of the bytes from
665 * the pipe buffer. Then the direct mapping write is set-up.
666 *
667 * Called with the long-term pipe lock held.
668 */
669 static int
670 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
671 {
672 struct vm_page **pgs;
673 vaddr_t bbase, base, bend;
674 vsize_t blen, bcnt;
675 int error, npages;
676 voff_t bpos;
677 kmutex_t *lock = wpipe->pipe_lock;
678
679 KASSERT(mutex_owned(wpipe->pipe_lock));
680 KASSERT(wpipe->pipe_map.cnt == 0);
681
682 mutex_exit(lock);
683
684 /*
685 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
686 * not aligned to PAGE_SIZE.
687 */
688 bbase = (vaddr_t)uio->uio_iov->iov_base;
689 base = trunc_page(bbase);
690 bend = round_page(bbase + uio->uio_iov->iov_len);
691 blen = bend - base;
692 bpos = bbase - base;
693
694 if (blen > PIPE_DIRECT_CHUNK) {
695 blen = PIPE_DIRECT_CHUNK;
696 bend = base + blen;
697 bcnt = PIPE_DIRECT_CHUNK - bpos;
698 } else {
699 bcnt = uio->uio_iov->iov_len;
700 }
701 npages = blen >> PAGE_SHIFT;
702
703 /*
704 * Free the old kva if we need more pages than we have
705 * allocated.
706 */
707 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
708 pipe_loan_free(wpipe);
709
710 /* Allocate new kva. */
711 if (wpipe->pipe_map.kva == 0) {
712 error = pipe_loan_alloc(wpipe, npages);
713 if (error) {
714 mutex_enter(lock);
715 return (error);
716 }
717 }
718
719 /* Loan the write buffer memory from writer process */
720 pgs = wpipe->pipe_map.pgs;
721 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
722 pgs, UVM_LOAN_TOPAGE);
723 if (error) {
724 pipe_loan_free(wpipe);
725 mutex_enter(lock);
726 return (ENOMEM); /* so that caller fallback to ordinary write */
727 }
728
729 /* Enter the loaned pages to KVA, produce new emap generation number. */
730 uvm_emap_enter(wpipe->pipe_map.kva, pgs, npages);
731 wpipe->pipe_map.egen = uvm_emap_produce();
732
733 /* Now we can put the pipe in direct write mode */
734 wpipe->pipe_map.pos = bpos;
735 wpipe->pipe_map.cnt = bcnt;
736
737 /*
738 * But before we can let someone do a direct read, we
739 * have to wait until the pipe is drained. Release the
740 * pipe lock while we wait.
741 */
742 mutex_enter(lock);
743 wpipe->pipe_state |= PIPE_DIRECTW;
744 pipeunlock(wpipe);
745
746 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
747 cv_broadcast(&wpipe->pipe_rcv);
748 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
749 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
750 error = EPIPE;
751 }
752
753 /* Pipe is drained; next read will off the direct buffer */
754 wpipe->pipe_state |= PIPE_DIRECTR;
755
756 /* Wait until the reader is done */
757 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
758 cv_broadcast(&wpipe->pipe_rcv);
759 pipeselwakeup(wpipe, wpipe, POLL_IN);
760 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
761 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
762 error = EPIPE;
763 }
764
765 /* Take pipe out of direct write mode */
766 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
767
768 /* Acquire the pipe lock and cleanup */
769 (void)pipelock(wpipe, 0);
770 mutex_exit(lock);
771
772 if (pgs != NULL) {
773 /* XXX: uvm_emap_remove */
774 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
775 }
776 if (error || amountpipekva > maxpipekva)
777 pipe_loan_free(wpipe);
778
779 mutex_enter(lock);
780 if (error) {
781 pipeselwakeup(wpipe, wpipe, POLL_ERR);
782
783 /*
784 * If nothing was read from what we offered, return error
785 * straight on. Otherwise update uio resid first. Caller
786 * will deal with the error condition, returning short
787 * write, error, or restarting the write(2) as appropriate.
788 */
789 if (wpipe->pipe_map.cnt == bcnt) {
790 wpipe->pipe_map.cnt = 0;
791 cv_broadcast(&wpipe->pipe_wcv);
792 return (error);
793 }
794
795 bcnt -= wpipe->pipe_map.cnt;
796 }
797
798 uio->uio_resid -= bcnt;
799 /* uio_offset not updated, not set/used for write(2) */
800 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
801 uio->uio_iov->iov_len -= bcnt;
802 if (uio->uio_iov->iov_len == 0) {
803 uio->uio_iov++;
804 uio->uio_iovcnt--;
805 }
806
807 wpipe->pipe_map.cnt = 0;
808 return (error);
809 }
810 #endif /* !PIPE_NODIRECT */
811
812 static int
813 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
814 int flags)
815 {
816 struct pipe *wpipe, *rpipe;
817 struct pipebuf *bp;
818 kmutex_t *lock;
819 int error;
820
821 /* We want to write to our peer */
822 rpipe = (struct pipe *) fp->f_data;
823 lock = rpipe->pipe_lock;
824 error = 0;
825
826 mutex_enter(lock);
827 wpipe = rpipe->pipe_peer;
828
829 /*
830 * Detect loss of pipe read side, issue SIGPIPE if lost.
831 */
832 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
833 mutex_exit(lock);
834 return EPIPE;
835 }
836 ++wpipe->pipe_busy;
837
838 /* Aquire the long-term pipe lock */
839 if ((error = pipelock(wpipe, 1)) != 0) {
840 --wpipe->pipe_busy;
841 if (wpipe->pipe_busy == 0) {
842 cv_broadcast(&wpipe->pipe_draincv);
843 }
844 mutex_exit(lock);
845 return (error);
846 }
847
848 bp = &wpipe->pipe_buffer;
849
850 /*
851 * If it is advantageous to resize the pipe buffer, do so.
852 */
853 if ((uio->uio_resid > PIPE_SIZE) &&
854 (nbigpipe < maxbigpipes) &&
855 #ifndef PIPE_NODIRECT
856 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
857 #endif
858 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
859
860 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
861 atomic_inc_uint(&nbigpipe);
862 }
863
864 while (uio->uio_resid) {
865 size_t space;
866
867 #ifndef PIPE_NODIRECT
868 /*
869 * Pipe buffered writes cannot be coincidental with
870 * direct writes. Also, only one direct write can be
871 * in progress at any one time. We wait until the currently
872 * executing direct write is completed before continuing.
873 *
874 * We break out if a signal occurs or the reader goes away.
875 */
876 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
877 cv_broadcast(&wpipe->pipe_rcv);
878 pipeunlock(wpipe);
879 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
880 (void)pipelock(wpipe, 0);
881 if (wpipe->pipe_state & PIPE_EOF)
882 error = EPIPE;
883 }
884 if (error)
885 break;
886
887 /*
888 * If the transfer is large, we can gain performance if
889 * we do process-to-process copies directly.
890 * If the write is non-blocking, we don't use the
891 * direct write mechanism.
892 *
893 * The direct write mechanism will detect the reader going
894 * away on us.
895 */
896 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
897 (fp->f_flag & FNONBLOCK) == 0 &&
898 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
899 error = pipe_direct_write(fp, wpipe, uio);
900
901 /*
902 * Break out if error occurred, unless it's ENOMEM.
903 * ENOMEM means we failed to allocate some resources
904 * for direct write, so we just fallback to ordinary
905 * write. If the direct write was successful,
906 * process rest of data via ordinary write.
907 */
908 if (error == 0)
909 continue;
910
911 if (error != ENOMEM)
912 break;
913 }
914 #endif /* PIPE_NODIRECT */
915
916 space = bp->size - bp->cnt;
917
918 /* Writes of size <= PIPE_BUF must be atomic. */
919 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
920 space = 0;
921
922 if (space > 0) {
923 int size; /* Transfer size */
924 int segsize; /* first segment to transfer */
925
926 /*
927 * Transfer size is minimum of uio transfer
928 * and free space in pipe buffer.
929 */
930 if (space > uio->uio_resid)
931 size = uio->uio_resid;
932 else
933 size = space;
934 /*
935 * First segment to transfer is minimum of
936 * transfer size and contiguous space in
937 * pipe buffer. If first segment to transfer
938 * is less than the transfer size, we've got
939 * a wraparound in the buffer.
940 */
941 segsize = bp->size - bp->in;
942 if (segsize > size)
943 segsize = size;
944
945 /* Transfer first segment */
946 mutex_exit(lock);
947 error = uiomove((char *)bp->buffer + bp->in, segsize,
948 uio);
949
950 if (error == 0 && segsize < size) {
951 /*
952 * Transfer remaining part now, to
953 * support atomic writes. Wraparound
954 * happened.
955 */
956 KASSERT(bp->in + segsize == bp->size);
957 error = uiomove(bp->buffer,
958 size - segsize, uio);
959 }
960 mutex_enter(lock);
961 if (error)
962 break;
963
964 bp->in += size;
965 if (bp->in >= bp->size) {
966 KASSERT(bp->in == size - segsize + bp->size);
967 bp->in = size - segsize;
968 }
969
970 bp->cnt += size;
971 KASSERT(bp->cnt <= bp->size);
972 } else {
973 /*
974 * If the "read-side" has been blocked, wake it up now.
975 */
976 cv_broadcast(&wpipe->pipe_rcv);
977
978 /*
979 * Don't block on non-blocking I/O.
980 */
981 if (fp->f_flag & FNONBLOCK) {
982 error = EAGAIN;
983 break;
984 }
985
986 /*
987 * We have no more space and have something to offer,
988 * wake up select/poll.
989 */
990 if (bp->cnt)
991 pipeselwakeup(wpipe, wpipe, POLL_IN);
992
993 pipeunlock(wpipe);
994 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
995 (void)pipelock(wpipe, 0);
996 if (error != 0)
997 break;
998 /*
999 * If read side wants to go away, we just issue a signal
1000 * to ourselves.
1001 */
1002 if (wpipe->pipe_state & PIPE_EOF) {
1003 error = EPIPE;
1004 break;
1005 }
1006 }
1007 }
1008
1009 --wpipe->pipe_busy;
1010 if (wpipe->pipe_busy == 0) {
1011 cv_broadcast(&wpipe->pipe_draincv);
1012 }
1013 if (bp->cnt > 0) {
1014 cv_broadcast(&wpipe->pipe_rcv);
1015 }
1016
1017 /*
1018 * Don't return EPIPE if I/O was successful
1019 */
1020 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1021 error = 0;
1022
1023 if (error == 0)
1024 getnanotime(&wpipe->pipe_mtime);
1025
1026 /*
1027 * We have something to offer, wake up select/poll.
1028 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1029 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1030 */
1031 if (bp->cnt)
1032 pipeselwakeup(wpipe, wpipe, POLL_IN);
1033
1034 /*
1035 * Arrange for next read(2) to do a signal.
1036 */
1037 wpipe->pipe_state |= PIPE_SIGNALR;
1038
1039 pipeunlock(wpipe);
1040 mutex_exit(lock);
1041 return (error);
1042 }
1043
1044 /*
1045 * We implement a very minimal set of ioctls for compatibility with sockets.
1046 */
1047 int
1048 pipe_ioctl(file_t *fp, u_long cmd, void *data)
1049 {
1050 struct pipe *pipe = fp->f_data;
1051 kmutex_t *lock = pipe->pipe_lock;
1052
1053 switch (cmd) {
1054
1055 case FIONBIO:
1056 return (0);
1057
1058 case FIOASYNC:
1059 mutex_enter(lock);
1060 if (*(int *)data) {
1061 pipe->pipe_state |= PIPE_ASYNC;
1062 } else {
1063 pipe->pipe_state &= ~PIPE_ASYNC;
1064 }
1065 mutex_exit(lock);
1066 return (0);
1067
1068 case FIONREAD:
1069 mutex_enter(lock);
1070 #ifndef PIPE_NODIRECT
1071 if (pipe->pipe_state & PIPE_DIRECTW)
1072 *(int *)data = pipe->pipe_map.cnt;
1073 else
1074 #endif
1075 *(int *)data = pipe->pipe_buffer.cnt;
1076 mutex_exit(lock);
1077 return (0);
1078
1079 case FIONWRITE:
1080 /* Look at other side */
1081 pipe = pipe->pipe_peer;
1082 mutex_enter(lock);
1083 #ifndef PIPE_NODIRECT
1084 if (pipe->pipe_state & PIPE_DIRECTW)
1085 *(int *)data = pipe->pipe_map.cnt;
1086 else
1087 #endif
1088 *(int *)data = pipe->pipe_buffer.cnt;
1089 mutex_exit(lock);
1090 return (0);
1091
1092 case FIONSPACE:
1093 /* Look at other side */
1094 pipe = pipe->pipe_peer;
1095 mutex_enter(lock);
1096 #ifndef PIPE_NODIRECT
1097 /*
1098 * If we're in direct-mode, we don't really have a
1099 * send queue, and any other write will block. Thus
1100 * zero seems like the best answer.
1101 */
1102 if (pipe->pipe_state & PIPE_DIRECTW)
1103 *(int *)data = 0;
1104 else
1105 #endif
1106 *(int *)data = pipe->pipe_buffer.size -
1107 pipe->pipe_buffer.cnt;
1108 mutex_exit(lock);
1109 return (0);
1110
1111 case TIOCSPGRP:
1112 case FIOSETOWN:
1113 return fsetown(&pipe->pipe_pgid, cmd, data);
1114
1115 case TIOCGPGRP:
1116 case FIOGETOWN:
1117 return fgetown(pipe->pipe_pgid, cmd, data);
1118
1119 }
1120 return (EPASSTHROUGH);
1121 }
1122
1123 int
1124 pipe_poll(file_t *fp, int events)
1125 {
1126 struct pipe *rpipe = fp->f_data;
1127 struct pipe *wpipe;
1128 int eof = 0;
1129 int revents = 0;
1130
1131 mutex_enter(rpipe->pipe_lock);
1132 wpipe = rpipe->pipe_peer;
1133
1134 if (events & (POLLIN | POLLRDNORM))
1135 if ((rpipe->pipe_buffer.cnt > 0) ||
1136 #ifndef PIPE_NODIRECT
1137 (rpipe->pipe_state & PIPE_DIRECTR) ||
1138 #endif
1139 (rpipe->pipe_state & PIPE_EOF))
1140 revents |= events & (POLLIN | POLLRDNORM);
1141
1142 eof |= (rpipe->pipe_state & PIPE_EOF);
1143
1144 if (wpipe == NULL)
1145 revents |= events & (POLLOUT | POLLWRNORM);
1146 else {
1147 if (events & (POLLOUT | POLLWRNORM))
1148 if ((wpipe->pipe_state & PIPE_EOF) || (
1149 #ifndef PIPE_NODIRECT
1150 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1151 #endif
1152 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1153 revents |= events & (POLLOUT | POLLWRNORM);
1154
1155 eof |= (wpipe->pipe_state & PIPE_EOF);
1156 }
1157
1158 if (wpipe == NULL || eof)
1159 revents |= POLLHUP;
1160
1161 if (revents == 0) {
1162 if (events & (POLLIN | POLLRDNORM))
1163 selrecord(curlwp, &rpipe->pipe_sel);
1164
1165 if (events & (POLLOUT | POLLWRNORM))
1166 selrecord(curlwp, &wpipe->pipe_sel);
1167 }
1168 mutex_exit(rpipe->pipe_lock);
1169
1170 return (revents);
1171 }
1172
1173 static int
1174 pipe_stat(file_t *fp, struct stat *ub)
1175 {
1176 struct pipe *pipe = fp->f_data;
1177
1178 mutex_enter(pipe->pipe_lock);
1179 memset(ub, 0, sizeof(*ub));
1180 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1181 ub->st_blksize = pipe->pipe_buffer.size;
1182 if (ub->st_blksize == 0 && pipe->pipe_peer)
1183 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1184 ub->st_size = pipe->pipe_buffer.cnt;
1185 ub->st_blocks = (ub->st_size) ? 1 : 0;
1186 ub->st_atimespec = pipe->pipe_atime;
1187 ub->st_mtimespec = pipe->pipe_mtime;
1188 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1189 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1190 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1191
1192 /*
1193 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1194 * XXX (st_dev, st_ino) should be unique.
1195 */
1196 mutex_exit(pipe->pipe_lock);
1197 return 0;
1198 }
1199
1200 static int
1201 pipe_close(file_t *fp)
1202 {
1203 struct pipe *pipe = fp->f_data;
1204
1205 fp->f_data = NULL;
1206 pipeclose(fp, pipe);
1207 return (0);
1208 }
1209
1210 static void
1211 pipe_free_kmem(struct pipe *pipe)
1212 {
1213
1214 if (pipe->pipe_buffer.buffer != NULL) {
1215 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1216 atomic_dec_uint(&nbigpipe);
1217 }
1218 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1219 uvm_km_free(kernel_map,
1220 (vaddr_t)pipe->pipe_buffer.buffer,
1221 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1222 atomic_add_int(&amountpipekva,
1223 -pipe->pipe_buffer.size);
1224 }
1225 pipe->pipe_buffer.buffer = NULL;
1226 }
1227 #ifndef PIPE_NODIRECT
1228 if (pipe->pipe_map.kva != 0) {
1229 pipe_loan_free(pipe);
1230 pipe->pipe_map.cnt = 0;
1231 pipe->pipe_map.kva = 0;
1232 pipe->pipe_map.pos = 0;
1233 pipe->pipe_map.npages = 0;
1234 }
1235 #endif /* !PIPE_NODIRECT */
1236 }
1237
1238 /*
1239 * Shutdown the pipe.
1240 */
1241 static void
1242 pipeclose(file_t *fp, struct pipe *pipe)
1243 {
1244 kmutex_t *lock;
1245 struct pipe *ppipe;
1246
1247 if (pipe == NULL)
1248 return;
1249
1250 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1251 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1252 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1253 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1254
1255 lock = pipe->pipe_lock;
1256 mutex_enter(lock);
1257 pipeselwakeup(pipe, pipe, POLL_HUP);
1258
1259 /*
1260 * If the other side is blocked, wake it up saying that
1261 * we want to close it down.
1262 */
1263 pipe->pipe_state |= PIPE_EOF;
1264 if (pipe->pipe_busy) {
1265 while (pipe->pipe_busy) {
1266 cv_broadcast(&pipe->pipe_wcv);
1267 cv_wait_sig(&pipe->pipe_draincv, lock);
1268 }
1269 }
1270
1271 /*
1272 * Disconnect from peer.
1273 */
1274 if ((ppipe = pipe->pipe_peer) != NULL) {
1275 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1276 ppipe->pipe_state |= PIPE_EOF;
1277 cv_broadcast(&ppipe->pipe_rcv);
1278 ppipe->pipe_peer = NULL;
1279 }
1280
1281 /*
1282 * Any knote objects still left in the list are
1283 * the one attached by peer. Since no one will
1284 * traverse this list, we just clear it.
1285 */
1286 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1287
1288 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1289 mutex_exit(lock);
1290
1291 /*
1292 * Free resources.
1293 */
1294 pipe->pipe_pgid = 0;
1295 pipe->pipe_state = PIPE_SIGNALR;
1296 pipe_free_kmem(pipe);
1297 if (pipe->pipe_kmem != 0) {
1298 pool_cache_put(pipe_rd_cache, pipe);
1299 } else {
1300 pool_cache_put(pipe_wr_cache, pipe);
1301 }
1302 mutex_obj_free(lock);
1303 }
1304
1305 static void
1306 filt_pipedetach(struct knote *kn)
1307 {
1308 struct pipe *pipe;
1309 kmutex_t *lock;
1310
1311 pipe = ((file_t *)kn->kn_obj)->f_data;
1312 lock = pipe->pipe_lock;
1313
1314 mutex_enter(lock);
1315
1316 switch(kn->kn_filter) {
1317 case EVFILT_WRITE:
1318 /* Need the peer structure, not our own. */
1319 pipe = pipe->pipe_peer;
1320
1321 /* If reader end already closed, just return. */
1322 if (pipe == NULL) {
1323 mutex_exit(lock);
1324 return;
1325 }
1326
1327 break;
1328 default:
1329 /* Nothing to do. */
1330 break;
1331 }
1332
1333 KASSERT(kn->kn_hook == pipe);
1334 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1335 mutex_exit(lock);
1336 }
1337
1338 static int
1339 filt_piperead(struct knote *kn, long hint)
1340 {
1341 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1342 struct pipe *wpipe;
1343
1344 if ((hint & NOTE_SUBMIT) == 0) {
1345 mutex_enter(rpipe->pipe_lock);
1346 }
1347 wpipe = rpipe->pipe_peer;
1348 kn->kn_data = rpipe->pipe_buffer.cnt;
1349
1350 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1351 kn->kn_data = rpipe->pipe_map.cnt;
1352
1353 if ((rpipe->pipe_state & PIPE_EOF) ||
1354 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1355 kn->kn_flags |= EV_EOF;
1356 if ((hint & NOTE_SUBMIT) == 0) {
1357 mutex_exit(rpipe->pipe_lock);
1358 }
1359 return (1);
1360 }
1361
1362 if ((hint & NOTE_SUBMIT) == 0) {
1363 mutex_exit(rpipe->pipe_lock);
1364 }
1365 return (kn->kn_data > 0);
1366 }
1367
1368 static int
1369 filt_pipewrite(struct knote *kn, long hint)
1370 {
1371 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1372 struct pipe *wpipe;
1373
1374 if ((hint & NOTE_SUBMIT) == 0) {
1375 mutex_enter(rpipe->pipe_lock);
1376 }
1377 wpipe = rpipe->pipe_peer;
1378
1379 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1380 kn->kn_data = 0;
1381 kn->kn_flags |= EV_EOF;
1382 if ((hint & NOTE_SUBMIT) == 0) {
1383 mutex_exit(rpipe->pipe_lock);
1384 }
1385 return (1);
1386 }
1387 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1388 if (wpipe->pipe_state & PIPE_DIRECTW)
1389 kn->kn_data = 0;
1390
1391 if ((hint & NOTE_SUBMIT) == 0) {
1392 mutex_exit(rpipe->pipe_lock);
1393 }
1394 return (kn->kn_data >= PIPE_BUF);
1395 }
1396
1397 static const struct filterops pipe_rfiltops =
1398 { 1, NULL, filt_pipedetach, filt_piperead };
1399 static const struct filterops pipe_wfiltops =
1400 { 1, NULL, filt_pipedetach, filt_pipewrite };
1401
1402 static int
1403 pipe_kqfilter(file_t *fp, struct knote *kn)
1404 {
1405 struct pipe *pipe;
1406 kmutex_t *lock;
1407
1408 pipe = ((file_t *)kn->kn_obj)->f_data;
1409 lock = pipe->pipe_lock;
1410
1411 mutex_enter(lock);
1412
1413 switch (kn->kn_filter) {
1414 case EVFILT_READ:
1415 kn->kn_fop = &pipe_rfiltops;
1416 break;
1417 case EVFILT_WRITE:
1418 kn->kn_fop = &pipe_wfiltops;
1419 pipe = pipe->pipe_peer;
1420 if (pipe == NULL) {
1421 /* Other end of pipe has been closed. */
1422 mutex_exit(lock);
1423 return (EBADF);
1424 }
1425 break;
1426 default:
1427 mutex_exit(lock);
1428 return (EINVAL);
1429 }
1430
1431 kn->kn_hook = pipe;
1432 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1433 mutex_exit(lock);
1434
1435 return (0);
1436 }
1437
1438 /*
1439 * Handle pipe sysctls.
1440 */
1441 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1442 {
1443
1444 sysctl_createv(clog, 0, NULL, NULL,
1445 CTLFLAG_PERMANENT,
1446 CTLTYPE_NODE, "kern", NULL,
1447 NULL, 0, NULL, 0,
1448 CTL_KERN, CTL_EOL);
1449 sysctl_createv(clog, 0, NULL, NULL,
1450 CTLFLAG_PERMANENT,
1451 CTLTYPE_NODE, "pipe",
1452 SYSCTL_DESCR("Pipe settings"),
1453 NULL, 0, NULL, 0,
1454 CTL_KERN, KERN_PIPE, CTL_EOL);
1455
1456 sysctl_createv(clog, 0, NULL, NULL,
1457 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1458 CTLTYPE_INT, "maxkvasz",
1459 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1460 "used for pipes"),
1461 NULL, 0, &maxpipekva, 0,
1462 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1463 sysctl_createv(clog, 0, NULL, NULL,
1464 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1465 CTLTYPE_INT, "maxloankvasz",
1466 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1467 NULL, 0, &limitpipekva, 0,
1468 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1469 sysctl_createv(clog, 0, NULL, NULL,
1470 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1471 CTLTYPE_INT, "maxbigpipes",
1472 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1473 NULL, 0, &maxbigpipes, 0,
1474 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1475 sysctl_createv(clog, 0, NULL, NULL,
1476 CTLFLAG_PERMANENT,
1477 CTLTYPE_INT, "nbigpipes",
1478 SYSCTL_DESCR("Number of \"big\" pipes"),
1479 NULL, 0, &nbigpipe, 0,
1480 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1481 sysctl_createv(clog, 0, NULL, NULL,
1482 CTLFLAG_PERMANENT,
1483 CTLTYPE_INT, "kvasize",
1484 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1485 "buffers"),
1486 NULL, 0, &amountpipekva, 0,
1487 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1488 }
1489