Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.119
      1 /*	$NetBSD: sys_pipe.c,v 1.119 2009/08/31 20:48:14 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1996 John S. Dyson
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice immediately at the beginning of the file, without modification,
     41  *    this list of conditions, and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Absolutely no warranty of function or purpose is made by the author
     46  *    John S. Dyson.
     47  * 4. Modifications may be freely made to this file if the above conditions
     48  *    are met.
     49  */
     50 
     51 /*
     52  * This file contains a high-performance replacement for the socket-based
     53  * pipes scheme originally used.  It does not support all features of
     54  * sockets, but does do everything that pipes normally do.
     55  *
     56  * This code has two modes of operation, a small write mode and a large
     57  * write mode.  The small write mode acts like conventional pipes with
     58  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     59  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     60  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
     61  * using the UVM page loan facility from where the receiving process can copy
     62  * the data directly from the pages in the sending process.
     63  *
     64  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     65  * happen for small transfers so that the system will not spend all of
     66  * its time context switching.  PIPE_SIZE is constrained by the
     67  * amount of kernel virtual memory.
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.119 2009/08/31 20:48:14 rmind Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/proc.h>
     76 #include <sys/fcntl.h>
     77 #include <sys/file.h>
     78 #include <sys/filedesc.h>
     79 #include <sys/filio.h>
     80 #include <sys/kernel.h>
     81 #include <sys/ttycom.h>
     82 #include <sys/stat.h>
     83 #include <sys/poll.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/vnode.h>
     86 #include <sys/uio.h>
     87 #include <sys/select.h>
     88 #include <sys/mount.h>
     89 #include <sys/syscallargs.h>
     90 #include <sys/sysctl.h>
     91 #include <sys/kauth.h>
     92 #include <sys/atomic.h>
     93 #include <sys/pipe.h>
     94 
     95 #include <uvm/uvm.h>
     96 
     97 /*
     98  * Use this to disable direct I/O and decrease the code size:
     99  * #define PIPE_NODIRECT
    100  */
    101 
    102 /* XXX Disabled for now; rare hangs switching between direct/buffered */
    103 #define PIPE_NODIRECT
    104 
    105 static int	pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
    106 static int	pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
    107 static int	pipe_close(file_t *);
    108 static int	pipe_poll(file_t *, int);
    109 static int	pipe_kqfilter(file_t *, struct knote *);
    110 static int	pipe_stat(file_t *, struct stat *);
    111 static int	pipe_ioctl(file_t *, u_long, void *);
    112 
    113 static const struct fileops pipeops = {
    114 	.fo_read = pipe_read,
    115 	.fo_write = pipe_write,
    116 	.fo_ioctl = pipe_ioctl,
    117 	.fo_fcntl = fnullop_fcntl,
    118 	.fo_poll = pipe_poll,
    119 	.fo_stat = pipe_stat,
    120 	.fo_close = pipe_close,
    121 	.fo_kqfilter = pipe_kqfilter,
    122 	.fo_drain = fnullop_drain,
    123 };
    124 
    125 /*
    126  * Default pipe buffer size(s), this can be kind-of large now because pipe
    127  * space is pageable.  The pipe code will try to maintain locality of
    128  * reference for performance reasons, so small amounts of outstanding I/O
    129  * will not wipe the cache.
    130  */
    131 #define	MINPIPESIZE	(PIPE_SIZE / 3)
    132 #define	MAXPIPESIZE	(2 * PIPE_SIZE / 3)
    133 
    134 /*
    135  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    136  * is there so that on large systems, we don't exhaust it.
    137  */
    138 #define	MAXPIPEKVA	(8 * 1024 * 1024)
    139 static u_int	maxpipekva = MAXPIPEKVA;
    140 
    141 /*
    142  * Limit for direct transfers, we cannot, of course limit
    143  * the amount of kva for pipes in general though.
    144  */
    145 #define	LIMITPIPEKVA	(16 * 1024 * 1024)
    146 static u_int	limitpipekva = LIMITPIPEKVA;
    147 
    148 /*
    149  * Limit the number of "big" pipes
    150  */
    151 #define	LIMITBIGPIPES	32
    152 static u_int	maxbigpipes = LIMITBIGPIPES;
    153 static u_int	nbigpipe = 0;
    154 
    155 /*
    156  * Amount of KVA consumed by pipe buffers.
    157  */
    158 static u_int	amountpipekva = 0;
    159 
    160 static void	pipeclose(file_t *, struct pipe *);
    161 static void	pipe_free_kmem(struct pipe *);
    162 static int	pipe_create(struct pipe **, pool_cache_t, kmutex_t *);
    163 static int	pipelock(struct pipe *, int);
    164 static inline void pipeunlock(struct pipe *);
    165 static void	pipeselwakeup(struct pipe *, struct pipe *, int);
    166 #ifndef PIPE_NODIRECT
    167 static int	pipe_direct_write(file_t *, struct pipe *, struct uio *);
    168 #endif
    169 static int	pipespace(struct pipe *, int);
    170 static int	pipe_ctor(void *, void *, int);
    171 static void	pipe_dtor(void *, void *);
    172 
    173 #ifndef PIPE_NODIRECT
    174 static int	pipe_loan_alloc(struct pipe *, int);
    175 static void	pipe_loan_free(struct pipe *);
    176 #endif /* PIPE_NODIRECT */
    177 
    178 static pool_cache_t	pipe_wr_cache;
    179 static pool_cache_t	pipe_rd_cache;
    180 
    181 void
    182 pipe_init(void)
    183 {
    184 
    185 	/* Writer side is not automatically allocated KVA. */
    186 	pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
    187 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
    188 	KASSERT(pipe_wr_cache != NULL);
    189 
    190 	/* Reader side gets preallocated KVA. */
    191 	pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
    192 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
    193 	KASSERT(pipe_rd_cache != NULL);
    194 }
    195 
    196 static int
    197 pipe_ctor(void *arg, void *obj, int flags)
    198 {
    199 	struct pipe *pipe;
    200 	vaddr_t va;
    201 
    202 	pipe = obj;
    203 
    204 	memset(pipe, 0, sizeof(struct pipe));
    205 	if (arg != NULL) {
    206 		/* Preallocate space. */
    207 		va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
    208 		    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    209 		KASSERT(va != 0);
    210 		pipe->pipe_kmem = va;
    211 		atomic_add_int(&amountpipekva, PIPE_SIZE);
    212 	}
    213 	cv_init(&pipe->pipe_rcv, "piperd");
    214 	cv_init(&pipe->pipe_wcv, "pipewr");
    215 	cv_init(&pipe->pipe_draincv, "pipedrain");
    216 	cv_init(&pipe->pipe_lkcv, "pipelk");
    217 	selinit(&pipe->pipe_sel);
    218 	pipe->pipe_state = PIPE_SIGNALR;
    219 
    220 	return 0;
    221 }
    222 
    223 static void
    224 pipe_dtor(void *arg, void *obj)
    225 {
    226 	struct pipe *pipe;
    227 
    228 	pipe = obj;
    229 
    230 	cv_destroy(&pipe->pipe_rcv);
    231 	cv_destroy(&pipe->pipe_wcv);
    232 	cv_destroy(&pipe->pipe_draincv);
    233 	cv_destroy(&pipe->pipe_lkcv);
    234 	seldestroy(&pipe->pipe_sel);
    235 	if (pipe->pipe_kmem != 0) {
    236 		uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
    237 		    UVM_KMF_PAGEABLE);
    238 		atomic_add_int(&amountpipekva, -PIPE_SIZE);
    239 	}
    240 }
    241 
    242 /*
    243  * The pipe system call for the DTYPE_PIPE type of pipes
    244  */
    245 int
    246 sys_pipe(struct lwp *l, const void *v, register_t *retval)
    247 {
    248 	struct pipe *rpipe, *wpipe;
    249 	file_t *rf, *wf;
    250 	kmutex_t *mutex;
    251 	int fd, error;
    252 	proc_t *p;
    253 
    254 	p = curproc;
    255 	rpipe = wpipe = NULL;
    256 	mutex = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    257 	if (mutex == NULL)
    258 		return (ENOMEM);
    259 	mutex_obj_hold(mutex);
    260 	if (pipe_create(&rpipe, pipe_rd_cache, mutex) ||
    261 	    pipe_create(&wpipe, pipe_wr_cache, mutex)) {
    262 		pipeclose(NULL, rpipe);
    263 		pipeclose(NULL, wpipe);
    264 		return (ENFILE);
    265 	}
    266 
    267 	error = fd_allocfile(&rf, &fd);
    268 	if (error)
    269 		goto free2;
    270 	retval[0] = fd;
    271 	rf->f_flag = FREAD;
    272 	rf->f_type = DTYPE_PIPE;
    273 	rf->f_data = (void *)rpipe;
    274 	rf->f_ops = &pipeops;
    275 
    276 	error = fd_allocfile(&wf, &fd);
    277 	if (error)
    278 		goto free3;
    279 	retval[1] = fd;
    280 	wf->f_flag = FWRITE;
    281 	wf->f_type = DTYPE_PIPE;
    282 	wf->f_data = (void *)wpipe;
    283 	wf->f_ops = &pipeops;
    284 
    285 	rpipe->pipe_peer = wpipe;
    286 	wpipe->pipe_peer = rpipe;
    287 
    288 	fd_affix(p, rf, (int)retval[0]);
    289 	fd_affix(p, wf, (int)retval[1]);
    290 	return (0);
    291 free3:
    292 	fd_abort(p, rf, (int)retval[0]);
    293 free2:
    294 	pipeclose(NULL, wpipe);
    295 	pipeclose(NULL, rpipe);
    296 
    297 	return (error);
    298 }
    299 
    300 /*
    301  * Allocate kva for pipe circular buffer, the space is pageable
    302  * This routine will 'realloc' the size of a pipe safely, if it fails
    303  * it will retain the old buffer.
    304  * If it fails it will return ENOMEM.
    305  */
    306 static int
    307 pipespace(struct pipe *pipe, int size)
    308 {
    309 	void *buffer;
    310 
    311 	/*
    312 	 * Allocate pageable virtual address space.  Physical memory is
    313 	 * allocated on demand.
    314 	 */
    315 	if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
    316 		buffer = (void *)pipe->pipe_kmem;
    317 	} else {
    318 		buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
    319 		    0, UVM_KMF_PAGEABLE);
    320 		if (buffer == NULL)
    321 			return (ENOMEM);
    322 		atomic_add_int(&amountpipekva, size);
    323 	}
    324 
    325 	/* free old resources if we're resizing */
    326 	pipe_free_kmem(pipe);
    327 	pipe->pipe_buffer.buffer = buffer;
    328 	pipe->pipe_buffer.size = size;
    329 	pipe->pipe_buffer.in = 0;
    330 	pipe->pipe_buffer.out = 0;
    331 	pipe->pipe_buffer.cnt = 0;
    332 	return (0);
    333 }
    334 
    335 /*
    336  * Initialize and allocate VM and memory for pipe.
    337  */
    338 static int
    339 pipe_create(struct pipe **pipep, pool_cache_t cache, kmutex_t *mutex)
    340 {
    341 	struct pipe *pipe;
    342 	int error;
    343 
    344 	pipe = pool_cache_get(cache, PR_WAITOK);
    345 	KASSERT(pipe != NULL);
    346 	*pipep = pipe;
    347 	error = 0;
    348 	getnanotime(&pipe->pipe_btime);
    349 	pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
    350 	pipe->pipe_lock = mutex;
    351 	if (cache == pipe_rd_cache) {
    352 		error = pipespace(pipe, PIPE_SIZE);
    353 	} else {
    354 		pipe->pipe_buffer.buffer = NULL;
    355 		pipe->pipe_buffer.size = 0;
    356 		pipe->pipe_buffer.in = 0;
    357 		pipe->pipe_buffer.out = 0;
    358 		pipe->pipe_buffer.cnt = 0;
    359 	}
    360 	return error;
    361 }
    362 
    363 /*
    364  * Lock a pipe for I/O, blocking other access
    365  * Called with pipe spin lock held.
    366  * Return with pipe spin lock released on success.
    367  */
    368 static int
    369 pipelock(struct pipe *pipe, int catch)
    370 {
    371 	int error;
    372 
    373 	KASSERT(mutex_owned(pipe->pipe_lock));
    374 
    375 	while (pipe->pipe_state & PIPE_LOCKFL) {
    376 		pipe->pipe_state |= PIPE_LWANT;
    377 		if (catch) {
    378 			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
    379 			if (error != 0)
    380 				return error;
    381 		} else
    382 			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
    383 	}
    384 
    385 	pipe->pipe_state |= PIPE_LOCKFL;
    386 
    387 	return 0;
    388 }
    389 
    390 /*
    391  * unlock a pipe I/O lock
    392  */
    393 static inline void
    394 pipeunlock(struct pipe *pipe)
    395 {
    396 
    397 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
    398 
    399 	pipe->pipe_state &= ~PIPE_LOCKFL;
    400 	if (pipe->pipe_state & PIPE_LWANT) {
    401 		pipe->pipe_state &= ~PIPE_LWANT;
    402 		cv_broadcast(&pipe->pipe_lkcv);
    403 	}
    404 }
    405 
    406 /*
    407  * Select/poll wakup. This also sends SIGIO to peer connected to
    408  * 'sigpipe' side of pipe.
    409  */
    410 static void
    411 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
    412 {
    413 	int band;
    414 
    415 	switch (code) {
    416 	case POLL_IN:
    417 		band = POLLIN|POLLRDNORM;
    418 		break;
    419 	case POLL_OUT:
    420 		band = POLLOUT|POLLWRNORM;
    421 		break;
    422 	case POLL_HUP:
    423 		band = POLLHUP;
    424 		break;
    425 	case POLL_ERR:
    426 		band = POLLERR;
    427 		break;
    428 	default:
    429 		band = 0;
    430 #ifdef DIAGNOSTIC
    431 		printf("bad siginfo code %d in pipe notification.\n", code);
    432 #endif
    433 		break;
    434 	}
    435 
    436 	selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
    437 
    438 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    439 		return;
    440 
    441 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    442 }
    443 
    444 static int
    445 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    446     int flags)
    447 {
    448 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    449 	struct pipebuf *bp = &rpipe->pipe_buffer;
    450 	kmutex_t *lock = rpipe->pipe_lock;
    451 	int error;
    452 	size_t nread = 0;
    453 	size_t size;
    454 	size_t ocnt;
    455 
    456 	mutex_enter(lock);
    457 	++rpipe->pipe_busy;
    458 	ocnt = bp->cnt;
    459 
    460 again:
    461 	error = pipelock(rpipe, 1);
    462 	if (error)
    463 		goto unlocked_error;
    464 
    465 	while (uio->uio_resid) {
    466 		/*
    467 		 * Normal pipe buffer receive.
    468 		 */
    469 		if (bp->cnt > 0) {
    470 			size = bp->size - bp->out;
    471 			if (size > bp->cnt)
    472 				size = bp->cnt;
    473 			if (size > uio->uio_resid)
    474 				size = uio->uio_resid;
    475 
    476 			mutex_exit(lock);
    477 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
    478 			mutex_enter(lock);
    479 			if (error)
    480 				break;
    481 
    482 			bp->out += size;
    483 			if (bp->out >= bp->size)
    484 				bp->out = 0;
    485 
    486 			bp->cnt -= size;
    487 
    488 			/*
    489 			 * If there is no more to read in the pipe, reset
    490 			 * its pointers to the beginning.  This improves
    491 			 * cache hit stats.
    492 			 */
    493 			if (bp->cnt == 0) {
    494 				bp->in = 0;
    495 				bp->out = 0;
    496 			}
    497 			nread += size;
    498 			continue;
    499 		}
    500 
    501 #ifndef PIPE_NODIRECT
    502 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
    503 			/*
    504 			 * Direct copy, bypassing a kernel buffer.
    505 			 */
    506 			void *va;
    507 			u_int gen;
    508 
    509 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
    510 
    511 			size = rpipe->pipe_map.cnt;
    512 			if (size > uio->uio_resid)
    513 				size = uio->uio_resid;
    514 
    515 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
    516 			gen = rpipe->pipe_map.egen;
    517 			mutex_exit(lock);
    518 
    519 			/*
    520 			 * Consume emap and read the data from loaned pages.
    521 			 */
    522 			uvm_emap_consume(gen);
    523 			error = uiomove(va, size, uio);
    524 
    525 			mutex_enter(lock);
    526 			if (error)
    527 				break;
    528 			nread += size;
    529 			rpipe->pipe_map.pos += size;
    530 			rpipe->pipe_map.cnt -= size;
    531 			if (rpipe->pipe_map.cnt == 0) {
    532 				rpipe->pipe_state &= ~PIPE_DIRECTR;
    533 				cv_broadcast(&rpipe->pipe_wcv);
    534 			}
    535 			continue;
    536 		}
    537 #endif
    538 		/*
    539 		 * Break if some data was read.
    540 		 */
    541 		if (nread > 0)
    542 			break;
    543 
    544 		/*
    545 		 * Detect EOF condition.
    546 		 * Read returns 0 on EOF, no need to set error.
    547 		 */
    548 		if (rpipe->pipe_state & PIPE_EOF)
    549 			break;
    550 
    551 		/*
    552 		 * Don't block on non-blocking I/O.
    553 		 */
    554 		if (fp->f_flag & FNONBLOCK) {
    555 			error = EAGAIN;
    556 			break;
    557 		}
    558 
    559 		/*
    560 		 * Unlock the pipe buffer for our remaining processing.
    561 		 * We will either break out with an error or we will
    562 		 * sleep and relock to loop.
    563 		 */
    564 		pipeunlock(rpipe);
    565 
    566 		/*
    567 		 * Re-check to see if more direct writes are pending.
    568 		 */
    569 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
    570 			goto again;
    571 
    572 		/*
    573 		 * We want to read more, wake up select/poll.
    574 		 */
    575 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    576 
    577 		/*
    578 		 * If the "write-side" is blocked, wake it up now.
    579 		 */
    580 		cv_broadcast(&rpipe->pipe_wcv);
    581 
    582 		/* Now wait until the pipe is filled */
    583 		error = cv_wait_sig(&rpipe->pipe_rcv, lock);
    584 		if (error != 0)
    585 			goto unlocked_error;
    586 		goto again;
    587 	}
    588 
    589 	if (error == 0)
    590 		getnanotime(&rpipe->pipe_atime);
    591 	pipeunlock(rpipe);
    592 
    593 unlocked_error:
    594 	--rpipe->pipe_busy;
    595 	if (rpipe->pipe_busy == 0) {
    596 		cv_broadcast(&rpipe->pipe_draincv);
    597 	}
    598 	if (bp->cnt < MINPIPESIZE) {
    599 		cv_broadcast(&rpipe->pipe_wcv);
    600 	}
    601 
    602 	/*
    603 	 * If anything was read off the buffer, signal to the writer it's
    604 	 * possible to write more data. Also send signal if we are here for the
    605 	 * first time after last write.
    606 	 */
    607 	if ((bp->size - bp->cnt) >= PIPE_BUF
    608 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    609 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    610 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    611 	}
    612 
    613 	mutex_exit(lock);
    614 	return (error);
    615 }
    616 
    617 #ifndef PIPE_NODIRECT
    618 /*
    619  * Allocate structure for loan transfer.
    620  */
    621 static int
    622 pipe_loan_alloc(struct pipe *wpipe, int npages)
    623 {
    624 	vsize_t len;
    625 
    626 	len = (vsize_t)npages << PAGE_SHIFT;
    627 	atomic_add_int(&amountpipekva, len);
    628 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
    629 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    630 	if (wpipe->pipe_map.kva == 0) {
    631 		atomic_add_int(&amountpipekva, -len);
    632 		return (ENOMEM);
    633 	}
    634 
    635 	wpipe->pipe_map.npages = npages;
    636 	wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
    637 	    KM_SLEEP);
    638 	return (0);
    639 }
    640 
    641 /*
    642  * Free resources allocated for loan transfer.
    643  */
    644 static void
    645 pipe_loan_free(struct pipe *wpipe)
    646 {
    647 	vsize_t len;
    648 
    649 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    650 	uvm_emap_remove(wpipe->pipe_map.kva, len);	/* XXX */
    651 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
    652 	wpipe->pipe_map.kva = 0;
    653 	atomic_add_int(&amountpipekva, -len);
    654 	kmem_free(wpipe->pipe_map.pgs,
    655 	    wpipe->pipe_map.npages * sizeof(struct vm_page *));
    656 	wpipe->pipe_map.pgs = NULL;
    657 }
    658 
    659 /*
    660  * NetBSD direct write, using uvm_loan() mechanism.
    661  * This implements the pipe buffer write mechanism.  Note that only
    662  * a direct write OR a normal pipe write can be pending at any given time.
    663  * If there are any characters in the pipe buffer, the direct write will
    664  * be deferred until the receiving process grabs all of the bytes from
    665  * the pipe buffer.  Then the direct mapping write is set-up.
    666  *
    667  * Called with the long-term pipe lock held.
    668  */
    669 static int
    670 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
    671 {
    672 	struct vm_page **pgs;
    673 	vaddr_t bbase, base, bend;
    674 	vsize_t blen, bcnt;
    675 	int error, npages;
    676 	voff_t bpos;
    677 	kmutex_t *lock = wpipe->pipe_lock;
    678 
    679 	KASSERT(mutex_owned(wpipe->pipe_lock));
    680 	KASSERT(wpipe->pipe_map.cnt == 0);
    681 
    682 	mutex_exit(lock);
    683 
    684 	/*
    685 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
    686 	 * not aligned to PAGE_SIZE.
    687 	 */
    688 	bbase = (vaddr_t)uio->uio_iov->iov_base;
    689 	base = trunc_page(bbase);
    690 	bend = round_page(bbase + uio->uio_iov->iov_len);
    691 	blen = bend - base;
    692 	bpos = bbase - base;
    693 
    694 	if (blen > PIPE_DIRECT_CHUNK) {
    695 		blen = PIPE_DIRECT_CHUNK;
    696 		bend = base + blen;
    697 		bcnt = PIPE_DIRECT_CHUNK - bpos;
    698 	} else {
    699 		bcnt = uio->uio_iov->iov_len;
    700 	}
    701 	npages = blen >> PAGE_SHIFT;
    702 
    703 	/*
    704 	 * Free the old kva if we need more pages than we have
    705 	 * allocated.
    706 	 */
    707 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
    708 		pipe_loan_free(wpipe);
    709 
    710 	/* Allocate new kva. */
    711 	if (wpipe->pipe_map.kva == 0) {
    712 		error = pipe_loan_alloc(wpipe, npages);
    713 		if (error) {
    714 			mutex_enter(lock);
    715 			return (error);
    716 		}
    717 	}
    718 
    719 	/* Loan the write buffer memory from writer process */
    720 	pgs = wpipe->pipe_map.pgs;
    721 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
    722 			 pgs, UVM_LOAN_TOPAGE);
    723 	if (error) {
    724 		pipe_loan_free(wpipe);
    725 		mutex_enter(lock);
    726 		return (ENOMEM); /* so that caller fallback to ordinary write */
    727 	}
    728 
    729 	/* Enter the loaned pages to KVA, produce new emap generation number. */
    730 	uvm_emap_enter(wpipe->pipe_map.kva, pgs, npages);
    731 	wpipe->pipe_map.egen = uvm_emap_produce();
    732 
    733 	/* Now we can put the pipe in direct write mode */
    734 	wpipe->pipe_map.pos = bpos;
    735 	wpipe->pipe_map.cnt = bcnt;
    736 
    737 	/*
    738 	 * But before we can let someone do a direct read, we
    739 	 * have to wait until the pipe is drained.  Release the
    740 	 * pipe lock while we wait.
    741 	 */
    742 	mutex_enter(lock);
    743 	wpipe->pipe_state |= PIPE_DIRECTW;
    744 	pipeunlock(wpipe);
    745 
    746 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
    747 		cv_broadcast(&wpipe->pipe_rcv);
    748 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    749 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    750 			error = EPIPE;
    751 	}
    752 
    753 	/* Pipe is drained; next read will off the direct buffer */
    754 	wpipe->pipe_state |= PIPE_DIRECTR;
    755 
    756 	/* Wait until the reader is done */
    757 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
    758 		cv_broadcast(&wpipe->pipe_rcv);
    759 		pipeselwakeup(wpipe, wpipe, POLL_IN);
    760 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    761 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    762 			error = EPIPE;
    763 	}
    764 
    765 	/* Take pipe out of direct write mode */
    766 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
    767 
    768 	/* Acquire the pipe lock and cleanup */
    769 	(void)pipelock(wpipe, 0);
    770 	mutex_exit(lock);
    771 
    772 	if (pgs != NULL) {
    773 		/* XXX: uvm_emap_remove */
    774 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
    775 	}
    776 	if (error || amountpipekva > maxpipekva)
    777 		pipe_loan_free(wpipe);
    778 
    779 	mutex_enter(lock);
    780 	if (error) {
    781 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
    782 
    783 		/*
    784 		 * If nothing was read from what we offered, return error
    785 		 * straight on. Otherwise update uio resid first. Caller
    786 		 * will deal with the error condition, returning short
    787 		 * write, error, or restarting the write(2) as appropriate.
    788 		 */
    789 		if (wpipe->pipe_map.cnt == bcnt) {
    790 			wpipe->pipe_map.cnt = 0;
    791 			cv_broadcast(&wpipe->pipe_wcv);
    792 			return (error);
    793 		}
    794 
    795 		bcnt -= wpipe->pipe_map.cnt;
    796 	}
    797 
    798 	uio->uio_resid -= bcnt;
    799 	/* uio_offset not updated, not set/used for write(2) */
    800 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
    801 	uio->uio_iov->iov_len -= bcnt;
    802 	if (uio->uio_iov->iov_len == 0) {
    803 		uio->uio_iov++;
    804 		uio->uio_iovcnt--;
    805 	}
    806 
    807 	wpipe->pipe_map.cnt = 0;
    808 	return (error);
    809 }
    810 #endif /* !PIPE_NODIRECT */
    811 
    812 static int
    813 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    814     int flags)
    815 {
    816 	struct pipe *wpipe, *rpipe;
    817 	struct pipebuf *bp;
    818 	kmutex_t *lock;
    819 	int error;
    820 
    821 	/* We want to write to our peer */
    822 	rpipe = (struct pipe *) fp->f_data;
    823 	lock = rpipe->pipe_lock;
    824 	error = 0;
    825 
    826 	mutex_enter(lock);
    827 	wpipe = rpipe->pipe_peer;
    828 
    829 	/*
    830 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    831 	 */
    832 	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
    833 		mutex_exit(lock);
    834 		return EPIPE;
    835 	}
    836 	++wpipe->pipe_busy;
    837 
    838 	/* Aquire the long-term pipe lock */
    839 	if ((error = pipelock(wpipe, 1)) != 0) {
    840 		--wpipe->pipe_busy;
    841 		if (wpipe->pipe_busy == 0) {
    842 			cv_broadcast(&wpipe->pipe_draincv);
    843 		}
    844 		mutex_exit(lock);
    845 		return (error);
    846 	}
    847 
    848 	bp = &wpipe->pipe_buffer;
    849 
    850 	/*
    851 	 * If it is advantageous to resize the pipe buffer, do so.
    852 	 */
    853 	if ((uio->uio_resid > PIPE_SIZE) &&
    854 	    (nbigpipe < maxbigpipes) &&
    855 #ifndef PIPE_NODIRECT
    856 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    857 #endif
    858 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    859 
    860 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    861 			atomic_inc_uint(&nbigpipe);
    862 	}
    863 
    864 	while (uio->uio_resid) {
    865 		size_t space;
    866 
    867 #ifndef PIPE_NODIRECT
    868 		/*
    869 		 * Pipe buffered writes cannot be coincidental with
    870 		 * direct writes.  Also, only one direct write can be
    871 		 * in progress at any one time.  We wait until the currently
    872 		 * executing direct write is completed before continuing.
    873 		 *
    874 		 * We break out if a signal occurs or the reader goes away.
    875 		 */
    876 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
    877 			cv_broadcast(&wpipe->pipe_rcv);
    878 			pipeunlock(wpipe);
    879 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    880 			(void)pipelock(wpipe, 0);
    881 			if (wpipe->pipe_state & PIPE_EOF)
    882 				error = EPIPE;
    883 		}
    884 		if (error)
    885 			break;
    886 
    887 		/*
    888 		 * If the transfer is large, we can gain performance if
    889 		 * we do process-to-process copies directly.
    890 		 * If the write is non-blocking, we don't use the
    891 		 * direct write mechanism.
    892 		 *
    893 		 * The direct write mechanism will detect the reader going
    894 		 * away on us.
    895 		 */
    896 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    897 		    (fp->f_flag & FNONBLOCK) == 0 &&
    898 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
    899 			error = pipe_direct_write(fp, wpipe, uio);
    900 
    901 			/*
    902 			 * Break out if error occurred, unless it's ENOMEM.
    903 			 * ENOMEM means we failed to allocate some resources
    904 			 * for direct write, so we just fallback to ordinary
    905 			 * write. If the direct write was successful,
    906 			 * process rest of data via ordinary write.
    907 			 */
    908 			if (error == 0)
    909 				continue;
    910 
    911 			if (error != ENOMEM)
    912 				break;
    913 		}
    914 #endif /* PIPE_NODIRECT */
    915 
    916 		space = bp->size - bp->cnt;
    917 
    918 		/* Writes of size <= PIPE_BUF must be atomic. */
    919 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    920 			space = 0;
    921 
    922 		if (space > 0) {
    923 			int size;	/* Transfer size */
    924 			int segsize;	/* first segment to transfer */
    925 
    926 			/*
    927 			 * Transfer size is minimum of uio transfer
    928 			 * and free space in pipe buffer.
    929 			 */
    930 			if (space > uio->uio_resid)
    931 				size = uio->uio_resid;
    932 			else
    933 				size = space;
    934 			/*
    935 			 * First segment to transfer is minimum of
    936 			 * transfer size and contiguous space in
    937 			 * pipe buffer.  If first segment to transfer
    938 			 * is less than the transfer size, we've got
    939 			 * a wraparound in the buffer.
    940 			 */
    941 			segsize = bp->size - bp->in;
    942 			if (segsize > size)
    943 				segsize = size;
    944 
    945 			/* Transfer first segment */
    946 			mutex_exit(lock);
    947 			error = uiomove((char *)bp->buffer + bp->in, segsize,
    948 			    uio);
    949 
    950 			if (error == 0 && segsize < size) {
    951 				/*
    952 				 * Transfer remaining part now, to
    953 				 * support atomic writes.  Wraparound
    954 				 * happened.
    955 				 */
    956 				KASSERT(bp->in + segsize == bp->size);
    957 				error = uiomove(bp->buffer,
    958 				    size - segsize, uio);
    959 			}
    960 			mutex_enter(lock);
    961 			if (error)
    962 				break;
    963 
    964 			bp->in += size;
    965 			if (bp->in >= bp->size) {
    966 				KASSERT(bp->in == size - segsize + bp->size);
    967 				bp->in = size - segsize;
    968 			}
    969 
    970 			bp->cnt += size;
    971 			KASSERT(bp->cnt <= bp->size);
    972 		} else {
    973 			/*
    974 			 * If the "read-side" has been blocked, wake it up now.
    975 			 */
    976 			cv_broadcast(&wpipe->pipe_rcv);
    977 
    978 			/*
    979 			 * Don't block on non-blocking I/O.
    980 			 */
    981 			if (fp->f_flag & FNONBLOCK) {
    982 				error = EAGAIN;
    983 				break;
    984 			}
    985 
    986 			/*
    987 			 * We have no more space and have something to offer,
    988 			 * wake up select/poll.
    989 			 */
    990 			if (bp->cnt)
    991 				pipeselwakeup(wpipe, wpipe, POLL_IN);
    992 
    993 			pipeunlock(wpipe);
    994 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    995 			(void)pipelock(wpipe, 0);
    996 			if (error != 0)
    997 				break;
    998 			/*
    999 			 * If read side wants to go away, we just issue a signal
   1000 			 * to ourselves.
   1001 			 */
   1002 			if (wpipe->pipe_state & PIPE_EOF) {
   1003 				error = EPIPE;
   1004 				break;
   1005 			}
   1006 		}
   1007 	}
   1008 
   1009 	--wpipe->pipe_busy;
   1010 	if (wpipe->pipe_busy == 0) {
   1011 		cv_broadcast(&wpipe->pipe_draincv);
   1012 	}
   1013 	if (bp->cnt > 0) {
   1014 		cv_broadcast(&wpipe->pipe_rcv);
   1015 	}
   1016 
   1017 	/*
   1018 	 * Don't return EPIPE if I/O was successful
   1019 	 */
   1020 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
   1021 		error = 0;
   1022 
   1023 	if (error == 0)
   1024 		getnanotime(&wpipe->pipe_mtime);
   1025 
   1026 	/*
   1027 	 * We have something to offer, wake up select/poll.
   1028 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1029 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1030 	 */
   1031 	if (bp->cnt)
   1032 		pipeselwakeup(wpipe, wpipe, POLL_IN);
   1033 
   1034 	/*
   1035 	 * Arrange for next read(2) to do a signal.
   1036 	 */
   1037 	wpipe->pipe_state |= PIPE_SIGNALR;
   1038 
   1039 	pipeunlock(wpipe);
   1040 	mutex_exit(lock);
   1041 	return (error);
   1042 }
   1043 
   1044 /*
   1045  * We implement a very minimal set of ioctls for compatibility with sockets.
   1046  */
   1047 int
   1048 pipe_ioctl(file_t *fp, u_long cmd, void *data)
   1049 {
   1050 	struct pipe *pipe = fp->f_data;
   1051 	kmutex_t *lock = pipe->pipe_lock;
   1052 
   1053 	switch (cmd) {
   1054 
   1055 	case FIONBIO:
   1056 		return (0);
   1057 
   1058 	case FIOASYNC:
   1059 		mutex_enter(lock);
   1060 		if (*(int *)data) {
   1061 			pipe->pipe_state |= PIPE_ASYNC;
   1062 		} else {
   1063 			pipe->pipe_state &= ~PIPE_ASYNC;
   1064 		}
   1065 		mutex_exit(lock);
   1066 		return (0);
   1067 
   1068 	case FIONREAD:
   1069 		mutex_enter(lock);
   1070 #ifndef PIPE_NODIRECT
   1071 		if (pipe->pipe_state & PIPE_DIRECTW)
   1072 			*(int *)data = pipe->pipe_map.cnt;
   1073 		else
   1074 #endif
   1075 			*(int *)data = pipe->pipe_buffer.cnt;
   1076 		mutex_exit(lock);
   1077 		return (0);
   1078 
   1079 	case FIONWRITE:
   1080 		/* Look at other side */
   1081 		pipe = pipe->pipe_peer;
   1082 		mutex_enter(lock);
   1083 #ifndef PIPE_NODIRECT
   1084 		if (pipe->pipe_state & PIPE_DIRECTW)
   1085 			*(int *)data = pipe->pipe_map.cnt;
   1086 		else
   1087 #endif
   1088 			*(int *)data = pipe->pipe_buffer.cnt;
   1089 		mutex_exit(lock);
   1090 		return (0);
   1091 
   1092 	case FIONSPACE:
   1093 		/* Look at other side */
   1094 		pipe = pipe->pipe_peer;
   1095 		mutex_enter(lock);
   1096 #ifndef PIPE_NODIRECT
   1097 		/*
   1098 		 * If we're in direct-mode, we don't really have a
   1099 		 * send queue, and any other write will block. Thus
   1100 		 * zero seems like the best answer.
   1101 		 */
   1102 		if (pipe->pipe_state & PIPE_DIRECTW)
   1103 			*(int *)data = 0;
   1104 		else
   1105 #endif
   1106 			*(int *)data = pipe->pipe_buffer.size -
   1107 			    pipe->pipe_buffer.cnt;
   1108 		mutex_exit(lock);
   1109 		return (0);
   1110 
   1111 	case TIOCSPGRP:
   1112 	case FIOSETOWN:
   1113 		return fsetown(&pipe->pipe_pgid, cmd, data);
   1114 
   1115 	case TIOCGPGRP:
   1116 	case FIOGETOWN:
   1117 		return fgetown(pipe->pipe_pgid, cmd, data);
   1118 
   1119 	}
   1120 	return (EPASSTHROUGH);
   1121 }
   1122 
   1123 int
   1124 pipe_poll(file_t *fp, int events)
   1125 {
   1126 	struct pipe *rpipe = fp->f_data;
   1127 	struct pipe *wpipe;
   1128 	int eof = 0;
   1129 	int revents = 0;
   1130 
   1131 	mutex_enter(rpipe->pipe_lock);
   1132 	wpipe = rpipe->pipe_peer;
   1133 
   1134 	if (events & (POLLIN | POLLRDNORM))
   1135 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1136 #ifndef PIPE_NODIRECT
   1137 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
   1138 #endif
   1139 		    (rpipe->pipe_state & PIPE_EOF))
   1140 			revents |= events & (POLLIN | POLLRDNORM);
   1141 
   1142 	eof |= (rpipe->pipe_state & PIPE_EOF);
   1143 
   1144 	if (wpipe == NULL)
   1145 		revents |= events & (POLLOUT | POLLWRNORM);
   1146 	else {
   1147 		if (events & (POLLOUT | POLLWRNORM))
   1148 			if ((wpipe->pipe_state & PIPE_EOF) || (
   1149 #ifndef PIPE_NODIRECT
   1150 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1151 #endif
   1152 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1153 				revents |= events & (POLLOUT | POLLWRNORM);
   1154 
   1155 		eof |= (wpipe->pipe_state & PIPE_EOF);
   1156 	}
   1157 
   1158 	if (wpipe == NULL || eof)
   1159 		revents |= POLLHUP;
   1160 
   1161 	if (revents == 0) {
   1162 		if (events & (POLLIN | POLLRDNORM))
   1163 			selrecord(curlwp, &rpipe->pipe_sel);
   1164 
   1165 		if (events & (POLLOUT | POLLWRNORM))
   1166 			selrecord(curlwp, &wpipe->pipe_sel);
   1167 	}
   1168 	mutex_exit(rpipe->pipe_lock);
   1169 
   1170 	return (revents);
   1171 }
   1172 
   1173 static int
   1174 pipe_stat(file_t *fp, struct stat *ub)
   1175 {
   1176 	struct pipe *pipe = fp->f_data;
   1177 
   1178 	mutex_enter(pipe->pipe_lock);
   1179 	memset(ub, 0, sizeof(*ub));
   1180 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1181 	ub->st_blksize = pipe->pipe_buffer.size;
   1182 	if (ub->st_blksize == 0 && pipe->pipe_peer)
   1183 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
   1184 	ub->st_size = pipe->pipe_buffer.cnt;
   1185 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1186 	ub->st_atimespec = pipe->pipe_atime;
   1187 	ub->st_mtimespec = pipe->pipe_mtime;
   1188 	ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
   1189 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
   1190 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
   1191 
   1192 	/*
   1193 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1194 	 * XXX (st_dev, st_ino) should be unique.
   1195 	 */
   1196 	mutex_exit(pipe->pipe_lock);
   1197 	return 0;
   1198 }
   1199 
   1200 static int
   1201 pipe_close(file_t *fp)
   1202 {
   1203 	struct pipe *pipe = fp->f_data;
   1204 
   1205 	fp->f_data = NULL;
   1206 	pipeclose(fp, pipe);
   1207 	return (0);
   1208 }
   1209 
   1210 static void
   1211 pipe_free_kmem(struct pipe *pipe)
   1212 {
   1213 
   1214 	if (pipe->pipe_buffer.buffer != NULL) {
   1215 		if (pipe->pipe_buffer.size > PIPE_SIZE) {
   1216 			atomic_dec_uint(&nbigpipe);
   1217 		}
   1218 		if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
   1219 			uvm_km_free(kernel_map,
   1220 			    (vaddr_t)pipe->pipe_buffer.buffer,
   1221 			    pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
   1222 			atomic_add_int(&amountpipekva,
   1223 			    -pipe->pipe_buffer.size);
   1224 		}
   1225 		pipe->pipe_buffer.buffer = NULL;
   1226 	}
   1227 #ifndef PIPE_NODIRECT
   1228 	if (pipe->pipe_map.kva != 0) {
   1229 		pipe_loan_free(pipe);
   1230 		pipe->pipe_map.cnt = 0;
   1231 		pipe->pipe_map.kva = 0;
   1232 		pipe->pipe_map.pos = 0;
   1233 		pipe->pipe_map.npages = 0;
   1234 	}
   1235 #endif /* !PIPE_NODIRECT */
   1236 }
   1237 
   1238 /*
   1239  * Shutdown the pipe.
   1240  */
   1241 static void
   1242 pipeclose(file_t *fp, struct pipe *pipe)
   1243 {
   1244 	kmutex_t *lock;
   1245 	struct pipe *ppipe;
   1246 
   1247 	if (pipe == NULL)
   1248 		return;
   1249 
   1250 	KASSERT(cv_is_valid(&pipe->pipe_rcv));
   1251 	KASSERT(cv_is_valid(&pipe->pipe_wcv));
   1252 	KASSERT(cv_is_valid(&pipe->pipe_draincv));
   1253 	KASSERT(cv_is_valid(&pipe->pipe_lkcv));
   1254 
   1255 	lock = pipe->pipe_lock;
   1256 	mutex_enter(lock);
   1257 	pipeselwakeup(pipe, pipe, POLL_HUP);
   1258 
   1259 	/*
   1260 	 * If the other side is blocked, wake it up saying that
   1261 	 * we want to close it down.
   1262 	 */
   1263 	pipe->pipe_state |= PIPE_EOF;
   1264 	if (pipe->pipe_busy) {
   1265 		while (pipe->pipe_busy) {
   1266 			cv_broadcast(&pipe->pipe_wcv);
   1267 			cv_wait_sig(&pipe->pipe_draincv, lock);
   1268 		}
   1269 	}
   1270 
   1271 	/*
   1272 	 * Disconnect from peer.
   1273 	 */
   1274 	if ((ppipe = pipe->pipe_peer) != NULL) {
   1275 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
   1276 		ppipe->pipe_state |= PIPE_EOF;
   1277 		cv_broadcast(&ppipe->pipe_rcv);
   1278 		ppipe->pipe_peer = NULL;
   1279 	}
   1280 
   1281 	/*
   1282 	 * Any knote objects still left in the list are
   1283 	 * the one attached by peer.  Since no one will
   1284 	 * traverse this list, we just clear it.
   1285 	 */
   1286 	SLIST_INIT(&pipe->pipe_sel.sel_klist);
   1287 
   1288 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
   1289 	mutex_exit(lock);
   1290 
   1291 	/*
   1292 	 * Free resources.
   1293 	 */
   1294 	pipe->pipe_pgid = 0;
   1295 	pipe->pipe_state = PIPE_SIGNALR;
   1296 	pipe_free_kmem(pipe);
   1297 	if (pipe->pipe_kmem != 0) {
   1298 		pool_cache_put(pipe_rd_cache, pipe);
   1299 	} else {
   1300 		pool_cache_put(pipe_wr_cache, pipe);
   1301 	}
   1302 	mutex_obj_free(lock);
   1303 }
   1304 
   1305 static void
   1306 filt_pipedetach(struct knote *kn)
   1307 {
   1308 	struct pipe *pipe;
   1309 	kmutex_t *lock;
   1310 
   1311 	pipe = ((file_t *)kn->kn_obj)->f_data;
   1312 	lock = pipe->pipe_lock;
   1313 
   1314 	mutex_enter(lock);
   1315 
   1316 	switch(kn->kn_filter) {
   1317 	case EVFILT_WRITE:
   1318 		/* Need the peer structure, not our own. */
   1319 		pipe = pipe->pipe_peer;
   1320 
   1321 		/* If reader end already closed, just return. */
   1322 		if (pipe == NULL) {
   1323 			mutex_exit(lock);
   1324 			return;
   1325 		}
   1326 
   1327 		break;
   1328 	default:
   1329 		/* Nothing to do. */
   1330 		break;
   1331 	}
   1332 
   1333 	KASSERT(kn->kn_hook == pipe);
   1334 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
   1335 	mutex_exit(lock);
   1336 }
   1337 
   1338 static int
   1339 filt_piperead(struct knote *kn, long hint)
   1340 {
   1341 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
   1342 	struct pipe *wpipe;
   1343 
   1344 	if ((hint & NOTE_SUBMIT) == 0) {
   1345 		mutex_enter(rpipe->pipe_lock);
   1346 	}
   1347 	wpipe = rpipe->pipe_peer;
   1348 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1349 
   1350 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1351 		kn->kn_data = rpipe->pipe_map.cnt;
   1352 
   1353 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1354 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1355 		kn->kn_flags |= EV_EOF;
   1356 		if ((hint & NOTE_SUBMIT) == 0) {
   1357 			mutex_exit(rpipe->pipe_lock);
   1358 		}
   1359 		return (1);
   1360 	}
   1361 
   1362 	if ((hint & NOTE_SUBMIT) == 0) {
   1363 		mutex_exit(rpipe->pipe_lock);
   1364 	}
   1365 	return (kn->kn_data > 0);
   1366 }
   1367 
   1368 static int
   1369 filt_pipewrite(struct knote *kn, long hint)
   1370 {
   1371 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
   1372 	struct pipe *wpipe;
   1373 
   1374 	if ((hint & NOTE_SUBMIT) == 0) {
   1375 		mutex_enter(rpipe->pipe_lock);
   1376 	}
   1377 	wpipe = rpipe->pipe_peer;
   1378 
   1379 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1380 		kn->kn_data = 0;
   1381 		kn->kn_flags |= EV_EOF;
   1382 		if ((hint & NOTE_SUBMIT) == 0) {
   1383 			mutex_exit(rpipe->pipe_lock);
   1384 		}
   1385 		return (1);
   1386 	}
   1387 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1388 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1389 		kn->kn_data = 0;
   1390 
   1391 	if ((hint & NOTE_SUBMIT) == 0) {
   1392 		mutex_exit(rpipe->pipe_lock);
   1393 	}
   1394 	return (kn->kn_data >= PIPE_BUF);
   1395 }
   1396 
   1397 static const struct filterops pipe_rfiltops =
   1398 	{ 1, NULL, filt_pipedetach, filt_piperead };
   1399 static const struct filterops pipe_wfiltops =
   1400 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
   1401 
   1402 static int
   1403 pipe_kqfilter(file_t *fp, struct knote *kn)
   1404 {
   1405 	struct pipe *pipe;
   1406 	kmutex_t *lock;
   1407 
   1408 	pipe = ((file_t *)kn->kn_obj)->f_data;
   1409 	lock = pipe->pipe_lock;
   1410 
   1411 	mutex_enter(lock);
   1412 
   1413 	switch (kn->kn_filter) {
   1414 	case EVFILT_READ:
   1415 		kn->kn_fop = &pipe_rfiltops;
   1416 		break;
   1417 	case EVFILT_WRITE:
   1418 		kn->kn_fop = &pipe_wfiltops;
   1419 		pipe = pipe->pipe_peer;
   1420 		if (pipe == NULL) {
   1421 			/* Other end of pipe has been closed. */
   1422 			mutex_exit(lock);
   1423 			return (EBADF);
   1424 		}
   1425 		break;
   1426 	default:
   1427 		mutex_exit(lock);
   1428 		return (EINVAL);
   1429 	}
   1430 
   1431 	kn->kn_hook = pipe;
   1432 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
   1433 	mutex_exit(lock);
   1434 
   1435 	return (0);
   1436 }
   1437 
   1438 /*
   1439  * Handle pipe sysctls.
   1440  */
   1441 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1442 {
   1443 
   1444 	sysctl_createv(clog, 0, NULL, NULL,
   1445 		       CTLFLAG_PERMANENT,
   1446 		       CTLTYPE_NODE, "kern", NULL,
   1447 		       NULL, 0, NULL, 0,
   1448 		       CTL_KERN, CTL_EOL);
   1449 	sysctl_createv(clog, 0, NULL, NULL,
   1450 		       CTLFLAG_PERMANENT,
   1451 		       CTLTYPE_NODE, "pipe",
   1452 		       SYSCTL_DESCR("Pipe settings"),
   1453 		       NULL, 0, NULL, 0,
   1454 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1455 
   1456 	sysctl_createv(clog, 0, NULL, NULL,
   1457 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1458 		       CTLTYPE_INT, "maxkvasz",
   1459 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1460 				    "used for pipes"),
   1461 		       NULL, 0, &maxpipekva, 0,
   1462 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
   1463 	sysctl_createv(clog, 0, NULL, NULL,
   1464 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1465 		       CTLTYPE_INT, "maxloankvasz",
   1466 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
   1467 		       NULL, 0, &limitpipekva, 0,
   1468 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
   1469 	sysctl_createv(clog, 0, NULL, NULL,
   1470 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1471 		       CTLTYPE_INT, "maxbigpipes",
   1472 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
   1473 		       NULL, 0, &maxbigpipes, 0,
   1474 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1475 	sysctl_createv(clog, 0, NULL, NULL,
   1476 		       CTLFLAG_PERMANENT,
   1477 		       CTLTYPE_INT, "nbigpipes",
   1478 		       SYSCTL_DESCR("Number of \"big\" pipes"),
   1479 		       NULL, 0, &nbigpipe, 0,
   1480 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1481 	sysctl_createv(clog, 0, NULL, NULL,
   1482 		       CTLFLAG_PERMANENT,
   1483 		       CTLTYPE_INT, "kvasize",
   1484 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
   1485 				    "buffers"),
   1486 		       NULL, 0, &amountpipekva, 0,
   1487 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1488 }
   1489