Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.123
      1 /*	$NetBSD: sys_pipe.c,v 1.123 2009/12/12 21:28:04 dsl Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1996 John S. Dyson
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice immediately at the beginning of the file, without modification,
     41  *    this list of conditions, and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Absolutely no warranty of function or purpose is made by the author
     46  *    John S. Dyson.
     47  * 4. Modifications may be freely made to this file if the above conditions
     48  *    are met.
     49  */
     50 
     51 /*
     52  * This file contains a high-performance replacement for the socket-based
     53  * pipes scheme originally used.  It does not support all features of
     54  * sockets, but does do everything that pipes normally do.
     55  *
     56  * This code has two modes of operation, a small write mode and a large
     57  * write mode.  The small write mode acts like conventional pipes with
     58  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     59  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     60  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
     61  * using the UVM page loan facility from where the receiving process can copy
     62  * the data directly from the pages in the sending process.
     63  *
     64  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     65  * happen for small transfers so that the system will not spend all of
     66  * its time context switching.  PIPE_SIZE is constrained by the
     67  * amount of kernel virtual memory.
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.123 2009/12/12 21:28:04 dsl Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/proc.h>
     76 #include <sys/fcntl.h>
     77 #include <sys/file.h>
     78 #include <sys/filedesc.h>
     79 #include <sys/filio.h>
     80 #include <sys/kernel.h>
     81 #include <sys/ttycom.h>
     82 #include <sys/stat.h>
     83 #include <sys/poll.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/vnode.h>
     86 #include <sys/uio.h>
     87 #include <sys/select.h>
     88 #include <sys/mount.h>
     89 #include <sys/syscallargs.h>
     90 #include <sys/sysctl.h>
     91 #include <sys/kauth.h>
     92 #include <sys/atomic.h>
     93 #include <sys/pipe.h>
     94 
     95 #include <uvm/uvm.h>
     96 
     97 /*
     98  * Use this to disable direct I/O and decrease the code size:
     99  * #define PIPE_NODIRECT
    100  */
    101 
    102 /* XXX Disabled for now; rare hangs switching between direct/buffered */
    103 #define PIPE_NODIRECT
    104 
    105 static int	pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
    106 static int	pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
    107 static int	pipe_close(file_t *);
    108 static int	pipe_poll(file_t *, int);
    109 static int	pipe_kqfilter(file_t *, struct knote *);
    110 static int	pipe_stat(file_t *, struct stat *);
    111 static int	pipe_ioctl(file_t *, u_long, void *);
    112 static void	pipe_abort(file_t *);
    113 
    114 static const struct fileops pipeops = {
    115 	.fo_read = pipe_read,
    116 	.fo_write = pipe_write,
    117 	.fo_ioctl = pipe_ioctl,
    118 	.fo_fcntl = fnullop_fcntl,
    119 	.fo_poll = pipe_poll,
    120 	.fo_stat = pipe_stat,
    121 	.fo_close = pipe_close,
    122 	.fo_kqfilter = pipe_kqfilter,
    123 	.fo_abort = pipe_abort,
    124 };
    125 
    126 /*
    127  * Default pipe buffer size(s), this can be kind-of large now because pipe
    128  * space is pageable.  The pipe code will try to maintain locality of
    129  * reference for performance reasons, so small amounts of outstanding I/O
    130  * will not wipe the cache.
    131  */
    132 #define	MINPIPESIZE	(PIPE_SIZE / 3)
    133 #define	MAXPIPESIZE	(2 * PIPE_SIZE / 3)
    134 
    135 /*
    136  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    137  * is there so that on large systems, we don't exhaust it.
    138  */
    139 #define	MAXPIPEKVA	(8 * 1024 * 1024)
    140 static u_int	maxpipekva = MAXPIPEKVA;
    141 
    142 /*
    143  * Limit for direct transfers, we cannot, of course limit
    144  * the amount of kva for pipes in general though.
    145  */
    146 #define	LIMITPIPEKVA	(16 * 1024 * 1024)
    147 static u_int	limitpipekva = LIMITPIPEKVA;
    148 
    149 /*
    150  * Limit the number of "big" pipes
    151  */
    152 #define	LIMITBIGPIPES	32
    153 static u_int	maxbigpipes = LIMITBIGPIPES;
    154 static u_int	nbigpipe = 0;
    155 
    156 /*
    157  * Amount of KVA consumed by pipe buffers.
    158  */
    159 static u_int	amountpipekva = 0;
    160 
    161 static void	pipeclose(struct pipe *);
    162 static void	pipe_free_kmem(struct pipe *);
    163 static int	pipe_create(struct pipe **, pool_cache_t);
    164 static int	pipelock(struct pipe *, int);
    165 static inline void pipeunlock(struct pipe *);
    166 static void	pipeselwakeup(struct pipe *, struct pipe *, int);
    167 #ifndef PIPE_NODIRECT
    168 static int	pipe_direct_write(file_t *, struct pipe *, struct uio *);
    169 #endif
    170 static int	pipespace(struct pipe *, int);
    171 static int	pipe_ctor(void *, void *, int);
    172 static void	pipe_dtor(void *, void *);
    173 
    174 #ifndef PIPE_NODIRECT
    175 static int	pipe_loan_alloc(struct pipe *, int);
    176 static void	pipe_loan_free(struct pipe *);
    177 #endif /* PIPE_NODIRECT */
    178 
    179 static pool_cache_t	pipe_wr_cache;
    180 static pool_cache_t	pipe_rd_cache;
    181 
    182 void
    183 pipe_init(void)
    184 {
    185 
    186 	/* Writer side is not automatically allocated KVA. */
    187 	pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
    188 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
    189 	KASSERT(pipe_wr_cache != NULL);
    190 
    191 	/* Reader side gets preallocated KVA. */
    192 	pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
    193 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
    194 	KASSERT(pipe_rd_cache != NULL);
    195 }
    196 
    197 static int
    198 pipe_ctor(void *arg, void *obj, int flags)
    199 {
    200 	struct pipe *pipe;
    201 	vaddr_t va;
    202 
    203 	pipe = obj;
    204 
    205 	memset(pipe, 0, sizeof(struct pipe));
    206 	if (arg != NULL) {
    207 		/* Preallocate space. */
    208 		va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
    209 		    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    210 		KASSERT(va != 0);
    211 		pipe->pipe_kmem = va;
    212 		atomic_add_int(&amountpipekva, PIPE_SIZE);
    213 	}
    214 	cv_init(&pipe->pipe_rcv, "piperd");
    215 	cv_init(&pipe->pipe_wcv, "pipewr");
    216 	cv_init(&pipe->pipe_draincv, "pipedrain");
    217 	cv_init(&pipe->pipe_lkcv, "pipelk");
    218 	selinit(&pipe->pipe_sel);
    219 	pipe->pipe_state = PIPE_SIGNALR;
    220 
    221 	return 0;
    222 }
    223 
    224 static void
    225 pipe_dtor(void *arg, void *obj)
    226 {
    227 	struct pipe *pipe;
    228 
    229 	pipe = obj;
    230 
    231 	cv_destroy(&pipe->pipe_rcv);
    232 	cv_destroy(&pipe->pipe_wcv);
    233 	cv_destroy(&pipe->pipe_draincv);
    234 	cv_destroy(&pipe->pipe_lkcv);
    235 	seldestroy(&pipe->pipe_sel);
    236 	if (pipe->pipe_kmem != 0) {
    237 		uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
    238 		    UVM_KMF_PAGEABLE);
    239 		atomic_add_int(&amountpipekva, -PIPE_SIZE);
    240 	}
    241 }
    242 
    243 /*
    244  * The pipe system call for the DTYPE_PIPE type of pipes
    245  */
    246 int
    247 sys_pipe(struct lwp *l, const void *v, register_t *retval)
    248 {
    249 	struct pipe *rpipe, *wpipe;
    250 	file_t *rf, *wf;
    251 	int fd, error;
    252 	proc_t *p;
    253 
    254 	p = curproc;
    255 	rpipe = wpipe = NULL;
    256 	if (pipe_create(&rpipe, pipe_rd_cache) ||
    257 	    pipe_create(&wpipe, pipe_wr_cache)) {
    258 		error = ENOMEM;
    259 		goto free2;
    260 	}
    261 	rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    262 	wpipe->pipe_lock = rpipe->pipe_lock;
    263 	mutex_obj_hold(wpipe->pipe_lock);
    264 
    265 	error = fd_allocfile(&rf, &fd);
    266 	if (error)
    267 		goto free2;
    268 	retval[0] = fd;
    269 	rf->f_flag = FREAD;
    270 	rf->f_type = DTYPE_PIPE;
    271 	rf->f_data = (void *)rpipe;
    272 	rf->f_ops = &pipeops;
    273 
    274 	error = fd_allocfile(&wf, &fd);
    275 	if (error)
    276 		goto free3;
    277 	retval[1] = fd;
    278 	wf->f_flag = FWRITE;
    279 	wf->f_type = DTYPE_PIPE;
    280 	wf->f_data = (void *)wpipe;
    281 	wf->f_ops = &pipeops;
    282 
    283 	rpipe->pipe_peer = wpipe;
    284 	wpipe->pipe_peer = rpipe;
    285 
    286 	fd_affix(p, rf, (int)retval[0]);
    287 	fd_affix(p, wf, (int)retval[1]);
    288 	return (0);
    289 free3:
    290 	fd_abort(p, rf, (int)retval[0]);
    291 free2:
    292 	pipeclose(wpipe);
    293 	pipeclose(rpipe);
    294 
    295 	return (error);
    296 }
    297 
    298 /*
    299  * Allocate kva for pipe circular buffer, the space is pageable
    300  * This routine will 'realloc' the size of a pipe safely, if it fails
    301  * it will retain the old buffer.
    302  * If it fails it will return ENOMEM.
    303  */
    304 static int
    305 pipespace(struct pipe *pipe, int size)
    306 {
    307 	void *buffer;
    308 
    309 	/*
    310 	 * Allocate pageable virtual address space.  Physical memory is
    311 	 * allocated on demand.
    312 	 */
    313 	if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
    314 		buffer = (void *)pipe->pipe_kmem;
    315 	} else {
    316 		buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
    317 		    0, UVM_KMF_PAGEABLE);
    318 		if (buffer == NULL)
    319 			return (ENOMEM);
    320 		atomic_add_int(&amountpipekva, size);
    321 	}
    322 
    323 	/* free old resources if we're resizing */
    324 	pipe_free_kmem(pipe);
    325 	pipe->pipe_buffer.buffer = buffer;
    326 	pipe->pipe_buffer.size = size;
    327 	pipe->pipe_buffer.in = 0;
    328 	pipe->pipe_buffer.out = 0;
    329 	pipe->pipe_buffer.cnt = 0;
    330 	return (0);
    331 }
    332 
    333 /*
    334  * Initialize and allocate VM and memory for pipe.
    335  */
    336 static int
    337 pipe_create(struct pipe **pipep, pool_cache_t cache)
    338 {
    339 	struct pipe *pipe;
    340 	int error;
    341 
    342 	pipe = pool_cache_get(cache, PR_WAITOK);
    343 	KASSERT(pipe != NULL);
    344 	*pipep = pipe;
    345 	error = 0;
    346 	getnanotime(&pipe->pipe_btime);
    347 	pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
    348 	pipe->pipe_lock = NULL;
    349 	if (cache == pipe_rd_cache) {
    350 		error = pipespace(pipe, PIPE_SIZE);
    351 	} else {
    352 		pipe->pipe_buffer.buffer = NULL;
    353 		pipe->pipe_buffer.size = 0;
    354 		pipe->pipe_buffer.in = 0;
    355 		pipe->pipe_buffer.out = 0;
    356 		pipe->pipe_buffer.cnt = 0;
    357 	}
    358 	return error;
    359 }
    360 
    361 /*
    362  * Lock a pipe for I/O, blocking other access
    363  * Called with pipe spin lock held.
    364  */
    365 static int
    366 pipelock(struct pipe *pipe, int catch)
    367 {
    368 	int error;
    369 
    370 	KASSERT(mutex_owned(pipe->pipe_lock));
    371 
    372 	while (pipe->pipe_state & PIPE_LOCKFL) {
    373 		pipe->pipe_state |= PIPE_LWANT;
    374 		if (catch) {
    375 			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
    376 			if (error != 0)
    377 				return error;
    378 		} else
    379 			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
    380 	}
    381 
    382 	pipe->pipe_state |= PIPE_LOCKFL;
    383 
    384 	return 0;
    385 }
    386 
    387 /*
    388  * unlock a pipe I/O lock
    389  */
    390 static inline void
    391 pipeunlock(struct pipe *pipe)
    392 {
    393 
    394 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
    395 
    396 	pipe->pipe_state &= ~PIPE_LOCKFL;
    397 	if (pipe->pipe_state & PIPE_LWANT) {
    398 		pipe->pipe_state &= ~PIPE_LWANT;
    399 		cv_broadcast(&pipe->pipe_lkcv);
    400 	}
    401 }
    402 
    403 /*
    404  * Select/poll wakup. This also sends SIGIO to peer connected to
    405  * 'sigpipe' side of pipe.
    406  */
    407 static void
    408 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
    409 {
    410 	int band;
    411 
    412 	switch (code) {
    413 	case POLL_IN:
    414 		band = POLLIN|POLLRDNORM;
    415 		break;
    416 	case POLL_OUT:
    417 		band = POLLOUT|POLLWRNORM;
    418 		break;
    419 	case POLL_HUP:
    420 		band = POLLHUP;
    421 		break;
    422 	case POLL_ERR:
    423 		band = POLLERR;
    424 		break;
    425 	default:
    426 		band = 0;
    427 #ifdef DIAGNOSTIC
    428 		printf("bad siginfo code %d in pipe notification.\n", code);
    429 #endif
    430 		break;
    431 	}
    432 
    433 	selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
    434 
    435 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    436 		return;
    437 
    438 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    439 }
    440 
    441 static int
    442 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    443     int flags)
    444 {
    445 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    446 	struct pipebuf *bp = &rpipe->pipe_buffer;
    447 	kmutex_t *lock = rpipe->pipe_lock;
    448 	int error;
    449 	size_t nread = 0;
    450 	size_t size;
    451 	size_t ocnt;
    452 
    453 	mutex_enter(lock);
    454 	++rpipe->pipe_busy;
    455 	ocnt = bp->cnt;
    456 
    457 again:
    458 	error = pipelock(rpipe, 1);
    459 	if (error)
    460 		goto unlocked_error;
    461 
    462 	while (uio->uio_resid) {
    463 		/*
    464 		 * Normal pipe buffer receive.
    465 		 */
    466 		if (bp->cnt > 0) {
    467 			size = bp->size - bp->out;
    468 			if (size > bp->cnt)
    469 				size = bp->cnt;
    470 			if (size > uio->uio_resid)
    471 				size = uio->uio_resid;
    472 
    473 			mutex_exit(lock);
    474 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
    475 			mutex_enter(lock);
    476 			if (error)
    477 				break;
    478 
    479 			bp->out += size;
    480 			if (bp->out >= bp->size)
    481 				bp->out = 0;
    482 
    483 			bp->cnt -= size;
    484 
    485 			/*
    486 			 * If there is no more to read in the pipe, reset
    487 			 * its pointers to the beginning.  This improves
    488 			 * cache hit stats.
    489 			 */
    490 			if (bp->cnt == 0) {
    491 				bp->in = 0;
    492 				bp->out = 0;
    493 			}
    494 			nread += size;
    495 			continue;
    496 		}
    497 
    498 #ifndef PIPE_NODIRECT
    499 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
    500 			/*
    501 			 * Direct copy, bypassing a kernel buffer.
    502 			 */
    503 			void *va;
    504 			u_int gen;
    505 
    506 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
    507 
    508 			size = rpipe->pipe_map.cnt;
    509 			if (size > uio->uio_resid)
    510 				size = uio->uio_resid;
    511 
    512 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
    513 			gen = rpipe->pipe_map.egen;
    514 			mutex_exit(lock);
    515 
    516 			/*
    517 			 * Consume emap and read the data from loaned pages.
    518 			 */
    519 			uvm_emap_consume(gen);
    520 			error = uiomove(va, size, uio);
    521 
    522 			mutex_enter(lock);
    523 			if (error)
    524 				break;
    525 			nread += size;
    526 			rpipe->pipe_map.pos += size;
    527 			rpipe->pipe_map.cnt -= size;
    528 			if (rpipe->pipe_map.cnt == 0) {
    529 				rpipe->pipe_state &= ~PIPE_DIRECTR;
    530 				cv_broadcast(&rpipe->pipe_wcv);
    531 			}
    532 			continue;
    533 		}
    534 #endif
    535 		/*
    536 		 * Break if some data was read.
    537 		 */
    538 		if (nread > 0)
    539 			break;
    540 
    541 		/*
    542 		 * Detect EOF condition.
    543 		 * Read returns 0 on EOF, no need to set error.
    544 		 */
    545 		if (rpipe->pipe_state & (PIPE_EOF | PIPE_ABORTED)) {
    546 			if (rpipe->pipe_state & PIPE_ABORTED)
    547 				/* Another thread has called close() */
    548 				error = EBADF;
    549 			break;
    550 		}
    551 
    552 		/*
    553 		 * Don't block on non-blocking I/O.
    554 		 */
    555 		if (fp->f_flag & FNONBLOCK) {
    556 			error = EAGAIN;
    557 			break;
    558 		}
    559 
    560 		/*
    561 		 * Unlock the pipe buffer for our remaining processing.
    562 		 * We will either break out with an error or we will
    563 		 * sleep and relock to loop.
    564 		 */
    565 		pipeunlock(rpipe);
    566 
    567 		/*
    568 		 * Re-check to see if more direct writes are pending.
    569 		 */
    570 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
    571 			goto again;
    572 
    573 		/*
    574 		 * We want to read more, wake up select/poll.
    575 		 */
    576 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    577 
    578 		/*
    579 		 * If the "write-side" is blocked, wake it up now.
    580 		 */
    581 		cv_broadcast(&rpipe->pipe_wcv);
    582 
    583 		/* Now wait until the pipe is filled */
    584 		error = cv_wait_sig(&rpipe->pipe_rcv, lock);
    585 		if (error != 0)
    586 			goto unlocked_error;
    587 		goto again;
    588 	}
    589 
    590 	if (error == 0)
    591 		getnanotime(&rpipe->pipe_atime);
    592 	pipeunlock(rpipe);
    593 
    594 unlocked_error:
    595 	--rpipe->pipe_busy;
    596 	if (rpipe->pipe_busy == 0) {
    597 		cv_broadcast(&rpipe->pipe_draincv);
    598 	}
    599 	if (bp->cnt < MINPIPESIZE) {
    600 		cv_broadcast(&rpipe->pipe_wcv);
    601 	}
    602 
    603 	/*
    604 	 * If anything was read off the buffer, signal to the writer it's
    605 	 * possible to write more data. Also send signal if we are here for the
    606 	 * first time after last write.
    607 	 */
    608 	if ((bp->size - bp->cnt) >= PIPE_BUF
    609 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    610 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    611 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    612 	}
    613 
    614 	mutex_exit(lock);
    615 	return (error);
    616 }
    617 
    618 #ifndef PIPE_NODIRECT
    619 /*
    620  * Allocate structure for loan transfer.
    621  */
    622 static int
    623 pipe_loan_alloc(struct pipe *wpipe, int npages)
    624 {
    625 	vsize_t len;
    626 
    627 	len = (vsize_t)npages << PAGE_SHIFT;
    628 	atomic_add_int(&amountpipekva, len);
    629 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
    630 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    631 	if (wpipe->pipe_map.kva == 0) {
    632 		atomic_add_int(&amountpipekva, -len);
    633 		return (ENOMEM);
    634 	}
    635 
    636 	wpipe->pipe_map.npages = npages;
    637 	wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
    638 	    KM_SLEEP);
    639 	return (0);
    640 }
    641 
    642 /*
    643  * Free resources allocated for loan transfer.
    644  */
    645 static void
    646 pipe_loan_free(struct pipe *wpipe)
    647 {
    648 	vsize_t len;
    649 
    650 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    651 	uvm_emap_remove(wpipe->pipe_map.kva, len);	/* XXX */
    652 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
    653 	wpipe->pipe_map.kva = 0;
    654 	atomic_add_int(&amountpipekva, -len);
    655 	kmem_free(wpipe->pipe_map.pgs,
    656 	    wpipe->pipe_map.npages * sizeof(struct vm_page *));
    657 	wpipe->pipe_map.pgs = NULL;
    658 }
    659 
    660 /*
    661  * NetBSD direct write, using uvm_loan() mechanism.
    662  * This implements the pipe buffer write mechanism.  Note that only
    663  * a direct write OR a normal pipe write can be pending at any given time.
    664  * If there are any characters in the pipe buffer, the direct write will
    665  * be deferred until the receiving process grabs all of the bytes from
    666  * the pipe buffer.  Then the direct mapping write is set-up.
    667  *
    668  * Called with the long-term pipe lock held.
    669  */
    670 static int
    671 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
    672 {
    673 	struct vm_page **pgs;
    674 	vaddr_t bbase, base, bend;
    675 	vsize_t blen, bcnt;
    676 	int error, npages;
    677 	voff_t bpos;
    678 	kmutex_t *lock = wpipe->pipe_lock;
    679 
    680 	KASSERT(mutex_owned(wpipe->pipe_lock));
    681 	KASSERT(wpipe->pipe_map.cnt == 0);
    682 
    683 	mutex_exit(lock);
    684 
    685 	/*
    686 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
    687 	 * not aligned to PAGE_SIZE.
    688 	 */
    689 	bbase = (vaddr_t)uio->uio_iov->iov_base;
    690 	base = trunc_page(bbase);
    691 	bend = round_page(bbase + uio->uio_iov->iov_len);
    692 	blen = bend - base;
    693 	bpos = bbase - base;
    694 
    695 	if (blen > PIPE_DIRECT_CHUNK) {
    696 		blen = PIPE_DIRECT_CHUNK;
    697 		bend = base + blen;
    698 		bcnt = PIPE_DIRECT_CHUNK - bpos;
    699 	} else {
    700 		bcnt = uio->uio_iov->iov_len;
    701 	}
    702 	npages = blen >> PAGE_SHIFT;
    703 
    704 	/*
    705 	 * Free the old kva if we need more pages than we have
    706 	 * allocated.
    707 	 */
    708 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
    709 		pipe_loan_free(wpipe);
    710 
    711 	/* Allocate new kva. */
    712 	if (wpipe->pipe_map.kva == 0) {
    713 		error = pipe_loan_alloc(wpipe, npages);
    714 		if (error) {
    715 			mutex_enter(lock);
    716 			return (error);
    717 		}
    718 	}
    719 
    720 	/* Loan the write buffer memory from writer process */
    721 	pgs = wpipe->pipe_map.pgs;
    722 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
    723 			 pgs, UVM_LOAN_TOPAGE);
    724 	if (error) {
    725 		pipe_loan_free(wpipe);
    726 		mutex_enter(lock);
    727 		return (ENOMEM); /* so that caller fallback to ordinary write */
    728 	}
    729 
    730 	/* Enter the loaned pages to KVA, produce new emap generation number. */
    731 	uvm_emap_enter(wpipe->pipe_map.kva, pgs, npages);
    732 	wpipe->pipe_map.egen = uvm_emap_produce();
    733 
    734 	/* Now we can put the pipe in direct write mode */
    735 	wpipe->pipe_map.pos = bpos;
    736 	wpipe->pipe_map.cnt = bcnt;
    737 
    738 	/*
    739 	 * But before we can let someone do a direct read, we
    740 	 * have to wait until the pipe is drained.  Release the
    741 	 * pipe lock while we wait.
    742 	 */
    743 	mutex_enter(lock);
    744 	wpipe->pipe_state |= PIPE_DIRECTW;
    745 	pipeunlock(wpipe);
    746 
    747 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
    748 		cv_broadcast(&wpipe->pipe_rcv);
    749 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    750 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    751 			error = EPIPE;
    752 	}
    753 
    754 	/* Pipe is drained; next read will off the direct buffer */
    755 	wpipe->pipe_state |= PIPE_DIRECTR;
    756 
    757 	/* Wait until the reader is done */
    758 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
    759 		cv_broadcast(&wpipe->pipe_rcv);
    760 		pipeselwakeup(wpipe, wpipe, POLL_IN);
    761 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    762 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    763 			error = EPIPE;
    764 	}
    765 
    766 	/* Take pipe out of direct write mode */
    767 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
    768 
    769 	/* Acquire the pipe lock and cleanup */
    770 	(void)pipelock(wpipe, 0);
    771 	mutex_exit(lock);
    772 
    773 	if (pgs != NULL) {
    774 		/* XXX: uvm_emap_remove */
    775 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
    776 	}
    777 	if (error || amountpipekva > maxpipekva)
    778 		pipe_loan_free(wpipe);
    779 
    780 	mutex_enter(lock);
    781 	if (error) {
    782 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
    783 
    784 		/*
    785 		 * If nothing was read from what we offered, return error
    786 		 * straight on. Otherwise update uio resid first. Caller
    787 		 * will deal with the error condition, returning short
    788 		 * write, error, or restarting the write(2) as appropriate.
    789 		 */
    790 		if (wpipe->pipe_map.cnt == bcnt) {
    791 			wpipe->pipe_map.cnt = 0;
    792 			cv_broadcast(&wpipe->pipe_wcv);
    793 			return (error);
    794 		}
    795 
    796 		bcnt -= wpipe->pipe_map.cnt;
    797 	}
    798 
    799 	uio->uio_resid -= bcnt;
    800 	/* uio_offset not updated, not set/used for write(2) */
    801 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
    802 	uio->uio_iov->iov_len -= bcnt;
    803 	if (uio->uio_iov->iov_len == 0) {
    804 		uio->uio_iov++;
    805 		uio->uio_iovcnt--;
    806 	}
    807 
    808 	wpipe->pipe_map.cnt = 0;
    809 	return (error);
    810 }
    811 #endif /* !PIPE_NODIRECT */
    812 
    813 static int
    814 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    815     int flags)
    816 {
    817 	struct pipe *wpipe, *rpipe;
    818 	struct pipebuf *bp;
    819 	kmutex_t *lock;
    820 	int error;
    821 
    822 	/* We want to write to our peer */
    823 	rpipe = (struct pipe *) fp->f_data;
    824 	lock = rpipe->pipe_lock;
    825 	error = 0;
    826 
    827 	mutex_enter(lock);
    828 	wpipe = rpipe->pipe_peer;
    829 
    830 	/*
    831 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    832 	 */
    833 	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
    834 		mutex_exit(lock);
    835 		return EPIPE;
    836 	}
    837 	++wpipe->pipe_busy;
    838 
    839 	/* Aquire the long-term pipe lock */
    840 	if ((error = pipelock(wpipe, 1)) != 0) {
    841 		--wpipe->pipe_busy;
    842 		if (wpipe->pipe_busy == 0) {
    843 			cv_broadcast(&wpipe->pipe_draincv);
    844 		}
    845 		mutex_exit(lock);
    846 		return (error);
    847 	}
    848 
    849 	bp = &wpipe->pipe_buffer;
    850 
    851 	/*
    852 	 * If it is advantageous to resize the pipe buffer, do so.
    853 	 */
    854 	if ((uio->uio_resid > PIPE_SIZE) &&
    855 	    (nbigpipe < maxbigpipes) &&
    856 #ifndef PIPE_NODIRECT
    857 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    858 #endif
    859 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    860 
    861 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    862 			atomic_inc_uint(&nbigpipe);
    863 	}
    864 
    865 	while (uio->uio_resid) {
    866 		size_t space;
    867 
    868 #ifndef PIPE_NODIRECT
    869 		/*
    870 		 * Pipe buffered writes cannot be coincidental with
    871 		 * direct writes.  Also, only one direct write can be
    872 		 * in progress at any one time.  We wait until the currently
    873 		 * executing direct write is completed before continuing.
    874 		 *
    875 		 * We break out if a signal occurs or the reader goes away.
    876 		 */
    877 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
    878 			cv_broadcast(&wpipe->pipe_rcv);
    879 			pipeunlock(wpipe);
    880 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    881 			(void)pipelock(wpipe, 0);
    882 			if (wpipe->pipe_state & PIPE_EOF)
    883 				error = EPIPE;
    884 		}
    885 		if (error)
    886 			break;
    887 
    888 		/*
    889 		 * If the transfer is large, we can gain performance if
    890 		 * we do process-to-process copies directly.
    891 		 * If the write is non-blocking, we don't use the
    892 		 * direct write mechanism.
    893 		 *
    894 		 * The direct write mechanism will detect the reader going
    895 		 * away on us.
    896 		 */
    897 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    898 		    (fp->f_flag & FNONBLOCK) == 0 &&
    899 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
    900 			error = pipe_direct_write(fp, wpipe, uio);
    901 
    902 			/*
    903 			 * Break out if error occurred, unless it's ENOMEM.
    904 			 * ENOMEM means we failed to allocate some resources
    905 			 * for direct write, so we just fallback to ordinary
    906 			 * write. If the direct write was successful,
    907 			 * process rest of data via ordinary write.
    908 			 */
    909 			if (error == 0)
    910 				continue;
    911 
    912 			if (error != ENOMEM)
    913 				break;
    914 		}
    915 #endif /* PIPE_NODIRECT */
    916 
    917 		space = bp->size - bp->cnt;
    918 
    919 		/* Writes of size <= PIPE_BUF must be atomic. */
    920 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    921 			space = 0;
    922 
    923 		if (space > 0) {
    924 			int size;	/* Transfer size */
    925 			int segsize;	/* first segment to transfer */
    926 
    927 			/*
    928 			 * Transfer size is minimum of uio transfer
    929 			 * and free space in pipe buffer.
    930 			 */
    931 			if (space > uio->uio_resid)
    932 				size = uio->uio_resid;
    933 			else
    934 				size = space;
    935 			/*
    936 			 * First segment to transfer is minimum of
    937 			 * transfer size and contiguous space in
    938 			 * pipe buffer.  If first segment to transfer
    939 			 * is less than the transfer size, we've got
    940 			 * a wraparound in the buffer.
    941 			 */
    942 			segsize = bp->size - bp->in;
    943 			if (segsize > size)
    944 				segsize = size;
    945 
    946 			/* Transfer first segment */
    947 			mutex_exit(lock);
    948 			error = uiomove((char *)bp->buffer + bp->in, segsize,
    949 			    uio);
    950 
    951 			if (error == 0 && segsize < size) {
    952 				/*
    953 				 * Transfer remaining part now, to
    954 				 * support atomic writes.  Wraparound
    955 				 * happened.
    956 				 */
    957 				KASSERT(bp->in + segsize == bp->size);
    958 				error = uiomove(bp->buffer,
    959 				    size - segsize, uio);
    960 			}
    961 			mutex_enter(lock);
    962 			if (error)
    963 				break;
    964 
    965 			bp->in += size;
    966 			if (bp->in >= bp->size) {
    967 				KASSERT(bp->in == size - segsize + bp->size);
    968 				bp->in = size - segsize;
    969 			}
    970 
    971 			bp->cnt += size;
    972 			KASSERT(bp->cnt <= bp->size);
    973 		} else {
    974 			/*
    975 			 * If the "read-side" has been blocked, wake it up now.
    976 			 */
    977 			cv_broadcast(&wpipe->pipe_rcv);
    978 
    979 			/*
    980 			 * Don't block on non-blocking I/O.
    981 			 */
    982 			if (fp->f_flag & FNONBLOCK) {
    983 				error = EAGAIN;
    984 				break;
    985 			}
    986 
    987 			if (wpipe->pipe_state & PIPE_ABORTED) {
    988 				/* Another thread has called close() */
    989 				if (uio->uio_resid == 0)
    990 					error = EBADF;
    991 				break;
    992 			}
    993 
    994 			/*
    995 			 * We have no more space and have something to offer,
    996 			 * wake up select/poll.
    997 			 */
    998 			if (bp->cnt)
    999 				pipeselwakeup(wpipe, wpipe, POLL_IN);
   1000 
   1001 			pipeunlock(wpipe);
   1002 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
   1003 			(void)pipelock(wpipe, 0);
   1004 			if (error != 0)
   1005 				break;
   1006 			/*
   1007 			 * If read side wants to go away, we just issue a signal
   1008 			 * to ourselves.
   1009 			 */
   1010 			if (wpipe->pipe_state & PIPE_EOF) {
   1011 				error = EPIPE;
   1012 				break;
   1013 			}
   1014 		}
   1015 	}
   1016 
   1017 	--wpipe->pipe_busy;
   1018 	if (wpipe->pipe_busy == 0) {
   1019 		cv_broadcast(&wpipe->pipe_draincv);
   1020 	}
   1021 	if (bp->cnt > 0) {
   1022 		cv_broadcast(&wpipe->pipe_rcv);
   1023 	}
   1024 
   1025 	/*
   1026 	 * Don't return EPIPE if I/O was successful
   1027 	 */
   1028 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
   1029 		error = 0;
   1030 
   1031 	if (error == 0)
   1032 		getnanotime(&wpipe->pipe_mtime);
   1033 
   1034 	/*
   1035 	 * We have something to offer, wake up select/poll.
   1036 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1037 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1038 	 */
   1039 	if (bp->cnt)
   1040 		pipeselwakeup(wpipe, wpipe, POLL_IN);
   1041 
   1042 	/*
   1043 	 * Arrange for next read(2) to do a signal.
   1044 	 */
   1045 	wpipe->pipe_state |= PIPE_SIGNALR;
   1046 
   1047 	pipeunlock(wpipe);
   1048 	mutex_exit(lock);
   1049 	return (error);
   1050 }
   1051 
   1052 /*
   1053  * We implement a very minimal set of ioctls for compatibility with sockets.
   1054  */
   1055 int
   1056 pipe_ioctl(file_t *fp, u_long cmd, void *data)
   1057 {
   1058 	struct pipe *pipe = fp->f_data;
   1059 	kmutex_t *lock = pipe->pipe_lock;
   1060 
   1061 	switch (cmd) {
   1062 
   1063 	case FIONBIO:
   1064 		return (0);
   1065 
   1066 	case FIOASYNC:
   1067 		mutex_enter(lock);
   1068 		if (*(int *)data) {
   1069 			pipe->pipe_state |= PIPE_ASYNC;
   1070 		} else {
   1071 			pipe->pipe_state &= ~PIPE_ASYNC;
   1072 		}
   1073 		mutex_exit(lock);
   1074 		return (0);
   1075 
   1076 	case FIONREAD:
   1077 		mutex_enter(lock);
   1078 #ifndef PIPE_NODIRECT
   1079 		if (pipe->pipe_state & PIPE_DIRECTW)
   1080 			*(int *)data = pipe->pipe_map.cnt;
   1081 		else
   1082 #endif
   1083 			*(int *)data = pipe->pipe_buffer.cnt;
   1084 		mutex_exit(lock);
   1085 		return (0);
   1086 
   1087 	case FIONWRITE:
   1088 		/* Look at other side */
   1089 		pipe = pipe->pipe_peer;
   1090 		mutex_enter(lock);
   1091 #ifndef PIPE_NODIRECT
   1092 		if (pipe->pipe_state & PIPE_DIRECTW)
   1093 			*(int *)data = pipe->pipe_map.cnt;
   1094 		else
   1095 #endif
   1096 			*(int *)data = pipe->pipe_buffer.cnt;
   1097 		mutex_exit(lock);
   1098 		return (0);
   1099 
   1100 	case FIONSPACE:
   1101 		/* Look at other side */
   1102 		pipe = pipe->pipe_peer;
   1103 		mutex_enter(lock);
   1104 #ifndef PIPE_NODIRECT
   1105 		/*
   1106 		 * If we're in direct-mode, we don't really have a
   1107 		 * send queue, and any other write will block. Thus
   1108 		 * zero seems like the best answer.
   1109 		 */
   1110 		if (pipe->pipe_state & PIPE_DIRECTW)
   1111 			*(int *)data = 0;
   1112 		else
   1113 #endif
   1114 			*(int *)data = pipe->pipe_buffer.size -
   1115 			    pipe->pipe_buffer.cnt;
   1116 		mutex_exit(lock);
   1117 		return (0);
   1118 
   1119 	case TIOCSPGRP:
   1120 	case FIOSETOWN:
   1121 		return fsetown(&pipe->pipe_pgid, cmd, data);
   1122 
   1123 	case TIOCGPGRP:
   1124 	case FIOGETOWN:
   1125 		return fgetown(pipe->pipe_pgid, cmd, data);
   1126 
   1127 	}
   1128 	return (EPASSTHROUGH);
   1129 }
   1130 
   1131 int
   1132 pipe_poll(file_t *fp, int events)
   1133 {
   1134 	struct pipe *rpipe = fp->f_data;
   1135 	struct pipe *wpipe;
   1136 	int eof = 0;
   1137 	int revents = 0;
   1138 
   1139 	mutex_enter(rpipe->pipe_lock);
   1140 	wpipe = rpipe->pipe_peer;
   1141 
   1142 	if (events & (POLLIN | POLLRDNORM))
   1143 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1144 #ifndef PIPE_NODIRECT
   1145 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
   1146 #endif
   1147 		    (rpipe->pipe_state & PIPE_EOF))
   1148 			revents |= events & (POLLIN | POLLRDNORM);
   1149 
   1150 	eof |= (rpipe->pipe_state & PIPE_EOF);
   1151 
   1152 	if (wpipe == NULL)
   1153 		revents |= events & (POLLOUT | POLLWRNORM);
   1154 	else {
   1155 		if (events & (POLLOUT | POLLWRNORM))
   1156 			if ((wpipe->pipe_state & PIPE_EOF) || (
   1157 #ifndef PIPE_NODIRECT
   1158 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1159 #endif
   1160 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1161 				revents |= events & (POLLOUT | POLLWRNORM);
   1162 
   1163 		eof |= (wpipe->pipe_state & PIPE_EOF);
   1164 	}
   1165 
   1166 	if (wpipe == NULL || eof)
   1167 		revents |= POLLHUP;
   1168 
   1169 	if (revents == 0) {
   1170 		if (events & (POLLIN | POLLRDNORM))
   1171 			selrecord(curlwp, &rpipe->pipe_sel);
   1172 
   1173 		if (events & (POLLOUT | POLLWRNORM))
   1174 			selrecord(curlwp, &wpipe->pipe_sel);
   1175 	}
   1176 	mutex_exit(rpipe->pipe_lock);
   1177 
   1178 	return (revents);
   1179 }
   1180 
   1181 static int
   1182 pipe_stat(file_t *fp, struct stat *ub)
   1183 {
   1184 	struct pipe *pipe = fp->f_data;
   1185 
   1186 	mutex_enter(pipe->pipe_lock);
   1187 	memset(ub, 0, sizeof(*ub));
   1188 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1189 	ub->st_blksize = pipe->pipe_buffer.size;
   1190 	if (ub->st_blksize == 0 && pipe->pipe_peer)
   1191 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
   1192 	ub->st_size = pipe->pipe_buffer.cnt;
   1193 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1194 	ub->st_atimespec = pipe->pipe_atime;
   1195 	ub->st_mtimespec = pipe->pipe_mtime;
   1196 	ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
   1197 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
   1198 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
   1199 
   1200 	/*
   1201 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1202 	 * XXX (st_dev, st_ino) should be unique.
   1203 	 */
   1204 	mutex_exit(pipe->pipe_lock);
   1205 	return 0;
   1206 }
   1207 
   1208 static int
   1209 pipe_close(file_t *fp)
   1210 {
   1211 	struct pipe *pipe = fp->f_data;
   1212 
   1213 	fp->f_data = NULL;
   1214 	pipeclose(pipe);
   1215 	return (0);
   1216 }
   1217 
   1218 static void
   1219 pipe_abort(file_t *fp)
   1220 {
   1221 	struct pipe *pipe = fp->f_data;
   1222 
   1223 	/* Unblock blocked reads/writes - they will return EBADF. */
   1224 	mutex_enter(pipe->pipe_lock);
   1225 	pipe->pipe_state |= PIPE_ABORTED;
   1226 	cv_broadcast(&pipe->pipe_rcv);
   1227 	cv_broadcast(&pipe->pipe_wcv);
   1228 	mutex_exit(pipe->pipe_lock);
   1229 }
   1230 
   1231 static void
   1232 pipe_free_kmem(struct pipe *pipe)
   1233 {
   1234 
   1235 	if (pipe->pipe_buffer.buffer != NULL) {
   1236 		if (pipe->pipe_buffer.size > PIPE_SIZE) {
   1237 			atomic_dec_uint(&nbigpipe);
   1238 		}
   1239 		if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
   1240 			uvm_km_free(kernel_map,
   1241 			    (vaddr_t)pipe->pipe_buffer.buffer,
   1242 			    pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
   1243 			atomic_add_int(&amountpipekva,
   1244 			    -pipe->pipe_buffer.size);
   1245 		}
   1246 		pipe->pipe_buffer.buffer = NULL;
   1247 	}
   1248 #ifndef PIPE_NODIRECT
   1249 	if (pipe->pipe_map.kva != 0) {
   1250 		pipe_loan_free(pipe);
   1251 		pipe->pipe_map.cnt = 0;
   1252 		pipe->pipe_map.kva = 0;
   1253 		pipe->pipe_map.pos = 0;
   1254 		pipe->pipe_map.npages = 0;
   1255 	}
   1256 #endif /* !PIPE_NODIRECT */
   1257 }
   1258 
   1259 /*
   1260  * Shutdown the pipe.
   1261  */
   1262 static void
   1263 pipeclose(struct pipe *pipe)
   1264 {
   1265 	kmutex_t *lock;
   1266 	struct pipe *ppipe;
   1267 
   1268 	if (pipe == NULL)
   1269 		return;
   1270 
   1271 	KASSERT(cv_is_valid(&pipe->pipe_rcv));
   1272 	KASSERT(cv_is_valid(&pipe->pipe_wcv));
   1273 	KASSERT(cv_is_valid(&pipe->pipe_draincv));
   1274 	KASSERT(cv_is_valid(&pipe->pipe_lkcv));
   1275 
   1276 	lock = pipe->pipe_lock;
   1277 	if (lock == NULL)
   1278 		/* Must have failed during create */
   1279 		goto free_resources;
   1280 
   1281 	mutex_enter(lock);
   1282 	pipeselwakeup(pipe, pipe, POLL_HUP);
   1283 
   1284 	/*
   1285 	 * If the other side is blocked, wake it up saying that
   1286 	 * we want to close it down.
   1287 	 */
   1288 	pipe->pipe_state |= PIPE_EOF;
   1289 	if (pipe->pipe_busy) {
   1290 		while (pipe->pipe_busy) {
   1291 			cv_broadcast(&pipe->pipe_wcv);
   1292 			cv_wait_sig(&pipe->pipe_draincv, lock);
   1293 		}
   1294 	}
   1295 
   1296 	/*
   1297 	 * Disconnect from peer.
   1298 	 */
   1299 	if ((ppipe = pipe->pipe_peer) != NULL) {
   1300 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
   1301 		ppipe->pipe_state |= PIPE_EOF;
   1302 		cv_broadcast(&ppipe->pipe_rcv);
   1303 		ppipe->pipe_peer = NULL;
   1304 	}
   1305 
   1306 	/*
   1307 	 * Any knote objects still left in the list are
   1308 	 * the one attached by peer.  Since no one will
   1309 	 * traverse this list, we just clear it.
   1310 	 */
   1311 	SLIST_INIT(&pipe->pipe_sel.sel_klist);
   1312 
   1313 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
   1314 	mutex_exit(lock);
   1315 	mutex_obj_free(lock);
   1316 
   1317 	/*
   1318 	 * Free resources.
   1319 	 */
   1320     free_resources:
   1321 	pipe->pipe_pgid = 0;
   1322 	pipe->pipe_state = PIPE_SIGNALR;
   1323 	pipe_free_kmem(pipe);
   1324 	if (pipe->pipe_kmem != 0) {
   1325 		pool_cache_put(pipe_rd_cache, pipe);
   1326 	} else {
   1327 		pool_cache_put(pipe_wr_cache, pipe);
   1328 	}
   1329 }
   1330 
   1331 static void
   1332 filt_pipedetach(struct knote *kn)
   1333 {
   1334 	struct pipe *pipe;
   1335 	kmutex_t *lock;
   1336 
   1337 	pipe = ((file_t *)kn->kn_obj)->f_data;
   1338 	lock = pipe->pipe_lock;
   1339 
   1340 	mutex_enter(lock);
   1341 
   1342 	switch(kn->kn_filter) {
   1343 	case EVFILT_WRITE:
   1344 		/* Need the peer structure, not our own. */
   1345 		pipe = pipe->pipe_peer;
   1346 
   1347 		/* If reader end already closed, just return. */
   1348 		if (pipe == NULL) {
   1349 			mutex_exit(lock);
   1350 			return;
   1351 		}
   1352 
   1353 		break;
   1354 	default:
   1355 		/* Nothing to do. */
   1356 		break;
   1357 	}
   1358 
   1359 	KASSERT(kn->kn_hook == pipe);
   1360 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
   1361 	mutex_exit(lock);
   1362 }
   1363 
   1364 static int
   1365 filt_piperead(struct knote *kn, long hint)
   1366 {
   1367 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
   1368 	struct pipe *wpipe;
   1369 
   1370 	if ((hint & NOTE_SUBMIT) == 0) {
   1371 		mutex_enter(rpipe->pipe_lock);
   1372 	}
   1373 	wpipe = rpipe->pipe_peer;
   1374 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1375 
   1376 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1377 		kn->kn_data = rpipe->pipe_map.cnt;
   1378 
   1379 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1380 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1381 		kn->kn_flags |= EV_EOF;
   1382 		if ((hint & NOTE_SUBMIT) == 0) {
   1383 			mutex_exit(rpipe->pipe_lock);
   1384 		}
   1385 		return (1);
   1386 	}
   1387 
   1388 	if ((hint & NOTE_SUBMIT) == 0) {
   1389 		mutex_exit(rpipe->pipe_lock);
   1390 	}
   1391 	return (kn->kn_data > 0);
   1392 }
   1393 
   1394 static int
   1395 filt_pipewrite(struct knote *kn, long hint)
   1396 {
   1397 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
   1398 	struct pipe *wpipe;
   1399 
   1400 	if ((hint & NOTE_SUBMIT) == 0) {
   1401 		mutex_enter(rpipe->pipe_lock);
   1402 	}
   1403 	wpipe = rpipe->pipe_peer;
   1404 
   1405 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1406 		kn->kn_data = 0;
   1407 		kn->kn_flags |= EV_EOF;
   1408 		if ((hint & NOTE_SUBMIT) == 0) {
   1409 			mutex_exit(rpipe->pipe_lock);
   1410 		}
   1411 		return (1);
   1412 	}
   1413 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1414 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1415 		kn->kn_data = 0;
   1416 
   1417 	if ((hint & NOTE_SUBMIT) == 0) {
   1418 		mutex_exit(rpipe->pipe_lock);
   1419 	}
   1420 	return (kn->kn_data >= PIPE_BUF);
   1421 }
   1422 
   1423 static const struct filterops pipe_rfiltops =
   1424 	{ 1, NULL, filt_pipedetach, filt_piperead };
   1425 static const struct filterops pipe_wfiltops =
   1426 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
   1427 
   1428 static int
   1429 pipe_kqfilter(file_t *fp, struct knote *kn)
   1430 {
   1431 	struct pipe *pipe;
   1432 	kmutex_t *lock;
   1433 
   1434 	pipe = ((file_t *)kn->kn_obj)->f_data;
   1435 	lock = pipe->pipe_lock;
   1436 
   1437 	mutex_enter(lock);
   1438 
   1439 	switch (kn->kn_filter) {
   1440 	case EVFILT_READ:
   1441 		kn->kn_fop = &pipe_rfiltops;
   1442 		break;
   1443 	case EVFILT_WRITE:
   1444 		kn->kn_fop = &pipe_wfiltops;
   1445 		pipe = pipe->pipe_peer;
   1446 		if (pipe == NULL) {
   1447 			/* Other end of pipe has been closed. */
   1448 			mutex_exit(lock);
   1449 			return (EBADF);
   1450 		}
   1451 		break;
   1452 	default:
   1453 		mutex_exit(lock);
   1454 		return (EINVAL);
   1455 	}
   1456 
   1457 	kn->kn_hook = pipe;
   1458 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
   1459 	mutex_exit(lock);
   1460 
   1461 	return (0);
   1462 }
   1463 
   1464 /*
   1465  * Handle pipe sysctls.
   1466  */
   1467 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1468 {
   1469 
   1470 	sysctl_createv(clog, 0, NULL, NULL,
   1471 		       CTLFLAG_PERMANENT,
   1472 		       CTLTYPE_NODE, "kern", NULL,
   1473 		       NULL, 0, NULL, 0,
   1474 		       CTL_KERN, CTL_EOL);
   1475 	sysctl_createv(clog, 0, NULL, NULL,
   1476 		       CTLFLAG_PERMANENT,
   1477 		       CTLTYPE_NODE, "pipe",
   1478 		       SYSCTL_DESCR("Pipe settings"),
   1479 		       NULL, 0, NULL, 0,
   1480 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1481 
   1482 	sysctl_createv(clog, 0, NULL, NULL,
   1483 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1484 		       CTLTYPE_INT, "maxkvasz",
   1485 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1486 				    "used for pipes"),
   1487 		       NULL, 0, &maxpipekva, 0,
   1488 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
   1489 	sysctl_createv(clog, 0, NULL, NULL,
   1490 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1491 		       CTLTYPE_INT, "maxloankvasz",
   1492 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
   1493 		       NULL, 0, &limitpipekva, 0,
   1494 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
   1495 	sysctl_createv(clog, 0, NULL, NULL,
   1496 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1497 		       CTLTYPE_INT, "maxbigpipes",
   1498 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
   1499 		       NULL, 0, &maxbigpipes, 0,
   1500 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1501 	sysctl_createv(clog, 0, NULL, NULL,
   1502 		       CTLFLAG_PERMANENT,
   1503 		       CTLTYPE_INT, "nbigpipes",
   1504 		       SYSCTL_DESCR("Number of \"big\" pipes"),
   1505 		       NULL, 0, &nbigpipe, 0,
   1506 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1507 	sysctl_createv(clog, 0, NULL, NULL,
   1508 		       CTLFLAG_PERMANENT,
   1509 		       CTLTYPE_INT, "kvasize",
   1510 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
   1511 				    "buffers"),
   1512 		       NULL, 0, &amountpipekva, 0,
   1513 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1514 }
   1515