sys_pipe.c revision 1.123 1 /* $NetBSD: sys_pipe.c,v 1.123 2009/12/12 21:28:04 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.123 2009/12/12 21:28:04 dsl Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 #include <uvm/uvm.h>
96
97 /*
98 * Use this to disable direct I/O and decrease the code size:
99 * #define PIPE_NODIRECT
100 */
101
102 /* XXX Disabled for now; rare hangs switching between direct/buffered */
103 #define PIPE_NODIRECT
104
105 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
106 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
107 static int pipe_close(file_t *);
108 static int pipe_poll(file_t *, int);
109 static int pipe_kqfilter(file_t *, struct knote *);
110 static int pipe_stat(file_t *, struct stat *);
111 static int pipe_ioctl(file_t *, u_long, void *);
112 static void pipe_abort(file_t *);
113
114 static const struct fileops pipeops = {
115 .fo_read = pipe_read,
116 .fo_write = pipe_write,
117 .fo_ioctl = pipe_ioctl,
118 .fo_fcntl = fnullop_fcntl,
119 .fo_poll = pipe_poll,
120 .fo_stat = pipe_stat,
121 .fo_close = pipe_close,
122 .fo_kqfilter = pipe_kqfilter,
123 .fo_abort = pipe_abort,
124 };
125
126 /*
127 * Default pipe buffer size(s), this can be kind-of large now because pipe
128 * space is pageable. The pipe code will try to maintain locality of
129 * reference for performance reasons, so small amounts of outstanding I/O
130 * will not wipe the cache.
131 */
132 #define MINPIPESIZE (PIPE_SIZE / 3)
133 #define MAXPIPESIZE (2 * PIPE_SIZE / 3)
134
135 /*
136 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
137 * is there so that on large systems, we don't exhaust it.
138 */
139 #define MAXPIPEKVA (8 * 1024 * 1024)
140 static u_int maxpipekva = MAXPIPEKVA;
141
142 /*
143 * Limit for direct transfers, we cannot, of course limit
144 * the amount of kva for pipes in general though.
145 */
146 #define LIMITPIPEKVA (16 * 1024 * 1024)
147 static u_int limitpipekva = LIMITPIPEKVA;
148
149 /*
150 * Limit the number of "big" pipes
151 */
152 #define LIMITBIGPIPES 32
153 static u_int maxbigpipes = LIMITBIGPIPES;
154 static u_int nbigpipe = 0;
155
156 /*
157 * Amount of KVA consumed by pipe buffers.
158 */
159 static u_int amountpipekva = 0;
160
161 static void pipeclose(struct pipe *);
162 static void pipe_free_kmem(struct pipe *);
163 static int pipe_create(struct pipe **, pool_cache_t);
164 static int pipelock(struct pipe *, int);
165 static inline void pipeunlock(struct pipe *);
166 static void pipeselwakeup(struct pipe *, struct pipe *, int);
167 #ifndef PIPE_NODIRECT
168 static int pipe_direct_write(file_t *, struct pipe *, struct uio *);
169 #endif
170 static int pipespace(struct pipe *, int);
171 static int pipe_ctor(void *, void *, int);
172 static void pipe_dtor(void *, void *);
173
174 #ifndef PIPE_NODIRECT
175 static int pipe_loan_alloc(struct pipe *, int);
176 static void pipe_loan_free(struct pipe *);
177 #endif /* PIPE_NODIRECT */
178
179 static pool_cache_t pipe_wr_cache;
180 static pool_cache_t pipe_rd_cache;
181
182 void
183 pipe_init(void)
184 {
185
186 /* Writer side is not automatically allocated KVA. */
187 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
188 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
189 KASSERT(pipe_wr_cache != NULL);
190
191 /* Reader side gets preallocated KVA. */
192 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
193 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
194 KASSERT(pipe_rd_cache != NULL);
195 }
196
197 static int
198 pipe_ctor(void *arg, void *obj, int flags)
199 {
200 struct pipe *pipe;
201 vaddr_t va;
202
203 pipe = obj;
204
205 memset(pipe, 0, sizeof(struct pipe));
206 if (arg != NULL) {
207 /* Preallocate space. */
208 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
209 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
210 KASSERT(va != 0);
211 pipe->pipe_kmem = va;
212 atomic_add_int(&amountpipekva, PIPE_SIZE);
213 }
214 cv_init(&pipe->pipe_rcv, "piperd");
215 cv_init(&pipe->pipe_wcv, "pipewr");
216 cv_init(&pipe->pipe_draincv, "pipedrain");
217 cv_init(&pipe->pipe_lkcv, "pipelk");
218 selinit(&pipe->pipe_sel);
219 pipe->pipe_state = PIPE_SIGNALR;
220
221 return 0;
222 }
223
224 static void
225 pipe_dtor(void *arg, void *obj)
226 {
227 struct pipe *pipe;
228
229 pipe = obj;
230
231 cv_destroy(&pipe->pipe_rcv);
232 cv_destroy(&pipe->pipe_wcv);
233 cv_destroy(&pipe->pipe_draincv);
234 cv_destroy(&pipe->pipe_lkcv);
235 seldestroy(&pipe->pipe_sel);
236 if (pipe->pipe_kmem != 0) {
237 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
238 UVM_KMF_PAGEABLE);
239 atomic_add_int(&amountpipekva, -PIPE_SIZE);
240 }
241 }
242
243 /*
244 * The pipe system call for the DTYPE_PIPE type of pipes
245 */
246 int
247 sys_pipe(struct lwp *l, const void *v, register_t *retval)
248 {
249 struct pipe *rpipe, *wpipe;
250 file_t *rf, *wf;
251 int fd, error;
252 proc_t *p;
253
254 p = curproc;
255 rpipe = wpipe = NULL;
256 if (pipe_create(&rpipe, pipe_rd_cache) ||
257 pipe_create(&wpipe, pipe_wr_cache)) {
258 error = ENOMEM;
259 goto free2;
260 }
261 rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
262 wpipe->pipe_lock = rpipe->pipe_lock;
263 mutex_obj_hold(wpipe->pipe_lock);
264
265 error = fd_allocfile(&rf, &fd);
266 if (error)
267 goto free2;
268 retval[0] = fd;
269 rf->f_flag = FREAD;
270 rf->f_type = DTYPE_PIPE;
271 rf->f_data = (void *)rpipe;
272 rf->f_ops = &pipeops;
273
274 error = fd_allocfile(&wf, &fd);
275 if (error)
276 goto free3;
277 retval[1] = fd;
278 wf->f_flag = FWRITE;
279 wf->f_type = DTYPE_PIPE;
280 wf->f_data = (void *)wpipe;
281 wf->f_ops = &pipeops;
282
283 rpipe->pipe_peer = wpipe;
284 wpipe->pipe_peer = rpipe;
285
286 fd_affix(p, rf, (int)retval[0]);
287 fd_affix(p, wf, (int)retval[1]);
288 return (0);
289 free3:
290 fd_abort(p, rf, (int)retval[0]);
291 free2:
292 pipeclose(wpipe);
293 pipeclose(rpipe);
294
295 return (error);
296 }
297
298 /*
299 * Allocate kva for pipe circular buffer, the space is pageable
300 * This routine will 'realloc' the size of a pipe safely, if it fails
301 * it will retain the old buffer.
302 * If it fails it will return ENOMEM.
303 */
304 static int
305 pipespace(struct pipe *pipe, int size)
306 {
307 void *buffer;
308
309 /*
310 * Allocate pageable virtual address space. Physical memory is
311 * allocated on demand.
312 */
313 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
314 buffer = (void *)pipe->pipe_kmem;
315 } else {
316 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
317 0, UVM_KMF_PAGEABLE);
318 if (buffer == NULL)
319 return (ENOMEM);
320 atomic_add_int(&amountpipekva, size);
321 }
322
323 /* free old resources if we're resizing */
324 pipe_free_kmem(pipe);
325 pipe->pipe_buffer.buffer = buffer;
326 pipe->pipe_buffer.size = size;
327 pipe->pipe_buffer.in = 0;
328 pipe->pipe_buffer.out = 0;
329 pipe->pipe_buffer.cnt = 0;
330 return (0);
331 }
332
333 /*
334 * Initialize and allocate VM and memory for pipe.
335 */
336 static int
337 pipe_create(struct pipe **pipep, pool_cache_t cache)
338 {
339 struct pipe *pipe;
340 int error;
341
342 pipe = pool_cache_get(cache, PR_WAITOK);
343 KASSERT(pipe != NULL);
344 *pipep = pipe;
345 error = 0;
346 getnanotime(&pipe->pipe_btime);
347 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
348 pipe->pipe_lock = NULL;
349 if (cache == pipe_rd_cache) {
350 error = pipespace(pipe, PIPE_SIZE);
351 } else {
352 pipe->pipe_buffer.buffer = NULL;
353 pipe->pipe_buffer.size = 0;
354 pipe->pipe_buffer.in = 0;
355 pipe->pipe_buffer.out = 0;
356 pipe->pipe_buffer.cnt = 0;
357 }
358 return error;
359 }
360
361 /*
362 * Lock a pipe for I/O, blocking other access
363 * Called with pipe spin lock held.
364 */
365 static int
366 pipelock(struct pipe *pipe, int catch)
367 {
368 int error;
369
370 KASSERT(mutex_owned(pipe->pipe_lock));
371
372 while (pipe->pipe_state & PIPE_LOCKFL) {
373 pipe->pipe_state |= PIPE_LWANT;
374 if (catch) {
375 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
376 if (error != 0)
377 return error;
378 } else
379 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
380 }
381
382 pipe->pipe_state |= PIPE_LOCKFL;
383
384 return 0;
385 }
386
387 /*
388 * unlock a pipe I/O lock
389 */
390 static inline void
391 pipeunlock(struct pipe *pipe)
392 {
393
394 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
395
396 pipe->pipe_state &= ~PIPE_LOCKFL;
397 if (pipe->pipe_state & PIPE_LWANT) {
398 pipe->pipe_state &= ~PIPE_LWANT;
399 cv_broadcast(&pipe->pipe_lkcv);
400 }
401 }
402
403 /*
404 * Select/poll wakup. This also sends SIGIO to peer connected to
405 * 'sigpipe' side of pipe.
406 */
407 static void
408 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
409 {
410 int band;
411
412 switch (code) {
413 case POLL_IN:
414 band = POLLIN|POLLRDNORM;
415 break;
416 case POLL_OUT:
417 band = POLLOUT|POLLWRNORM;
418 break;
419 case POLL_HUP:
420 band = POLLHUP;
421 break;
422 case POLL_ERR:
423 band = POLLERR;
424 break;
425 default:
426 band = 0;
427 #ifdef DIAGNOSTIC
428 printf("bad siginfo code %d in pipe notification.\n", code);
429 #endif
430 break;
431 }
432
433 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
434
435 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
436 return;
437
438 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
439 }
440
441 static int
442 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
443 int flags)
444 {
445 struct pipe *rpipe = (struct pipe *) fp->f_data;
446 struct pipebuf *bp = &rpipe->pipe_buffer;
447 kmutex_t *lock = rpipe->pipe_lock;
448 int error;
449 size_t nread = 0;
450 size_t size;
451 size_t ocnt;
452
453 mutex_enter(lock);
454 ++rpipe->pipe_busy;
455 ocnt = bp->cnt;
456
457 again:
458 error = pipelock(rpipe, 1);
459 if (error)
460 goto unlocked_error;
461
462 while (uio->uio_resid) {
463 /*
464 * Normal pipe buffer receive.
465 */
466 if (bp->cnt > 0) {
467 size = bp->size - bp->out;
468 if (size > bp->cnt)
469 size = bp->cnt;
470 if (size > uio->uio_resid)
471 size = uio->uio_resid;
472
473 mutex_exit(lock);
474 error = uiomove((char *)bp->buffer + bp->out, size, uio);
475 mutex_enter(lock);
476 if (error)
477 break;
478
479 bp->out += size;
480 if (bp->out >= bp->size)
481 bp->out = 0;
482
483 bp->cnt -= size;
484
485 /*
486 * If there is no more to read in the pipe, reset
487 * its pointers to the beginning. This improves
488 * cache hit stats.
489 */
490 if (bp->cnt == 0) {
491 bp->in = 0;
492 bp->out = 0;
493 }
494 nread += size;
495 continue;
496 }
497
498 #ifndef PIPE_NODIRECT
499 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
500 /*
501 * Direct copy, bypassing a kernel buffer.
502 */
503 void *va;
504 u_int gen;
505
506 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
507
508 size = rpipe->pipe_map.cnt;
509 if (size > uio->uio_resid)
510 size = uio->uio_resid;
511
512 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
513 gen = rpipe->pipe_map.egen;
514 mutex_exit(lock);
515
516 /*
517 * Consume emap and read the data from loaned pages.
518 */
519 uvm_emap_consume(gen);
520 error = uiomove(va, size, uio);
521
522 mutex_enter(lock);
523 if (error)
524 break;
525 nread += size;
526 rpipe->pipe_map.pos += size;
527 rpipe->pipe_map.cnt -= size;
528 if (rpipe->pipe_map.cnt == 0) {
529 rpipe->pipe_state &= ~PIPE_DIRECTR;
530 cv_broadcast(&rpipe->pipe_wcv);
531 }
532 continue;
533 }
534 #endif
535 /*
536 * Break if some data was read.
537 */
538 if (nread > 0)
539 break;
540
541 /*
542 * Detect EOF condition.
543 * Read returns 0 on EOF, no need to set error.
544 */
545 if (rpipe->pipe_state & (PIPE_EOF | PIPE_ABORTED)) {
546 if (rpipe->pipe_state & PIPE_ABORTED)
547 /* Another thread has called close() */
548 error = EBADF;
549 break;
550 }
551
552 /*
553 * Don't block on non-blocking I/O.
554 */
555 if (fp->f_flag & FNONBLOCK) {
556 error = EAGAIN;
557 break;
558 }
559
560 /*
561 * Unlock the pipe buffer for our remaining processing.
562 * We will either break out with an error or we will
563 * sleep and relock to loop.
564 */
565 pipeunlock(rpipe);
566
567 /*
568 * Re-check to see if more direct writes are pending.
569 */
570 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
571 goto again;
572
573 /*
574 * We want to read more, wake up select/poll.
575 */
576 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
577
578 /*
579 * If the "write-side" is blocked, wake it up now.
580 */
581 cv_broadcast(&rpipe->pipe_wcv);
582
583 /* Now wait until the pipe is filled */
584 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
585 if (error != 0)
586 goto unlocked_error;
587 goto again;
588 }
589
590 if (error == 0)
591 getnanotime(&rpipe->pipe_atime);
592 pipeunlock(rpipe);
593
594 unlocked_error:
595 --rpipe->pipe_busy;
596 if (rpipe->pipe_busy == 0) {
597 cv_broadcast(&rpipe->pipe_draincv);
598 }
599 if (bp->cnt < MINPIPESIZE) {
600 cv_broadcast(&rpipe->pipe_wcv);
601 }
602
603 /*
604 * If anything was read off the buffer, signal to the writer it's
605 * possible to write more data. Also send signal if we are here for the
606 * first time after last write.
607 */
608 if ((bp->size - bp->cnt) >= PIPE_BUF
609 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
610 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
611 rpipe->pipe_state &= ~PIPE_SIGNALR;
612 }
613
614 mutex_exit(lock);
615 return (error);
616 }
617
618 #ifndef PIPE_NODIRECT
619 /*
620 * Allocate structure for loan transfer.
621 */
622 static int
623 pipe_loan_alloc(struct pipe *wpipe, int npages)
624 {
625 vsize_t len;
626
627 len = (vsize_t)npages << PAGE_SHIFT;
628 atomic_add_int(&amountpipekva, len);
629 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
630 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
631 if (wpipe->pipe_map.kva == 0) {
632 atomic_add_int(&amountpipekva, -len);
633 return (ENOMEM);
634 }
635
636 wpipe->pipe_map.npages = npages;
637 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
638 KM_SLEEP);
639 return (0);
640 }
641
642 /*
643 * Free resources allocated for loan transfer.
644 */
645 static void
646 pipe_loan_free(struct pipe *wpipe)
647 {
648 vsize_t len;
649
650 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
651 uvm_emap_remove(wpipe->pipe_map.kva, len); /* XXX */
652 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
653 wpipe->pipe_map.kva = 0;
654 atomic_add_int(&amountpipekva, -len);
655 kmem_free(wpipe->pipe_map.pgs,
656 wpipe->pipe_map.npages * sizeof(struct vm_page *));
657 wpipe->pipe_map.pgs = NULL;
658 }
659
660 /*
661 * NetBSD direct write, using uvm_loan() mechanism.
662 * This implements the pipe buffer write mechanism. Note that only
663 * a direct write OR a normal pipe write can be pending at any given time.
664 * If there are any characters in the pipe buffer, the direct write will
665 * be deferred until the receiving process grabs all of the bytes from
666 * the pipe buffer. Then the direct mapping write is set-up.
667 *
668 * Called with the long-term pipe lock held.
669 */
670 static int
671 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
672 {
673 struct vm_page **pgs;
674 vaddr_t bbase, base, bend;
675 vsize_t blen, bcnt;
676 int error, npages;
677 voff_t bpos;
678 kmutex_t *lock = wpipe->pipe_lock;
679
680 KASSERT(mutex_owned(wpipe->pipe_lock));
681 KASSERT(wpipe->pipe_map.cnt == 0);
682
683 mutex_exit(lock);
684
685 /*
686 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
687 * not aligned to PAGE_SIZE.
688 */
689 bbase = (vaddr_t)uio->uio_iov->iov_base;
690 base = trunc_page(bbase);
691 bend = round_page(bbase + uio->uio_iov->iov_len);
692 blen = bend - base;
693 bpos = bbase - base;
694
695 if (blen > PIPE_DIRECT_CHUNK) {
696 blen = PIPE_DIRECT_CHUNK;
697 bend = base + blen;
698 bcnt = PIPE_DIRECT_CHUNK - bpos;
699 } else {
700 bcnt = uio->uio_iov->iov_len;
701 }
702 npages = blen >> PAGE_SHIFT;
703
704 /*
705 * Free the old kva if we need more pages than we have
706 * allocated.
707 */
708 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
709 pipe_loan_free(wpipe);
710
711 /* Allocate new kva. */
712 if (wpipe->pipe_map.kva == 0) {
713 error = pipe_loan_alloc(wpipe, npages);
714 if (error) {
715 mutex_enter(lock);
716 return (error);
717 }
718 }
719
720 /* Loan the write buffer memory from writer process */
721 pgs = wpipe->pipe_map.pgs;
722 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
723 pgs, UVM_LOAN_TOPAGE);
724 if (error) {
725 pipe_loan_free(wpipe);
726 mutex_enter(lock);
727 return (ENOMEM); /* so that caller fallback to ordinary write */
728 }
729
730 /* Enter the loaned pages to KVA, produce new emap generation number. */
731 uvm_emap_enter(wpipe->pipe_map.kva, pgs, npages);
732 wpipe->pipe_map.egen = uvm_emap_produce();
733
734 /* Now we can put the pipe in direct write mode */
735 wpipe->pipe_map.pos = bpos;
736 wpipe->pipe_map.cnt = bcnt;
737
738 /*
739 * But before we can let someone do a direct read, we
740 * have to wait until the pipe is drained. Release the
741 * pipe lock while we wait.
742 */
743 mutex_enter(lock);
744 wpipe->pipe_state |= PIPE_DIRECTW;
745 pipeunlock(wpipe);
746
747 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
748 cv_broadcast(&wpipe->pipe_rcv);
749 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
750 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
751 error = EPIPE;
752 }
753
754 /* Pipe is drained; next read will off the direct buffer */
755 wpipe->pipe_state |= PIPE_DIRECTR;
756
757 /* Wait until the reader is done */
758 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
759 cv_broadcast(&wpipe->pipe_rcv);
760 pipeselwakeup(wpipe, wpipe, POLL_IN);
761 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
762 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
763 error = EPIPE;
764 }
765
766 /* Take pipe out of direct write mode */
767 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
768
769 /* Acquire the pipe lock and cleanup */
770 (void)pipelock(wpipe, 0);
771 mutex_exit(lock);
772
773 if (pgs != NULL) {
774 /* XXX: uvm_emap_remove */
775 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
776 }
777 if (error || amountpipekva > maxpipekva)
778 pipe_loan_free(wpipe);
779
780 mutex_enter(lock);
781 if (error) {
782 pipeselwakeup(wpipe, wpipe, POLL_ERR);
783
784 /*
785 * If nothing was read from what we offered, return error
786 * straight on. Otherwise update uio resid first. Caller
787 * will deal with the error condition, returning short
788 * write, error, or restarting the write(2) as appropriate.
789 */
790 if (wpipe->pipe_map.cnt == bcnt) {
791 wpipe->pipe_map.cnt = 0;
792 cv_broadcast(&wpipe->pipe_wcv);
793 return (error);
794 }
795
796 bcnt -= wpipe->pipe_map.cnt;
797 }
798
799 uio->uio_resid -= bcnt;
800 /* uio_offset not updated, not set/used for write(2) */
801 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
802 uio->uio_iov->iov_len -= bcnt;
803 if (uio->uio_iov->iov_len == 0) {
804 uio->uio_iov++;
805 uio->uio_iovcnt--;
806 }
807
808 wpipe->pipe_map.cnt = 0;
809 return (error);
810 }
811 #endif /* !PIPE_NODIRECT */
812
813 static int
814 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
815 int flags)
816 {
817 struct pipe *wpipe, *rpipe;
818 struct pipebuf *bp;
819 kmutex_t *lock;
820 int error;
821
822 /* We want to write to our peer */
823 rpipe = (struct pipe *) fp->f_data;
824 lock = rpipe->pipe_lock;
825 error = 0;
826
827 mutex_enter(lock);
828 wpipe = rpipe->pipe_peer;
829
830 /*
831 * Detect loss of pipe read side, issue SIGPIPE if lost.
832 */
833 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
834 mutex_exit(lock);
835 return EPIPE;
836 }
837 ++wpipe->pipe_busy;
838
839 /* Aquire the long-term pipe lock */
840 if ((error = pipelock(wpipe, 1)) != 0) {
841 --wpipe->pipe_busy;
842 if (wpipe->pipe_busy == 0) {
843 cv_broadcast(&wpipe->pipe_draincv);
844 }
845 mutex_exit(lock);
846 return (error);
847 }
848
849 bp = &wpipe->pipe_buffer;
850
851 /*
852 * If it is advantageous to resize the pipe buffer, do so.
853 */
854 if ((uio->uio_resid > PIPE_SIZE) &&
855 (nbigpipe < maxbigpipes) &&
856 #ifndef PIPE_NODIRECT
857 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
858 #endif
859 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
860
861 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
862 atomic_inc_uint(&nbigpipe);
863 }
864
865 while (uio->uio_resid) {
866 size_t space;
867
868 #ifndef PIPE_NODIRECT
869 /*
870 * Pipe buffered writes cannot be coincidental with
871 * direct writes. Also, only one direct write can be
872 * in progress at any one time. We wait until the currently
873 * executing direct write is completed before continuing.
874 *
875 * We break out if a signal occurs or the reader goes away.
876 */
877 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
878 cv_broadcast(&wpipe->pipe_rcv);
879 pipeunlock(wpipe);
880 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
881 (void)pipelock(wpipe, 0);
882 if (wpipe->pipe_state & PIPE_EOF)
883 error = EPIPE;
884 }
885 if (error)
886 break;
887
888 /*
889 * If the transfer is large, we can gain performance if
890 * we do process-to-process copies directly.
891 * If the write is non-blocking, we don't use the
892 * direct write mechanism.
893 *
894 * The direct write mechanism will detect the reader going
895 * away on us.
896 */
897 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
898 (fp->f_flag & FNONBLOCK) == 0 &&
899 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
900 error = pipe_direct_write(fp, wpipe, uio);
901
902 /*
903 * Break out if error occurred, unless it's ENOMEM.
904 * ENOMEM means we failed to allocate some resources
905 * for direct write, so we just fallback to ordinary
906 * write. If the direct write was successful,
907 * process rest of data via ordinary write.
908 */
909 if (error == 0)
910 continue;
911
912 if (error != ENOMEM)
913 break;
914 }
915 #endif /* PIPE_NODIRECT */
916
917 space = bp->size - bp->cnt;
918
919 /* Writes of size <= PIPE_BUF must be atomic. */
920 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
921 space = 0;
922
923 if (space > 0) {
924 int size; /* Transfer size */
925 int segsize; /* first segment to transfer */
926
927 /*
928 * Transfer size is minimum of uio transfer
929 * and free space in pipe buffer.
930 */
931 if (space > uio->uio_resid)
932 size = uio->uio_resid;
933 else
934 size = space;
935 /*
936 * First segment to transfer is minimum of
937 * transfer size and contiguous space in
938 * pipe buffer. If first segment to transfer
939 * is less than the transfer size, we've got
940 * a wraparound in the buffer.
941 */
942 segsize = bp->size - bp->in;
943 if (segsize > size)
944 segsize = size;
945
946 /* Transfer first segment */
947 mutex_exit(lock);
948 error = uiomove((char *)bp->buffer + bp->in, segsize,
949 uio);
950
951 if (error == 0 && segsize < size) {
952 /*
953 * Transfer remaining part now, to
954 * support atomic writes. Wraparound
955 * happened.
956 */
957 KASSERT(bp->in + segsize == bp->size);
958 error = uiomove(bp->buffer,
959 size - segsize, uio);
960 }
961 mutex_enter(lock);
962 if (error)
963 break;
964
965 bp->in += size;
966 if (bp->in >= bp->size) {
967 KASSERT(bp->in == size - segsize + bp->size);
968 bp->in = size - segsize;
969 }
970
971 bp->cnt += size;
972 KASSERT(bp->cnt <= bp->size);
973 } else {
974 /*
975 * If the "read-side" has been blocked, wake it up now.
976 */
977 cv_broadcast(&wpipe->pipe_rcv);
978
979 /*
980 * Don't block on non-blocking I/O.
981 */
982 if (fp->f_flag & FNONBLOCK) {
983 error = EAGAIN;
984 break;
985 }
986
987 if (wpipe->pipe_state & PIPE_ABORTED) {
988 /* Another thread has called close() */
989 if (uio->uio_resid == 0)
990 error = EBADF;
991 break;
992 }
993
994 /*
995 * We have no more space and have something to offer,
996 * wake up select/poll.
997 */
998 if (bp->cnt)
999 pipeselwakeup(wpipe, wpipe, POLL_IN);
1000
1001 pipeunlock(wpipe);
1002 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1003 (void)pipelock(wpipe, 0);
1004 if (error != 0)
1005 break;
1006 /*
1007 * If read side wants to go away, we just issue a signal
1008 * to ourselves.
1009 */
1010 if (wpipe->pipe_state & PIPE_EOF) {
1011 error = EPIPE;
1012 break;
1013 }
1014 }
1015 }
1016
1017 --wpipe->pipe_busy;
1018 if (wpipe->pipe_busy == 0) {
1019 cv_broadcast(&wpipe->pipe_draincv);
1020 }
1021 if (bp->cnt > 0) {
1022 cv_broadcast(&wpipe->pipe_rcv);
1023 }
1024
1025 /*
1026 * Don't return EPIPE if I/O was successful
1027 */
1028 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1029 error = 0;
1030
1031 if (error == 0)
1032 getnanotime(&wpipe->pipe_mtime);
1033
1034 /*
1035 * We have something to offer, wake up select/poll.
1036 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1037 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1038 */
1039 if (bp->cnt)
1040 pipeselwakeup(wpipe, wpipe, POLL_IN);
1041
1042 /*
1043 * Arrange for next read(2) to do a signal.
1044 */
1045 wpipe->pipe_state |= PIPE_SIGNALR;
1046
1047 pipeunlock(wpipe);
1048 mutex_exit(lock);
1049 return (error);
1050 }
1051
1052 /*
1053 * We implement a very minimal set of ioctls for compatibility with sockets.
1054 */
1055 int
1056 pipe_ioctl(file_t *fp, u_long cmd, void *data)
1057 {
1058 struct pipe *pipe = fp->f_data;
1059 kmutex_t *lock = pipe->pipe_lock;
1060
1061 switch (cmd) {
1062
1063 case FIONBIO:
1064 return (0);
1065
1066 case FIOASYNC:
1067 mutex_enter(lock);
1068 if (*(int *)data) {
1069 pipe->pipe_state |= PIPE_ASYNC;
1070 } else {
1071 pipe->pipe_state &= ~PIPE_ASYNC;
1072 }
1073 mutex_exit(lock);
1074 return (0);
1075
1076 case FIONREAD:
1077 mutex_enter(lock);
1078 #ifndef PIPE_NODIRECT
1079 if (pipe->pipe_state & PIPE_DIRECTW)
1080 *(int *)data = pipe->pipe_map.cnt;
1081 else
1082 #endif
1083 *(int *)data = pipe->pipe_buffer.cnt;
1084 mutex_exit(lock);
1085 return (0);
1086
1087 case FIONWRITE:
1088 /* Look at other side */
1089 pipe = pipe->pipe_peer;
1090 mutex_enter(lock);
1091 #ifndef PIPE_NODIRECT
1092 if (pipe->pipe_state & PIPE_DIRECTW)
1093 *(int *)data = pipe->pipe_map.cnt;
1094 else
1095 #endif
1096 *(int *)data = pipe->pipe_buffer.cnt;
1097 mutex_exit(lock);
1098 return (0);
1099
1100 case FIONSPACE:
1101 /* Look at other side */
1102 pipe = pipe->pipe_peer;
1103 mutex_enter(lock);
1104 #ifndef PIPE_NODIRECT
1105 /*
1106 * If we're in direct-mode, we don't really have a
1107 * send queue, and any other write will block. Thus
1108 * zero seems like the best answer.
1109 */
1110 if (pipe->pipe_state & PIPE_DIRECTW)
1111 *(int *)data = 0;
1112 else
1113 #endif
1114 *(int *)data = pipe->pipe_buffer.size -
1115 pipe->pipe_buffer.cnt;
1116 mutex_exit(lock);
1117 return (0);
1118
1119 case TIOCSPGRP:
1120 case FIOSETOWN:
1121 return fsetown(&pipe->pipe_pgid, cmd, data);
1122
1123 case TIOCGPGRP:
1124 case FIOGETOWN:
1125 return fgetown(pipe->pipe_pgid, cmd, data);
1126
1127 }
1128 return (EPASSTHROUGH);
1129 }
1130
1131 int
1132 pipe_poll(file_t *fp, int events)
1133 {
1134 struct pipe *rpipe = fp->f_data;
1135 struct pipe *wpipe;
1136 int eof = 0;
1137 int revents = 0;
1138
1139 mutex_enter(rpipe->pipe_lock);
1140 wpipe = rpipe->pipe_peer;
1141
1142 if (events & (POLLIN | POLLRDNORM))
1143 if ((rpipe->pipe_buffer.cnt > 0) ||
1144 #ifndef PIPE_NODIRECT
1145 (rpipe->pipe_state & PIPE_DIRECTR) ||
1146 #endif
1147 (rpipe->pipe_state & PIPE_EOF))
1148 revents |= events & (POLLIN | POLLRDNORM);
1149
1150 eof |= (rpipe->pipe_state & PIPE_EOF);
1151
1152 if (wpipe == NULL)
1153 revents |= events & (POLLOUT | POLLWRNORM);
1154 else {
1155 if (events & (POLLOUT | POLLWRNORM))
1156 if ((wpipe->pipe_state & PIPE_EOF) || (
1157 #ifndef PIPE_NODIRECT
1158 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1159 #endif
1160 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1161 revents |= events & (POLLOUT | POLLWRNORM);
1162
1163 eof |= (wpipe->pipe_state & PIPE_EOF);
1164 }
1165
1166 if (wpipe == NULL || eof)
1167 revents |= POLLHUP;
1168
1169 if (revents == 0) {
1170 if (events & (POLLIN | POLLRDNORM))
1171 selrecord(curlwp, &rpipe->pipe_sel);
1172
1173 if (events & (POLLOUT | POLLWRNORM))
1174 selrecord(curlwp, &wpipe->pipe_sel);
1175 }
1176 mutex_exit(rpipe->pipe_lock);
1177
1178 return (revents);
1179 }
1180
1181 static int
1182 pipe_stat(file_t *fp, struct stat *ub)
1183 {
1184 struct pipe *pipe = fp->f_data;
1185
1186 mutex_enter(pipe->pipe_lock);
1187 memset(ub, 0, sizeof(*ub));
1188 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1189 ub->st_blksize = pipe->pipe_buffer.size;
1190 if (ub->st_blksize == 0 && pipe->pipe_peer)
1191 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1192 ub->st_size = pipe->pipe_buffer.cnt;
1193 ub->st_blocks = (ub->st_size) ? 1 : 0;
1194 ub->st_atimespec = pipe->pipe_atime;
1195 ub->st_mtimespec = pipe->pipe_mtime;
1196 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1197 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1198 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1199
1200 /*
1201 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1202 * XXX (st_dev, st_ino) should be unique.
1203 */
1204 mutex_exit(pipe->pipe_lock);
1205 return 0;
1206 }
1207
1208 static int
1209 pipe_close(file_t *fp)
1210 {
1211 struct pipe *pipe = fp->f_data;
1212
1213 fp->f_data = NULL;
1214 pipeclose(pipe);
1215 return (0);
1216 }
1217
1218 static void
1219 pipe_abort(file_t *fp)
1220 {
1221 struct pipe *pipe = fp->f_data;
1222
1223 /* Unblock blocked reads/writes - they will return EBADF. */
1224 mutex_enter(pipe->pipe_lock);
1225 pipe->pipe_state |= PIPE_ABORTED;
1226 cv_broadcast(&pipe->pipe_rcv);
1227 cv_broadcast(&pipe->pipe_wcv);
1228 mutex_exit(pipe->pipe_lock);
1229 }
1230
1231 static void
1232 pipe_free_kmem(struct pipe *pipe)
1233 {
1234
1235 if (pipe->pipe_buffer.buffer != NULL) {
1236 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1237 atomic_dec_uint(&nbigpipe);
1238 }
1239 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1240 uvm_km_free(kernel_map,
1241 (vaddr_t)pipe->pipe_buffer.buffer,
1242 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1243 atomic_add_int(&amountpipekva,
1244 -pipe->pipe_buffer.size);
1245 }
1246 pipe->pipe_buffer.buffer = NULL;
1247 }
1248 #ifndef PIPE_NODIRECT
1249 if (pipe->pipe_map.kva != 0) {
1250 pipe_loan_free(pipe);
1251 pipe->pipe_map.cnt = 0;
1252 pipe->pipe_map.kva = 0;
1253 pipe->pipe_map.pos = 0;
1254 pipe->pipe_map.npages = 0;
1255 }
1256 #endif /* !PIPE_NODIRECT */
1257 }
1258
1259 /*
1260 * Shutdown the pipe.
1261 */
1262 static void
1263 pipeclose(struct pipe *pipe)
1264 {
1265 kmutex_t *lock;
1266 struct pipe *ppipe;
1267
1268 if (pipe == NULL)
1269 return;
1270
1271 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1272 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1273 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1274 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1275
1276 lock = pipe->pipe_lock;
1277 if (lock == NULL)
1278 /* Must have failed during create */
1279 goto free_resources;
1280
1281 mutex_enter(lock);
1282 pipeselwakeup(pipe, pipe, POLL_HUP);
1283
1284 /*
1285 * If the other side is blocked, wake it up saying that
1286 * we want to close it down.
1287 */
1288 pipe->pipe_state |= PIPE_EOF;
1289 if (pipe->pipe_busy) {
1290 while (pipe->pipe_busy) {
1291 cv_broadcast(&pipe->pipe_wcv);
1292 cv_wait_sig(&pipe->pipe_draincv, lock);
1293 }
1294 }
1295
1296 /*
1297 * Disconnect from peer.
1298 */
1299 if ((ppipe = pipe->pipe_peer) != NULL) {
1300 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1301 ppipe->pipe_state |= PIPE_EOF;
1302 cv_broadcast(&ppipe->pipe_rcv);
1303 ppipe->pipe_peer = NULL;
1304 }
1305
1306 /*
1307 * Any knote objects still left in the list are
1308 * the one attached by peer. Since no one will
1309 * traverse this list, we just clear it.
1310 */
1311 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1312
1313 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1314 mutex_exit(lock);
1315 mutex_obj_free(lock);
1316
1317 /*
1318 * Free resources.
1319 */
1320 free_resources:
1321 pipe->pipe_pgid = 0;
1322 pipe->pipe_state = PIPE_SIGNALR;
1323 pipe_free_kmem(pipe);
1324 if (pipe->pipe_kmem != 0) {
1325 pool_cache_put(pipe_rd_cache, pipe);
1326 } else {
1327 pool_cache_put(pipe_wr_cache, pipe);
1328 }
1329 }
1330
1331 static void
1332 filt_pipedetach(struct knote *kn)
1333 {
1334 struct pipe *pipe;
1335 kmutex_t *lock;
1336
1337 pipe = ((file_t *)kn->kn_obj)->f_data;
1338 lock = pipe->pipe_lock;
1339
1340 mutex_enter(lock);
1341
1342 switch(kn->kn_filter) {
1343 case EVFILT_WRITE:
1344 /* Need the peer structure, not our own. */
1345 pipe = pipe->pipe_peer;
1346
1347 /* If reader end already closed, just return. */
1348 if (pipe == NULL) {
1349 mutex_exit(lock);
1350 return;
1351 }
1352
1353 break;
1354 default:
1355 /* Nothing to do. */
1356 break;
1357 }
1358
1359 KASSERT(kn->kn_hook == pipe);
1360 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1361 mutex_exit(lock);
1362 }
1363
1364 static int
1365 filt_piperead(struct knote *kn, long hint)
1366 {
1367 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1368 struct pipe *wpipe;
1369
1370 if ((hint & NOTE_SUBMIT) == 0) {
1371 mutex_enter(rpipe->pipe_lock);
1372 }
1373 wpipe = rpipe->pipe_peer;
1374 kn->kn_data = rpipe->pipe_buffer.cnt;
1375
1376 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1377 kn->kn_data = rpipe->pipe_map.cnt;
1378
1379 if ((rpipe->pipe_state & PIPE_EOF) ||
1380 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1381 kn->kn_flags |= EV_EOF;
1382 if ((hint & NOTE_SUBMIT) == 0) {
1383 mutex_exit(rpipe->pipe_lock);
1384 }
1385 return (1);
1386 }
1387
1388 if ((hint & NOTE_SUBMIT) == 0) {
1389 mutex_exit(rpipe->pipe_lock);
1390 }
1391 return (kn->kn_data > 0);
1392 }
1393
1394 static int
1395 filt_pipewrite(struct knote *kn, long hint)
1396 {
1397 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1398 struct pipe *wpipe;
1399
1400 if ((hint & NOTE_SUBMIT) == 0) {
1401 mutex_enter(rpipe->pipe_lock);
1402 }
1403 wpipe = rpipe->pipe_peer;
1404
1405 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1406 kn->kn_data = 0;
1407 kn->kn_flags |= EV_EOF;
1408 if ((hint & NOTE_SUBMIT) == 0) {
1409 mutex_exit(rpipe->pipe_lock);
1410 }
1411 return (1);
1412 }
1413 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1414 if (wpipe->pipe_state & PIPE_DIRECTW)
1415 kn->kn_data = 0;
1416
1417 if ((hint & NOTE_SUBMIT) == 0) {
1418 mutex_exit(rpipe->pipe_lock);
1419 }
1420 return (kn->kn_data >= PIPE_BUF);
1421 }
1422
1423 static const struct filterops pipe_rfiltops =
1424 { 1, NULL, filt_pipedetach, filt_piperead };
1425 static const struct filterops pipe_wfiltops =
1426 { 1, NULL, filt_pipedetach, filt_pipewrite };
1427
1428 static int
1429 pipe_kqfilter(file_t *fp, struct knote *kn)
1430 {
1431 struct pipe *pipe;
1432 kmutex_t *lock;
1433
1434 pipe = ((file_t *)kn->kn_obj)->f_data;
1435 lock = pipe->pipe_lock;
1436
1437 mutex_enter(lock);
1438
1439 switch (kn->kn_filter) {
1440 case EVFILT_READ:
1441 kn->kn_fop = &pipe_rfiltops;
1442 break;
1443 case EVFILT_WRITE:
1444 kn->kn_fop = &pipe_wfiltops;
1445 pipe = pipe->pipe_peer;
1446 if (pipe == NULL) {
1447 /* Other end of pipe has been closed. */
1448 mutex_exit(lock);
1449 return (EBADF);
1450 }
1451 break;
1452 default:
1453 mutex_exit(lock);
1454 return (EINVAL);
1455 }
1456
1457 kn->kn_hook = pipe;
1458 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1459 mutex_exit(lock);
1460
1461 return (0);
1462 }
1463
1464 /*
1465 * Handle pipe sysctls.
1466 */
1467 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1468 {
1469
1470 sysctl_createv(clog, 0, NULL, NULL,
1471 CTLFLAG_PERMANENT,
1472 CTLTYPE_NODE, "kern", NULL,
1473 NULL, 0, NULL, 0,
1474 CTL_KERN, CTL_EOL);
1475 sysctl_createv(clog, 0, NULL, NULL,
1476 CTLFLAG_PERMANENT,
1477 CTLTYPE_NODE, "pipe",
1478 SYSCTL_DESCR("Pipe settings"),
1479 NULL, 0, NULL, 0,
1480 CTL_KERN, KERN_PIPE, CTL_EOL);
1481
1482 sysctl_createv(clog, 0, NULL, NULL,
1483 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1484 CTLTYPE_INT, "maxkvasz",
1485 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1486 "used for pipes"),
1487 NULL, 0, &maxpipekva, 0,
1488 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1489 sysctl_createv(clog, 0, NULL, NULL,
1490 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1491 CTLTYPE_INT, "maxloankvasz",
1492 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1493 NULL, 0, &limitpipekva, 0,
1494 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1495 sysctl_createv(clog, 0, NULL, NULL,
1496 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1497 CTLTYPE_INT, "maxbigpipes",
1498 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1499 NULL, 0, &maxbigpipes, 0,
1500 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1501 sysctl_createv(clog, 0, NULL, NULL,
1502 CTLFLAG_PERMANENT,
1503 CTLTYPE_INT, "nbigpipes",
1504 SYSCTL_DESCR("Number of \"big\" pipes"),
1505 NULL, 0, &nbigpipe, 0,
1506 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1507 sysctl_createv(clog, 0, NULL, NULL,
1508 CTLFLAG_PERMANENT,
1509 CTLTYPE_INT, "kvasize",
1510 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1511 "buffers"),
1512 NULL, 0, &amountpipekva, 0,
1513 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1514 }
1515