Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.130
      1 /*	$NetBSD: sys_pipe.c,v 1.130 2011/04/10 15:45:33 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1996 John S. Dyson
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice immediately at the beginning of the file, without modification,
     41  *    this list of conditions, and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Absolutely no warranty of function or purpose is made by the author
     46  *    John S. Dyson.
     47  * 4. Modifications may be freely made to this file if the above conditions
     48  *    are met.
     49  */
     50 
     51 /*
     52  * This file contains a high-performance replacement for the socket-based
     53  * pipes scheme originally used.  It does not support all features of
     54  * sockets, but does do everything that pipes normally do.
     55  *
     56  * This code has two modes of operation, a small write mode and a large
     57  * write mode.  The small write mode acts like conventional pipes with
     58  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     59  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     60  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
     61  * using the UVM page loan facility from where the receiving process can copy
     62  * the data directly from the pages in the sending process.
     63  *
     64  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     65  * happen for small transfers so that the system will not spend all of
     66  * its time context switching.  PIPE_SIZE is constrained by the
     67  * amount of kernel virtual memory.
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.130 2011/04/10 15:45:33 christos Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/proc.h>
     76 #include <sys/fcntl.h>
     77 #include <sys/file.h>
     78 #include <sys/filedesc.h>
     79 #include <sys/filio.h>
     80 #include <sys/kernel.h>
     81 #include <sys/ttycom.h>
     82 #include <sys/stat.h>
     83 #include <sys/poll.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/vnode.h>
     86 #include <sys/uio.h>
     87 #include <sys/select.h>
     88 #include <sys/mount.h>
     89 #include <sys/syscallargs.h>
     90 #include <sys/sysctl.h>
     91 #include <sys/kauth.h>
     92 #include <sys/atomic.h>
     93 #include <sys/pipe.h>
     94 
     95 #include <uvm/uvm_extern.h>
     96 
     97 /*
     98  * Use this to disable direct I/O and decrease the code size:
     99  * #define PIPE_NODIRECT
    100  */
    101 
    102 /* XXX Disabled for now; rare hangs switching between direct/buffered */
    103 #define PIPE_NODIRECT
    104 
    105 static int	pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
    106 static int	pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
    107 static int	pipe_close(file_t *);
    108 static int	pipe_poll(file_t *, int);
    109 static int	pipe_kqfilter(file_t *, struct knote *);
    110 static int	pipe_stat(file_t *, struct stat *);
    111 static int	pipe_ioctl(file_t *, u_long, void *);
    112 static void	pipe_restart(file_t *);
    113 
    114 static const struct fileops pipeops = {
    115 	.fo_read = pipe_read,
    116 	.fo_write = pipe_write,
    117 	.fo_ioctl = pipe_ioctl,
    118 	.fo_fcntl = fnullop_fcntl,
    119 	.fo_poll = pipe_poll,
    120 	.fo_stat = pipe_stat,
    121 	.fo_close = pipe_close,
    122 	.fo_kqfilter = pipe_kqfilter,
    123 	.fo_restart = pipe_restart,
    124 };
    125 
    126 /*
    127  * Default pipe buffer size(s), this can be kind-of large now because pipe
    128  * space is pageable.  The pipe code will try to maintain locality of
    129  * reference for performance reasons, so small amounts of outstanding I/O
    130  * will not wipe the cache.
    131  */
    132 #define	MINPIPESIZE	(PIPE_SIZE / 3)
    133 #define	MAXPIPESIZE	(2 * PIPE_SIZE / 3)
    134 
    135 /*
    136  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    137  * is there so that on large systems, we don't exhaust it.
    138  */
    139 #define	MAXPIPEKVA	(8 * 1024 * 1024)
    140 static u_int	maxpipekva = MAXPIPEKVA;
    141 
    142 /*
    143  * Limit for direct transfers, we cannot, of course limit
    144  * the amount of kva for pipes in general though.
    145  */
    146 #define	LIMITPIPEKVA	(16 * 1024 * 1024)
    147 static u_int	limitpipekva = LIMITPIPEKVA;
    148 
    149 /*
    150  * Limit the number of "big" pipes
    151  */
    152 #define	LIMITBIGPIPES	32
    153 static u_int	maxbigpipes = LIMITBIGPIPES;
    154 static u_int	nbigpipe = 0;
    155 
    156 /*
    157  * Amount of KVA consumed by pipe buffers.
    158  */
    159 static u_int	amountpipekva = 0;
    160 
    161 static void	pipeclose(struct pipe *);
    162 static void	pipe_free_kmem(struct pipe *);
    163 static int	pipe_create(struct pipe **, pool_cache_t);
    164 static int	pipelock(struct pipe *, int);
    165 static inline void pipeunlock(struct pipe *);
    166 static void	pipeselwakeup(struct pipe *, struct pipe *, int);
    167 #ifndef PIPE_NODIRECT
    168 static int	pipe_direct_write(file_t *, struct pipe *, struct uio *);
    169 #endif
    170 static int	pipespace(struct pipe *, int);
    171 static int	pipe_ctor(void *, void *, int);
    172 static void	pipe_dtor(void *, void *);
    173 
    174 #ifndef PIPE_NODIRECT
    175 static int	pipe_loan_alloc(struct pipe *, int);
    176 static void	pipe_loan_free(struct pipe *);
    177 #endif /* PIPE_NODIRECT */
    178 
    179 static pool_cache_t	pipe_wr_cache;
    180 static pool_cache_t	pipe_rd_cache;
    181 
    182 void
    183 pipe_init(void)
    184 {
    185 
    186 	/* Writer side is not automatically allocated KVA. */
    187 	pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
    188 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
    189 	KASSERT(pipe_wr_cache != NULL);
    190 
    191 	/* Reader side gets preallocated KVA. */
    192 	pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
    193 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
    194 	KASSERT(pipe_rd_cache != NULL);
    195 }
    196 
    197 static int
    198 pipe_ctor(void *arg, void *obj, int flags)
    199 {
    200 	struct pipe *pipe;
    201 	vaddr_t va;
    202 
    203 	pipe = obj;
    204 
    205 	memset(pipe, 0, sizeof(struct pipe));
    206 	if (arg != NULL) {
    207 		/* Preallocate space. */
    208 		va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
    209 		    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    210 		KASSERT(va != 0);
    211 		pipe->pipe_kmem = va;
    212 		atomic_add_int(&amountpipekva, PIPE_SIZE);
    213 	}
    214 	cv_init(&pipe->pipe_rcv, "pipe_rd");
    215 	cv_init(&pipe->pipe_wcv, "pipe_wr");
    216 	cv_init(&pipe->pipe_draincv, "pipe_drn");
    217 	cv_init(&pipe->pipe_lkcv, "pipe_lk");
    218 	selinit(&pipe->pipe_sel);
    219 	pipe->pipe_state = PIPE_SIGNALR;
    220 
    221 	return 0;
    222 }
    223 
    224 static void
    225 pipe_dtor(void *arg, void *obj)
    226 {
    227 	struct pipe *pipe;
    228 
    229 	pipe = obj;
    230 
    231 	cv_destroy(&pipe->pipe_rcv);
    232 	cv_destroy(&pipe->pipe_wcv);
    233 	cv_destroy(&pipe->pipe_draincv);
    234 	cv_destroy(&pipe->pipe_lkcv);
    235 	seldestroy(&pipe->pipe_sel);
    236 	if (pipe->pipe_kmem != 0) {
    237 		uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
    238 		    UVM_KMF_PAGEABLE);
    239 		atomic_add_int(&amountpipekva, -PIPE_SIZE);
    240 	}
    241 }
    242 
    243 /*
    244  * The pipe system call for the DTYPE_PIPE type of pipes
    245  */
    246 int
    247 pipe1(struct lwp *l, register_t *retval, int flags)
    248 {
    249 	struct pipe *rpipe, *wpipe;
    250 	file_t *rf, *wf;
    251 	int fd, error;
    252 	proc_t *p;
    253 
    254 	p = curproc;
    255 	rpipe = wpipe = NULL;
    256 	if (pipe_create(&rpipe, pipe_rd_cache) ||
    257 	    pipe_create(&wpipe, pipe_wr_cache)) {
    258 		error = ENOMEM;
    259 		goto free2;
    260 	}
    261 	rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    262 	wpipe->pipe_lock = rpipe->pipe_lock;
    263 	mutex_obj_hold(wpipe->pipe_lock);
    264 
    265 	error = fd_allocfile(&rf, &fd);
    266 	if (error)
    267 		goto free2;
    268 	retval[0] = fd;
    269 	rf->f_flag = FREAD | flags;
    270 	rf->f_type = DTYPE_PIPE;
    271 	rf->f_data = (void *)rpipe;
    272 	rf->f_ops = &pipeops;
    273 
    274 	error = fd_allocfile(&wf, &fd);
    275 	if (error)
    276 		goto free3;
    277 	retval[1] = fd;
    278 	wf->f_flag = FWRITE | flags;
    279 	wf->f_type = DTYPE_PIPE;
    280 	wf->f_data = (void *)wpipe;
    281 	wf->f_ops = &pipeops;
    282 
    283 	rpipe->pipe_peer = wpipe;
    284 	wpipe->pipe_peer = rpipe;
    285 
    286 	fd_affix(p, rf, (int)retval[0]);
    287 	fd_affix(p, wf, (int)retval[1]);
    288 	return (0);
    289 free3:
    290 	fd_abort(p, rf, (int)retval[0]);
    291 free2:
    292 	pipeclose(wpipe);
    293 	pipeclose(rpipe);
    294 
    295 	return (error);
    296 }
    297 
    298 int
    299 sys_pipe(struct lwp *l, const void *v, register_t *retval)
    300 {
    301 	return pipe1(l, retval, 0);
    302 }
    303 
    304 /*
    305  * Allocate kva for pipe circular buffer, the space is pageable
    306  * This routine will 'realloc' the size of a pipe safely, if it fails
    307  * it will retain the old buffer.
    308  * If it fails it will return ENOMEM.
    309  */
    310 static int
    311 pipespace(struct pipe *pipe, int size)
    312 {
    313 	void *buffer;
    314 
    315 	/*
    316 	 * Allocate pageable virtual address space.  Physical memory is
    317 	 * allocated on demand.
    318 	 */
    319 	if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
    320 		buffer = (void *)pipe->pipe_kmem;
    321 	} else {
    322 		buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
    323 		    0, UVM_KMF_PAGEABLE);
    324 		if (buffer == NULL)
    325 			return (ENOMEM);
    326 		atomic_add_int(&amountpipekva, size);
    327 	}
    328 
    329 	/* free old resources if we're resizing */
    330 	pipe_free_kmem(pipe);
    331 	pipe->pipe_buffer.buffer = buffer;
    332 	pipe->pipe_buffer.size = size;
    333 	pipe->pipe_buffer.in = 0;
    334 	pipe->pipe_buffer.out = 0;
    335 	pipe->pipe_buffer.cnt = 0;
    336 	return (0);
    337 }
    338 
    339 /*
    340  * Initialize and allocate VM and memory for pipe.
    341  */
    342 static int
    343 pipe_create(struct pipe **pipep, pool_cache_t cache)
    344 {
    345 	struct pipe *pipe;
    346 	int error;
    347 
    348 	pipe = pool_cache_get(cache, PR_WAITOK);
    349 	KASSERT(pipe != NULL);
    350 	*pipep = pipe;
    351 	error = 0;
    352 	getnanotime(&pipe->pipe_btime);
    353 	pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
    354 	pipe->pipe_lock = NULL;
    355 	if (cache == pipe_rd_cache) {
    356 		error = pipespace(pipe, PIPE_SIZE);
    357 	} else {
    358 		pipe->pipe_buffer.buffer = NULL;
    359 		pipe->pipe_buffer.size = 0;
    360 		pipe->pipe_buffer.in = 0;
    361 		pipe->pipe_buffer.out = 0;
    362 		pipe->pipe_buffer.cnt = 0;
    363 	}
    364 	return error;
    365 }
    366 
    367 /*
    368  * Lock a pipe for I/O, blocking other access
    369  * Called with pipe spin lock held.
    370  */
    371 static int
    372 pipelock(struct pipe *pipe, int catch)
    373 {
    374 	int error;
    375 
    376 	KASSERT(mutex_owned(pipe->pipe_lock));
    377 
    378 	while (pipe->pipe_state & PIPE_LOCKFL) {
    379 		pipe->pipe_state |= PIPE_LWANT;
    380 		if (catch) {
    381 			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
    382 			if (error != 0)
    383 				return error;
    384 		} else
    385 			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
    386 	}
    387 
    388 	pipe->pipe_state |= PIPE_LOCKFL;
    389 
    390 	return 0;
    391 }
    392 
    393 /*
    394  * unlock a pipe I/O lock
    395  */
    396 static inline void
    397 pipeunlock(struct pipe *pipe)
    398 {
    399 
    400 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
    401 
    402 	pipe->pipe_state &= ~PIPE_LOCKFL;
    403 	if (pipe->pipe_state & PIPE_LWANT) {
    404 		pipe->pipe_state &= ~PIPE_LWANT;
    405 		cv_broadcast(&pipe->pipe_lkcv);
    406 	}
    407 }
    408 
    409 /*
    410  * Select/poll wakup. This also sends SIGIO to peer connected to
    411  * 'sigpipe' side of pipe.
    412  */
    413 static void
    414 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
    415 {
    416 	int band;
    417 
    418 	switch (code) {
    419 	case POLL_IN:
    420 		band = POLLIN|POLLRDNORM;
    421 		break;
    422 	case POLL_OUT:
    423 		band = POLLOUT|POLLWRNORM;
    424 		break;
    425 	case POLL_HUP:
    426 		band = POLLHUP;
    427 		break;
    428 	case POLL_ERR:
    429 		band = POLLERR;
    430 		break;
    431 	default:
    432 		band = 0;
    433 #ifdef DIAGNOSTIC
    434 		printf("bad siginfo code %d in pipe notification.\n", code);
    435 #endif
    436 		break;
    437 	}
    438 
    439 	selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
    440 
    441 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    442 		return;
    443 
    444 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    445 }
    446 
    447 static int
    448 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    449     int flags)
    450 {
    451 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    452 	struct pipebuf *bp = &rpipe->pipe_buffer;
    453 	kmutex_t *lock = rpipe->pipe_lock;
    454 	int error;
    455 	size_t nread = 0;
    456 	size_t size;
    457 	size_t ocnt;
    458 	unsigned int wakeup_state = 0;
    459 
    460 	mutex_enter(lock);
    461 	++rpipe->pipe_busy;
    462 	ocnt = bp->cnt;
    463 
    464 again:
    465 	error = pipelock(rpipe, 1);
    466 	if (error)
    467 		goto unlocked_error;
    468 
    469 	while (uio->uio_resid) {
    470 		/*
    471 		 * Normal pipe buffer receive.
    472 		 */
    473 		if (bp->cnt > 0) {
    474 			size = bp->size - bp->out;
    475 			if (size > bp->cnt)
    476 				size = bp->cnt;
    477 			if (size > uio->uio_resid)
    478 				size = uio->uio_resid;
    479 
    480 			mutex_exit(lock);
    481 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
    482 			mutex_enter(lock);
    483 			if (error)
    484 				break;
    485 
    486 			bp->out += size;
    487 			if (bp->out >= bp->size)
    488 				bp->out = 0;
    489 
    490 			bp->cnt -= size;
    491 
    492 			/*
    493 			 * If there is no more to read in the pipe, reset
    494 			 * its pointers to the beginning.  This improves
    495 			 * cache hit stats.
    496 			 */
    497 			if (bp->cnt == 0) {
    498 				bp->in = 0;
    499 				bp->out = 0;
    500 			}
    501 			nread += size;
    502 			continue;
    503 		}
    504 
    505 #ifndef PIPE_NODIRECT
    506 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
    507 			/*
    508 			 * Direct copy, bypassing a kernel buffer.
    509 			 */
    510 			void *va;
    511 			u_int gen;
    512 
    513 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
    514 
    515 			size = rpipe->pipe_map.cnt;
    516 			if (size > uio->uio_resid)
    517 				size = uio->uio_resid;
    518 
    519 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
    520 			gen = rpipe->pipe_map.egen;
    521 			mutex_exit(lock);
    522 
    523 			/*
    524 			 * Consume emap and read the data from loaned pages.
    525 			 */
    526 			uvm_emap_consume(gen);
    527 			error = uiomove(va, size, uio);
    528 
    529 			mutex_enter(lock);
    530 			if (error)
    531 				break;
    532 			nread += size;
    533 			rpipe->pipe_map.pos += size;
    534 			rpipe->pipe_map.cnt -= size;
    535 			if (rpipe->pipe_map.cnt == 0) {
    536 				rpipe->pipe_state &= ~PIPE_DIRECTR;
    537 				cv_broadcast(&rpipe->pipe_wcv);
    538 			}
    539 			continue;
    540 		}
    541 #endif
    542 		/*
    543 		 * Break if some data was read.
    544 		 */
    545 		if (nread > 0)
    546 			break;
    547 
    548 		/*
    549 		 * Detect EOF condition.
    550 		 * Read returns 0 on EOF, no need to set error.
    551 		 */
    552 		if (rpipe->pipe_state & PIPE_EOF)
    553 			break;
    554 
    555 		/*
    556 		 * Don't block on non-blocking I/O.
    557 		 */
    558 		if (fp->f_flag & FNONBLOCK) {
    559 			error = EAGAIN;
    560 			break;
    561 		}
    562 
    563 		/*
    564 		 * Unlock the pipe buffer for our remaining processing.
    565 		 * We will either break out with an error or we will
    566 		 * sleep and relock to loop.
    567 		 */
    568 		pipeunlock(rpipe);
    569 
    570 		/*
    571 		 * Re-check to see if more direct writes are pending.
    572 		 */
    573 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
    574 			goto again;
    575 
    576 #if 1   /* XXX (dsl) I'm sure these aren't needed here ... */
    577 		/*
    578 		 * We want to read more, wake up select/poll.
    579 		 */
    580 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    581 
    582 		/*
    583 		 * If the "write-side" is blocked, wake it up now.
    584 		 */
    585 		cv_broadcast(&rpipe->pipe_wcv);
    586 #endif
    587 
    588 		if (wakeup_state & PIPE_RESTART) {
    589 			error = ERESTART;
    590 			goto unlocked_error;
    591 		}
    592 
    593 		/* Now wait until the pipe is filled */
    594 		error = cv_wait_sig(&rpipe->pipe_rcv, lock);
    595 		if (error != 0)
    596 			goto unlocked_error;
    597 		wakeup_state = rpipe->pipe_state;
    598 		goto again;
    599 	}
    600 
    601 	if (error == 0)
    602 		getnanotime(&rpipe->pipe_atime);
    603 	pipeunlock(rpipe);
    604 
    605 unlocked_error:
    606 	--rpipe->pipe_busy;
    607 	if (rpipe->pipe_busy == 0) {
    608 		rpipe->pipe_state &= ~PIPE_RESTART;
    609 		cv_broadcast(&rpipe->pipe_draincv);
    610 	}
    611 	if (bp->cnt < MINPIPESIZE) {
    612 		cv_broadcast(&rpipe->pipe_wcv);
    613 	}
    614 
    615 	/*
    616 	 * If anything was read off the buffer, signal to the writer it's
    617 	 * possible to write more data. Also send signal if we are here for the
    618 	 * first time after last write.
    619 	 */
    620 	if ((bp->size - bp->cnt) >= PIPE_BUF
    621 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    622 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    623 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    624 	}
    625 
    626 	mutex_exit(lock);
    627 	return (error);
    628 }
    629 
    630 #ifndef PIPE_NODIRECT
    631 /*
    632  * Allocate structure for loan transfer.
    633  */
    634 static int
    635 pipe_loan_alloc(struct pipe *wpipe, int npages)
    636 {
    637 	vsize_t len;
    638 
    639 	len = (vsize_t)npages << PAGE_SHIFT;
    640 	atomic_add_int(&amountpipekva, len);
    641 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
    642 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    643 	if (wpipe->pipe_map.kva == 0) {
    644 		atomic_add_int(&amountpipekva, -len);
    645 		return (ENOMEM);
    646 	}
    647 
    648 	wpipe->pipe_map.npages = npages;
    649 	wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
    650 	    KM_SLEEP);
    651 	return (0);
    652 }
    653 
    654 /*
    655  * Free resources allocated for loan transfer.
    656  */
    657 static void
    658 pipe_loan_free(struct pipe *wpipe)
    659 {
    660 	vsize_t len;
    661 
    662 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    663 	uvm_emap_remove(wpipe->pipe_map.kva, len);	/* XXX */
    664 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
    665 	wpipe->pipe_map.kva = 0;
    666 	atomic_add_int(&amountpipekva, -len);
    667 	kmem_free(wpipe->pipe_map.pgs,
    668 	    wpipe->pipe_map.npages * sizeof(struct vm_page *));
    669 	wpipe->pipe_map.pgs = NULL;
    670 }
    671 
    672 /*
    673  * NetBSD direct write, using uvm_loan() mechanism.
    674  * This implements the pipe buffer write mechanism.  Note that only
    675  * a direct write OR a normal pipe write can be pending at any given time.
    676  * If there are any characters in the pipe buffer, the direct write will
    677  * be deferred until the receiving process grabs all of the bytes from
    678  * the pipe buffer.  Then the direct mapping write is set-up.
    679  *
    680  * Called with the long-term pipe lock held.
    681  */
    682 static int
    683 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
    684 {
    685 	struct vm_page **pgs;
    686 	vaddr_t bbase, base, bend;
    687 	vsize_t blen, bcnt;
    688 	int error, npages;
    689 	voff_t bpos;
    690 	kmutex_t *lock = wpipe->pipe_lock;
    691 
    692 	KASSERT(mutex_owned(wpipe->pipe_lock));
    693 	KASSERT(wpipe->pipe_map.cnt == 0);
    694 
    695 	mutex_exit(lock);
    696 
    697 	/*
    698 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
    699 	 * not aligned to PAGE_SIZE.
    700 	 */
    701 	bbase = (vaddr_t)uio->uio_iov->iov_base;
    702 	base = trunc_page(bbase);
    703 	bend = round_page(bbase + uio->uio_iov->iov_len);
    704 	blen = bend - base;
    705 	bpos = bbase - base;
    706 
    707 	if (blen > PIPE_DIRECT_CHUNK) {
    708 		blen = PIPE_DIRECT_CHUNK;
    709 		bend = base + blen;
    710 		bcnt = PIPE_DIRECT_CHUNK - bpos;
    711 	} else {
    712 		bcnt = uio->uio_iov->iov_len;
    713 	}
    714 	npages = blen >> PAGE_SHIFT;
    715 
    716 	/*
    717 	 * Free the old kva if we need more pages than we have
    718 	 * allocated.
    719 	 */
    720 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
    721 		pipe_loan_free(wpipe);
    722 
    723 	/* Allocate new kva. */
    724 	if (wpipe->pipe_map.kva == 0) {
    725 		error = pipe_loan_alloc(wpipe, npages);
    726 		if (error) {
    727 			mutex_enter(lock);
    728 			return (error);
    729 		}
    730 	}
    731 
    732 	/* Loan the write buffer memory from writer process */
    733 	pgs = wpipe->pipe_map.pgs;
    734 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
    735 			 pgs, UVM_LOAN_TOPAGE);
    736 	if (error) {
    737 		pipe_loan_free(wpipe);
    738 		mutex_enter(lock);
    739 		return (ENOMEM); /* so that caller fallback to ordinary write */
    740 	}
    741 
    742 	/* Enter the loaned pages to KVA, produce new emap generation number. */
    743 	uvm_emap_enter(wpipe->pipe_map.kva, pgs, npages);
    744 	wpipe->pipe_map.egen = uvm_emap_produce();
    745 
    746 	/* Now we can put the pipe in direct write mode */
    747 	wpipe->pipe_map.pos = bpos;
    748 	wpipe->pipe_map.cnt = bcnt;
    749 
    750 	/*
    751 	 * But before we can let someone do a direct read, we
    752 	 * have to wait until the pipe is drained.  Release the
    753 	 * pipe lock while we wait.
    754 	 */
    755 	mutex_enter(lock);
    756 	wpipe->pipe_state |= PIPE_DIRECTW;
    757 	pipeunlock(wpipe);
    758 
    759 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
    760 		cv_broadcast(&wpipe->pipe_rcv);
    761 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    762 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    763 			error = EPIPE;
    764 	}
    765 
    766 	/* Pipe is drained; next read will off the direct buffer */
    767 	wpipe->pipe_state |= PIPE_DIRECTR;
    768 
    769 	/* Wait until the reader is done */
    770 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
    771 		cv_broadcast(&wpipe->pipe_rcv);
    772 		pipeselwakeup(wpipe, wpipe, POLL_IN);
    773 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    774 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    775 			error = EPIPE;
    776 	}
    777 
    778 	/* Take pipe out of direct write mode */
    779 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
    780 
    781 	/* Acquire the pipe lock and cleanup */
    782 	(void)pipelock(wpipe, 0);
    783 	mutex_exit(lock);
    784 
    785 	if (pgs != NULL) {
    786 		/* XXX: uvm_emap_remove */
    787 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
    788 	}
    789 	if (error || amountpipekva > maxpipekva)
    790 		pipe_loan_free(wpipe);
    791 
    792 	mutex_enter(lock);
    793 	if (error) {
    794 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
    795 
    796 		/*
    797 		 * If nothing was read from what we offered, return error
    798 		 * straight on. Otherwise update uio resid first. Caller
    799 		 * will deal with the error condition, returning short
    800 		 * write, error, or restarting the write(2) as appropriate.
    801 		 */
    802 		if (wpipe->pipe_map.cnt == bcnt) {
    803 			wpipe->pipe_map.cnt = 0;
    804 			cv_broadcast(&wpipe->pipe_wcv);
    805 			return (error);
    806 		}
    807 
    808 		bcnt -= wpipe->pipe_map.cnt;
    809 	}
    810 
    811 	uio->uio_resid -= bcnt;
    812 	/* uio_offset not updated, not set/used for write(2) */
    813 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
    814 	uio->uio_iov->iov_len -= bcnt;
    815 	if (uio->uio_iov->iov_len == 0) {
    816 		uio->uio_iov++;
    817 		uio->uio_iovcnt--;
    818 	}
    819 
    820 	wpipe->pipe_map.cnt = 0;
    821 	return (error);
    822 }
    823 #endif /* !PIPE_NODIRECT */
    824 
    825 static int
    826 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    827     int flags)
    828 {
    829 	struct pipe *wpipe, *rpipe;
    830 	struct pipebuf *bp;
    831 	kmutex_t *lock;
    832 	int error;
    833 	unsigned int wakeup_state = 0;
    834 
    835 	/* We want to write to our peer */
    836 	rpipe = (struct pipe *) fp->f_data;
    837 	lock = rpipe->pipe_lock;
    838 	error = 0;
    839 
    840 	mutex_enter(lock);
    841 	wpipe = rpipe->pipe_peer;
    842 
    843 	/*
    844 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    845 	 */
    846 	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
    847 		mutex_exit(lock);
    848 		return EPIPE;
    849 	}
    850 	++wpipe->pipe_busy;
    851 
    852 	/* Aquire the long-term pipe lock */
    853 	if ((error = pipelock(wpipe, 1)) != 0) {
    854 		--wpipe->pipe_busy;
    855 		if (wpipe->pipe_busy == 0) {
    856 			wpipe->pipe_state &= ~PIPE_RESTART;
    857 			cv_broadcast(&wpipe->pipe_draincv);
    858 		}
    859 		mutex_exit(lock);
    860 		return (error);
    861 	}
    862 
    863 	bp = &wpipe->pipe_buffer;
    864 
    865 	/*
    866 	 * If it is advantageous to resize the pipe buffer, do so.
    867 	 */
    868 	if ((uio->uio_resid > PIPE_SIZE) &&
    869 	    (nbigpipe < maxbigpipes) &&
    870 #ifndef PIPE_NODIRECT
    871 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    872 #endif
    873 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    874 
    875 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    876 			atomic_inc_uint(&nbigpipe);
    877 	}
    878 
    879 	while (uio->uio_resid) {
    880 		size_t space;
    881 
    882 #ifndef PIPE_NODIRECT
    883 		/*
    884 		 * Pipe buffered writes cannot be coincidental with
    885 		 * direct writes.  Also, only one direct write can be
    886 		 * in progress at any one time.  We wait until the currently
    887 		 * executing direct write is completed before continuing.
    888 		 *
    889 		 * We break out if a signal occurs or the reader goes away.
    890 		 */
    891 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
    892 			cv_broadcast(&wpipe->pipe_rcv);
    893 			pipeunlock(wpipe);
    894 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    895 			(void)pipelock(wpipe, 0);
    896 			if (wpipe->pipe_state & PIPE_EOF)
    897 				error = EPIPE;
    898 		}
    899 		if (error)
    900 			break;
    901 
    902 		/*
    903 		 * If the transfer is large, we can gain performance if
    904 		 * we do process-to-process copies directly.
    905 		 * If the write is non-blocking, we don't use the
    906 		 * direct write mechanism.
    907 		 *
    908 		 * The direct write mechanism will detect the reader going
    909 		 * away on us.
    910 		 */
    911 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    912 		    (fp->f_flag & FNONBLOCK) == 0 &&
    913 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
    914 			error = pipe_direct_write(fp, wpipe, uio);
    915 
    916 			/*
    917 			 * Break out if error occurred, unless it's ENOMEM.
    918 			 * ENOMEM means we failed to allocate some resources
    919 			 * for direct write, so we just fallback to ordinary
    920 			 * write. If the direct write was successful,
    921 			 * process rest of data via ordinary write.
    922 			 */
    923 			if (error == 0)
    924 				continue;
    925 
    926 			if (error != ENOMEM)
    927 				break;
    928 		}
    929 #endif /* PIPE_NODIRECT */
    930 
    931 		space = bp->size - bp->cnt;
    932 
    933 		/* Writes of size <= PIPE_BUF must be atomic. */
    934 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    935 			space = 0;
    936 
    937 		if (space > 0) {
    938 			int size;	/* Transfer size */
    939 			int segsize;	/* first segment to transfer */
    940 
    941 			/*
    942 			 * Transfer size is minimum of uio transfer
    943 			 * and free space in pipe buffer.
    944 			 */
    945 			if (space > uio->uio_resid)
    946 				size = uio->uio_resid;
    947 			else
    948 				size = space;
    949 			/*
    950 			 * First segment to transfer is minimum of
    951 			 * transfer size and contiguous space in
    952 			 * pipe buffer.  If first segment to transfer
    953 			 * is less than the transfer size, we've got
    954 			 * a wraparound in the buffer.
    955 			 */
    956 			segsize = bp->size - bp->in;
    957 			if (segsize > size)
    958 				segsize = size;
    959 
    960 			/* Transfer first segment */
    961 			mutex_exit(lock);
    962 			error = uiomove((char *)bp->buffer + bp->in, segsize,
    963 			    uio);
    964 
    965 			if (error == 0 && segsize < size) {
    966 				/*
    967 				 * Transfer remaining part now, to
    968 				 * support atomic writes.  Wraparound
    969 				 * happened.
    970 				 */
    971 				KASSERT(bp->in + segsize == bp->size);
    972 				error = uiomove(bp->buffer,
    973 				    size - segsize, uio);
    974 			}
    975 			mutex_enter(lock);
    976 			if (error)
    977 				break;
    978 
    979 			bp->in += size;
    980 			if (bp->in >= bp->size) {
    981 				KASSERT(bp->in == size - segsize + bp->size);
    982 				bp->in = size - segsize;
    983 			}
    984 
    985 			bp->cnt += size;
    986 			KASSERT(bp->cnt <= bp->size);
    987 			wakeup_state = 0;
    988 		} else {
    989 			/*
    990 			 * If the "read-side" has been blocked, wake it up now.
    991 			 */
    992 			cv_broadcast(&wpipe->pipe_rcv);
    993 
    994 			/*
    995 			 * Don't block on non-blocking I/O.
    996 			 */
    997 			if (fp->f_flag & FNONBLOCK) {
    998 				error = EAGAIN;
    999 				break;
   1000 			}
   1001 
   1002 			/*
   1003 			 * We have no more space and have something to offer,
   1004 			 * wake up select/poll.
   1005 			 */
   1006 			if (bp->cnt)
   1007 				pipeselwakeup(wpipe, wpipe, POLL_IN);
   1008 
   1009 			if (wakeup_state & PIPE_RESTART) {
   1010 				error = ERESTART;
   1011 				break;
   1012 			}
   1013 
   1014 			pipeunlock(wpipe);
   1015 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
   1016 			(void)pipelock(wpipe, 0);
   1017 			if (error != 0)
   1018 				break;
   1019 			/*
   1020 			 * If read side wants to go away, we just issue a signal
   1021 			 * to ourselves.
   1022 			 */
   1023 			if (wpipe->pipe_state & PIPE_EOF) {
   1024 				error = EPIPE;
   1025 				break;
   1026 			}
   1027 			wakeup_state = wpipe->pipe_state;
   1028 		}
   1029 	}
   1030 
   1031 	--wpipe->pipe_busy;
   1032 	if (wpipe->pipe_busy == 0) {
   1033 		wpipe->pipe_state &= ~PIPE_RESTART;
   1034 		cv_broadcast(&wpipe->pipe_draincv);
   1035 	}
   1036 	if (bp->cnt > 0) {
   1037 		cv_broadcast(&wpipe->pipe_rcv);
   1038 	}
   1039 
   1040 	/*
   1041 	 * Don't return EPIPE if I/O was successful
   1042 	 */
   1043 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
   1044 		error = 0;
   1045 
   1046 	if (error == 0)
   1047 		getnanotime(&wpipe->pipe_mtime);
   1048 
   1049 	/*
   1050 	 * We have something to offer, wake up select/poll.
   1051 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1052 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1053 	 */
   1054 	if (bp->cnt)
   1055 		pipeselwakeup(wpipe, wpipe, POLL_IN);
   1056 
   1057 	/*
   1058 	 * Arrange for next read(2) to do a signal.
   1059 	 */
   1060 	wpipe->pipe_state |= PIPE_SIGNALR;
   1061 
   1062 	pipeunlock(wpipe);
   1063 	mutex_exit(lock);
   1064 	return (error);
   1065 }
   1066 
   1067 /*
   1068  * We implement a very minimal set of ioctls for compatibility with sockets.
   1069  */
   1070 int
   1071 pipe_ioctl(file_t *fp, u_long cmd, void *data)
   1072 {
   1073 	struct pipe *pipe = fp->f_data;
   1074 	kmutex_t *lock = pipe->pipe_lock;
   1075 
   1076 	switch (cmd) {
   1077 
   1078 	case FIONBIO:
   1079 		return (0);
   1080 
   1081 	case FIOASYNC:
   1082 		mutex_enter(lock);
   1083 		if (*(int *)data) {
   1084 			pipe->pipe_state |= PIPE_ASYNC;
   1085 		} else {
   1086 			pipe->pipe_state &= ~PIPE_ASYNC;
   1087 		}
   1088 		mutex_exit(lock);
   1089 		return (0);
   1090 
   1091 	case FIONREAD:
   1092 		mutex_enter(lock);
   1093 #ifndef PIPE_NODIRECT
   1094 		if (pipe->pipe_state & PIPE_DIRECTW)
   1095 			*(int *)data = pipe->pipe_map.cnt;
   1096 		else
   1097 #endif
   1098 			*(int *)data = pipe->pipe_buffer.cnt;
   1099 		mutex_exit(lock);
   1100 		return (0);
   1101 
   1102 	case FIONWRITE:
   1103 		/* Look at other side */
   1104 		pipe = pipe->pipe_peer;
   1105 		mutex_enter(lock);
   1106 #ifndef PIPE_NODIRECT
   1107 		if (pipe->pipe_state & PIPE_DIRECTW)
   1108 			*(int *)data = pipe->pipe_map.cnt;
   1109 		else
   1110 #endif
   1111 			*(int *)data = pipe->pipe_buffer.cnt;
   1112 		mutex_exit(lock);
   1113 		return (0);
   1114 
   1115 	case FIONSPACE:
   1116 		/* Look at other side */
   1117 		pipe = pipe->pipe_peer;
   1118 		mutex_enter(lock);
   1119 #ifndef PIPE_NODIRECT
   1120 		/*
   1121 		 * If we're in direct-mode, we don't really have a
   1122 		 * send queue, and any other write will block. Thus
   1123 		 * zero seems like the best answer.
   1124 		 */
   1125 		if (pipe->pipe_state & PIPE_DIRECTW)
   1126 			*(int *)data = 0;
   1127 		else
   1128 #endif
   1129 			*(int *)data = pipe->pipe_buffer.size -
   1130 			    pipe->pipe_buffer.cnt;
   1131 		mutex_exit(lock);
   1132 		return (0);
   1133 
   1134 	case TIOCSPGRP:
   1135 	case FIOSETOWN:
   1136 		return fsetown(&pipe->pipe_pgid, cmd, data);
   1137 
   1138 	case TIOCGPGRP:
   1139 	case FIOGETOWN:
   1140 		return fgetown(pipe->pipe_pgid, cmd, data);
   1141 
   1142 	}
   1143 	return (EPASSTHROUGH);
   1144 }
   1145 
   1146 int
   1147 pipe_poll(file_t *fp, int events)
   1148 {
   1149 	struct pipe *rpipe = fp->f_data;
   1150 	struct pipe *wpipe;
   1151 	int eof = 0;
   1152 	int revents = 0;
   1153 
   1154 	mutex_enter(rpipe->pipe_lock);
   1155 	wpipe = rpipe->pipe_peer;
   1156 
   1157 	if (events & (POLLIN | POLLRDNORM))
   1158 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1159 #ifndef PIPE_NODIRECT
   1160 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
   1161 #endif
   1162 		    (rpipe->pipe_state & PIPE_EOF))
   1163 			revents |= events & (POLLIN | POLLRDNORM);
   1164 
   1165 	eof |= (rpipe->pipe_state & PIPE_EOF);
   1166 
   1167 	if (wpipe == NULL)
   1168 		revents |= events & (POLLOUT | POLLWRNORM);
   1169 	else {
   1170 		if (events & (POLLOUT | POLLWRNORM))
   1171 			if ((wpipe->pipe_state & PIPE_EOF) || (
   1172 #ifndef PIPE_NODIRECT
   1173 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1174 #endif
   1175 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1176 				revents |= events & (POLLOUT | POLLWRNORM);
   1177 
   1178 		eof |= (wpipe->pipe_state & PIPE_EOF);
   1179 	}
   1180 
   1181 	if (wpipe == NULL || eof)
   1182 		revents |= POLLHUP;
   1183 
   1184 	if (revents == 0) {
   1185 		if (events & (POLLIN | POLLRDNORM))
   1186 			selrecord(curlwp, &rpipe->pipe_sel);
   1187 
   1188 		if (events & (POLLOUT | POLLWRNORM))
   1189 			selrecord(curlwp, &wpipe->pipe_sel);
   1190 	}
   1191 	mutex_exit(rpipe->pipe_lock);
   1192 
   1193 	return (revents);
   1194 }
   1195 
   1196 static int
   1197 pipe_stat(file_t *fp, struct stat *ub)
   1198 {
   1199 	struct pipe *pipe = fp->f_data;
   1200 
   1201 	mutex_enter(pipe->pipe_lock);
   1202 	memset(ub, 0, sizeof(*ub));
   1203 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1204 	ub->st_blksize = pipe->pipe_buffer.size;
   1205 	if (ub->st_blksize == 0 && pipe->pipe_peer)
   1206 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
   1207 	ub->st_size = pipe->pipe_buffer.cnt;
   1208 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1209 	ub->st_atimespec = pipe->pipe_atime;
   1210 	ub->st_mtimespec = pipe->pipe_mtime;
   1211 	ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
   1212 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
   1213 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
   1214 
   1215 	/*
   1216 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1217 	 * XXX (st_dev, st_ino) should be unique.
   1218 	 */
   1219 	mutex_exit(pipe->pipe_lock);
   1220 	return 0;
   1221 }
   1222 
   1223 static int
   1224 pipe_close(file_t *fp)
   1225 {
   1226 	struct pipe *pipe = fp->f_data;
   1227 
   1228 	fp->f_data = NULL;
   1229 	pipeclose(pipe);
   1230 	return (0);
   1231 }
   1232 
   1233 static void
   1234 pipe_restart(file_t *fp)
   1235 {
   1236 	struct pipe *pipe = fp->f_data;
   1237 
   1238 	/*
   1239 	 * Unblock blocked reads/writes in order to allow close() to complete.
   1240 	 * System calls return ERESTART so that the fd is revalidated.
   1241 	 * (Partial writes return the transfer length.)
   1242 	 */
   1243 	mutex_enter(pipe->pipe_lock);
   1244 	pipe->pipe_state |= PIPE_RESTART;
   1245 	/* Wakeup both cvs, maybe we only need one, but maybe there are some
   1246 	 * other paths where wakeup is needed, and it saves deciding which! */
   1247 	cv_broadcast(&pipe->pipe_rcv);
   1248 	cv_broadcast(&pipe->pipe_wcv);
   1249 	mutex_exit(pipe->pipe_lock);
   1250 }
   1251 
   1252 static void
   1253 pipe_free_kmem(struct pipe *pipe)
   1254 {
   1255 
   1256 	if (pipe->pipe_buffer.buffer != NULL) {
   1257 		if (pipe->pipe_buffer.size > PIPE_SIZE) {
   1258 			atomic_dec_uint(&nbigpipe);
   1259 		}
   1260 		if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
   1261 			uvm_km_free(kernel_map,
   1262 			    (vaddr_t)pipe->pipe_buffer.buffer,
   1263 			    pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
   1264 			atomic_add_int(&amountpipekva,
   1265 			    -pipe->pipe_buffer.size);
   1266 		}
   1267 		pipe->pipe_buffer.buffer = NULL;
   1268 	}
   1269 #ifndef PIPE_NODIRECT
   1270 	if (pipe->pipe_map.kva != 0) {
   1271 		pipe_loan_free(pipe);
   1272 		pipe->pipe_map.cnt = 0;
   1273 		pipe->pipe_map.kva = 0;
   1274 		pipe->pipe_map.pos = 0;
   1275 		pipe->pipe_map.npages = 0;
   1276 	}
   1277 #endif /* !PIPE_NODIRECT */
   1278 }
   1279 
   1280 /*
   1281  * Shutdown the pipe.
   1282  */
   1283 static void
   1284 pipeclose(struct pipe *pipe)
   1285 {
   1286 	kmutex_t *lock;
   1287 	struct pipe *ppipe;
   1288 
   1289 	if (pipe == NULL)
   1290 		return;
   1291 
   1292 	KASSERT(cv_is_valid(&pipe->pipe_rcv));
   1293 	KASSERT(cv_is_valid(&pipe->pipe_wcv));
   1294 	KASSERT(cv_is_valid(&pipe->pipe_draincv));
   1295 	KASSERT(cv_is_valid(&pipe->pipe_lkcv));
   1296 
   1297 	lock = pipe->pipe_lock;
   1298 	if (lock == NULL)
   1299 		/* Must have failed during create */
   1300 		goto free_resources;
   1301 
   1302 	mutex_enter(lock);
   1303 	pipeselwakeup(pipe, pipe, POLL_HUP);
   1304 
   1305 	/*
   1306 	 * If the other side is blocked, wake it up saying that
   1307 	 * we want to close it down.
   1308 	 */
   1309 	pipe->pipe_state |= PIPE_EOF;
   1310 	if (pipe->pipe_busy) {
   1311 		while (pipe->pipe_busy) {
   1312 			cv_broadcast(&pipe->pipe_wcv);
   1313 			cv_wait_sig(&pipe->pipe_draincv, lock);
   1314 		}
   1315 	}
   1316 
   1317 	/*
   1318 	 * Disconnect from peer.
   1319 	 */
   1320 	if ((ppipe = pipe->pipe_peer) != NULL) {
   1321 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
   1322 		ppipe->pipe_state |= PIPE_EOF;
   1323 		cv_broadcast(&ppipe->pipe_rcv);
   1324 		ppipe->pipe_peer = NULL;
   1325 	}
   1326 
   1327 	/*
   1328 	 * Any knote objects still left in the list are
   1329 	 * the one attached by peer.  Since no one will
   1330 	 * traverse this list, we just clear it.
   1331 	 */
   1332 	SLIST_INIT(&pipe->pipe_sel.sel_klist);
   1333 
   1334 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
   1335 	mutex_exit(lock);
   1336 	mutex_obj_free(lock);
   1337 
   1338 	/*
   1339 	 * Free resources.
   1340 	 */
   1341     free_resources:
   1342 	pipe->pipe_pgid = 0;
   1343 	pipe->pipe_state = PIPE_SIGNALR;
   1344 	pipe_free_kmem(pipe);
   1345 	if (pipe->pipe_kmem != 0) {
   1346 		pool_cache_put(pipe_rd_cache, pipe);
   1347 	} else {
   1348 		pool_cache_put(pipe_wr_cache, pipe);
   1349 	}
   1350 }
   1351 
   1352 static void
   1353 filt_pipedetach(struct knote *kn)
   1354 {
   1355 	struct pipe *pipe;
   1356 	kmutex_t *lock;
   1357 
   1358 	pipe = ((file_t *)kn->kn_obj)->f_data;
   1359 	lock = pipe->pipe_lock;
   1360 
   1361 	mutex_enter(lock);
   1362 
   1363 	switch(kn->kn_filter) {
   1364 	case EVFILT_WRITE:
   1365 		/* Need the peer structure, not our own. */
   1366 		pipe = pipe->pipe_peer;
   1367 
   1368 		/* If reader end already closed, just return. */
   1369 		if (pipe == NULL) {
   1370 			mutex_exit(lock);
   1371 			return;
   1372 		}
   1373 
   1374 		break;
   1375 	default:
   1376 		/* Nothing to do. */
   1377 		break;
   1378 	}
   1379 
   1380 	KASSERT(kn->kn_hook == pipe);
   1381 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
   1382 	mutex_exit(lock);
   1383 }
   1384 
   1385 static int
   1386 filt_piperead(struct knote *kn, long hint)
   1387 {
   1388 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
   1389 	struct pipe *wpipe;
   1390 
   1391 	if ((hint & NOTE_SUBMIT) == 0) {
   1392 		mutex_enter(rpipe->pipe_lock);
   1393 	}
   1394 	wpipe = rpipe->pipe_peer;
   1395 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1396 
   1397 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1398 		kn->kn_data = rpipe->pipe_map.cnt;
   1399 
   1400 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1401 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1402 		kn->kn_flags |= EV_EOF;
   1403 		if ((hint & NOTE_SUBMIT) == 0) {
   1404 			mutex_exit(rpipe->pipe_lock);
   1405 		}
   1406 		return (1);
   1407 	}
   1408 
   1409 	if ((hint & NOTE_SUBMIT) == 0) {
   1410 		mutex_exit(rpipe->pipe_lock);
   1411 	}
   1412 	return (kn->kn_data > 0);
   1413 }
   1414 
   1415 static int
   1416 filt_pipewrite(struct knote *kn, long hint)
   1417 {
   1418 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
   1419 	struct pipe *wpipe;
   1420 
   1421 	if ((hint & NOTE_SUBMIT) == 0) {
   1422 		mutex_enter(rpipe->pipe_lock);
   1423 	}
   1424 	wpipe = rpipe->pipe_peer;
   1425 
   1426 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1427 		kn->kn_data = 0;
   1428 		kn->kn_flags |= EV_EOF;
   1429 		if ((hint & NOTE_SUBMIT) == 0) {
   1430 			mutex_exit(rpipe->pipe_lock);
   1431 		}
   1432 		return (1);
   1433 	}
   1434 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1435 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1436 		kn->kn_data = 0;
   1437 
   1438 	if ((hint & NOTE_SUBMIT) == 0) {
   1439 		mutex_exit(rpipe->pipe_lock);
   1440 	}
   1441 	return (kn->kn_data >= PIPE_BUF);
   1442 }
   1443 
   1444 static const struct filterops pipe_rfiltops =
   1445 	{ 1, NULL, filt_pipedetach, filt_piperead };
   1446 static const struct filterops pipe_wfiltops =
   1447 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
   1448 
   1449 static int
   1450 pipe_kqfilter(file_t *fp, struct knote *kn)
   1451 {
   1452 	struct pipe *pipe;
   1453 	kmutex_t *lock;
   1454 
   1455 	pipe = ((file_t *)kn->kn_obj)->f_data;
   1456 	lock = pipe->pipe_lock;
   1457 
   1458 	mutex_enter(lock);
   1459 
   1460 	switch (kn->kn_filter) {
   1461 	case EVFILT_READ:
   1462 		kn->kn_fop = &pipe_rfiltops;
   1463 		break;
   1464 	case EVFILT_WRITE:
   1465 		kn->kn_fop = &pipe_wfiltops;
   1466 		pipe = pipe->pipe_peer;
   1467 		if (pipe == NULL) {
   1468 			/* Other end of pipe has been closed. */
   1469 			mutex_exit(lock);
   1470 			return (EBADF);
   1471 		}
   1472 		break;
   1473 	default:
   1474 		mutex_exit(lock);
   1475 		return (EINVAL);
   1476 	}
   1477 
   1478 	kn->kn_hook = pipe;
   1479 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
   1480 	mutex_exit(lock);
   1481 
   1482 	return (0);
   1483 }
   1484 
   1485 /*
   1486  * Handle pipe sysctls.
   1487  */
   1488 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1489 {
   1490 
   1491 	sysctl_createv(clog, 0, NULL, NULL,
   1492 		       CTLFLAG_PERMANENT,
   1493 		       CTLTYPE_NODE, "kern", NULL,
   1494 		       NULL, 0, NULL, 0,
   1495 		       CTL_KERN, CTL_EOL);
   1496 	sysctl_createv(clog, 0, NULL, NULL,
   1497 		       CTLFLAG_PERMANENT,
   1498 		       CTLTYPE_NODE, "pipe",
   1499 		       SYSCTL_DESCR("Pipe settings"),
   1500 		       NULL, 0, NULL, 0,
   1501 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1502 
   1503 	sysctl_createv(clog, 0, NULL, NULL,
   1504 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1505 		       CTLTYPE_INT, "maxkvasz",
   1506 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1507 				    "used for pipes"),
   1508 		       NULL, 0, &maxpipekva, 0,
   1509 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
   1510 	sysctl_createv(clog, 0, NULL, NULL,
   1511 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1512 		       CTLTYPE_INT, "maxloankvasz",
   1513 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
   1514 		       NULL, 0, &limitpipekva, 0,
   1515 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
   1516 	sysctl_createv(clog, 0, NULL, NULL,
   1517 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1518 		       CTLTYPE_INT, "maxbigpipes",
   1519 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
   1520 		       NULL, 0, &maxbigpipes, 0,
   1521 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1522 	sysctl_createv(clog, 0, NULL, NULL,
   1523 		       CTLFLAG_PERMANENT,
   1524 		       CTLTYPE_INT, "nbigpipes",
   1525 		       SYSCTL_DESCR("Number of \"big\" pipes"),
   1526 		       NULL, 0, &nbigpipe, 0,
   1527 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1528 	sysctl_createv(clog, 0, NULL, NULL,
   1529 		       CTLFLAG_PERMANENT,
   1530 		       CTLTYPE_INT, "kvasize",
   1531 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
   1532 				    "buffers"),
   1533 		       NULL, 0, &amountpipekva, 0,
   1534 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1535 }
   1536