sys_pipe.c revision 1.130 1 /* $NetBSD: sys_pipe.c,v 1.130 2011/04/10 15:45:33 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.130 2011/04/10 15:45:33 christos Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 #include <uvm/uvm_extern.h>
96
97 /*
98 * Use this to disable direct I/O and decrease the code size:
99 * #define PIPE_NODIRECT
100 */
101
102 /* XXX Disabled for now; rare hangs switching between direct/buffered */
103 #define PIPE_NODIRECT
104
105 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
106 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
107 static int pipe_close(file_t *);
108 static int pipe_poll(file_t *, int);
109 static int pipe_kqfilter(file_t *, struct knote *);
110 static int pipe_stat(file_t *, struct stat *);
111 static int pipe_ioctl(file_t *, u_long, void *);
112 static void pipe_restart(file_t *);
113
114 static const struct fileops pipeops = {
115 .fo_read = pipe_read,
116 .fo_write = pipe_write,
117 .fo_ioctl = pipe_ioctl,
118 .fo_fcntl = fnullop_fcntl,
119 .fo_poll = pipe_poll,
120 .fo_stat = pipe_stat,
121 .fo_close = pipe_close,
122 .fo_kqfilter = pipe_kqfilter,
123 .fo_restart = pipe_restart,
124 };
125
126 /*
127 * Default pipe buffer size(s), this can be kind-of large now because pipe
128 * space is pageable. The pipe code will try to maintain locality of
129 * reference for performance reasons, so small amounts of outstanding I/O
130 * will not wipe the cache.
131 */
132 #define MINPIPESIZE (PIPE_SIZE / 3)
133 #define MAXPIPESIZE (2 * PIPE_SIZE / 3)
134
135 /*
136 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
137 * is there so that on large systems, we don't exhaust it.
138 */
139 #define MAXPIPEKVA (8 * 1024 * 1024)
140 static u_int maxpipekva = MAXPIPEKVA;
141
142 /*
143 * Limit for direct transfers, we cannot, of course limit
144 * the amount of kva for pipes in general though.
145 */
146 #define LIMITPIPEKVA (16 * 1024 * 1024)
147 static u_int limitpipekva = LIMITPIPEKVA;
148
149 /*
150 * Limit the number of "big" pipes
151 */
152 #define LIMITBIGPIPES 32
153 static u_int maxbigpipes = LIMITBIGPIPES;
154 static u_int nbigpipe = 0;
155
156 /*
157 * Amount of KVA consumed by pipe buffers.
158 */
159 static u_int amountpipekva = 0;
160
161 static void pipeclose(struct pipe *);
162 static void pipe_free_kmem(struct pipe *);
163 static int pipe_create(struct pipe **, pool_cache_t);
164 static int pipelock(struct pipe *, int);
165 static inline void pipeunlock(struct pipe *);
166 static void pipeselwakeup(struct pipe *, struct pipe *, int);
167 #ifndef PIPE_NODIRECT
168 static int pipe_direct_write(file_t *, struct pipe *, struct uio *);
169 #endif
170 static int pipespace(struct pipe *, int);
171 static int pipe_ctor(void *, void *, int);
172 static void pipe_dtor(void *, void *);
173
174 #ifndef PIPE_NODIRECT
175 static int pipe_loan_alloc(struct pipe *, int);
176 static void pipe_loan_free(struct pipe *);
177 #endif /* PIPE_NODIRECT */
178
179 static pool_cache_t pipe_wr_cache;
180 static pool_cache_t pipe_rd_cache;
181
182 void
183 pipe_init(void)
184 {
185
186 /* Writer side is not automatically allocated KVA. */
187 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
188 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
189 KASSERT(pipe_wr_cache != NULL);
190
191 /* Reader side gets preallocated KVA. */
192 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
193 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
194 KASSERT(pipe_rd_cache != NULL);
195 }
196
197 static int
198 pipe_ctor(void *arg, void *obj, int flags)
199 {
200 struct pipe *pipe;
201 vaddr_t va;
202
203 pipe = obj;
204
205 memset(pipe, 0, sizeof(struct pipe));
206 if (arg != NULL) {
207 /* Preallocate space. */
208 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
209 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
210 KASSERT(va != 0);
211 pipe->pipe_kmem = va;
212 atomic_add_int(&amountpipekva, PIPE_SIZE);
213 }
214 cv_init(&pipe->pipe_rcv, "pipe_rd");
215 cv_init(&pipe->pipe_wcv, "pipe_wr");
216 cv_init(&pipe->pipe_draincv, "pipe_drn");
217 cv_init(&pipe->pipe_lkcv, "pipe_lk");
218 selinit(&pipe->pipe_sel);
219 pipe->pipe_state = PIPE_SIGNALR;
220
221 return 0;
222 }
223
224 static void
225 pipe_dtor(void *arg, void *obj)
226 {
227 struct pipe *pipe;
228
229 pipe = obj;
230
231 cv_destroy(&pipe->pipe_rcv);
232 cv_destroy(&pipe->pipe_wcv);
233 cv_destroy(&pipe->pipe_draincv);
234 cv_destroy(&pipe->pipe_lkcv);
235 seldestroy(&pipe->pipe_sel);
236 if (pipe->pipe_kmem != 0) {
237 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
238 UVM_KMF_PAGEABLE);
239 atomic_add_int(&amountpipekva, -PIPE_SIZE);
240 }
241 }
242
243 /*
244 * The pipe system call for the DTYPE_PIPE type of pipes
245 */
246 int
247 pipe1(struct lwp *l, register_t *retval, int flags)
248 {
249 struct pipe *rpipe, *wpipe;
250 file_t *rf, *wf;
251 int fd, error;
252 proc_t *p;
253
254 p = curproc;
255 rpipe = wpipe = NULL;
256 if (pipe_create(&rpipe, pipe_rd_cache) ||
257 pipe_create(&wpipe, pipe_wr_cache)) {
258 error = ENOMEM;
259 goto free2;
260 }
261 rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
262 wpipe->pipe_lock = rpipe->pipe_lock;
263 mutex_obj_hold(wpipe->pipe_lock);
264
265 error = fd_allocfile(&rf, &fd);
266 if (error)
267 goto free2;
268 retval[0] = fd;
269 rf->f_flag = FREAD | flags;
270 rf->f_type = DTYPE_PIPE;
271 rf->f_data = (void *)rpipe;
272 rf->f_ops = &pipeops;
273
274 error = fd_allocfile(&wf, &fd);
275 if (error)
276 goto free3;
277 retval[1] = fd;
278 wf->f_flag = FWRITE | flags;
279 wf->f_type = DTYPE_PIPE;
280 wf->f_data = (void *)wpipe;
281 wf->f_ops = &pipeops;
282
283 rpipe->pipe_peer = wpipe;
284 wpipe->pipe_peer = rpipe;
285
286 fd_affix(p, rf, (int)retval[0]);
287 fd_affix(p, wf, (int)retval[1]);
288 return (0);
289 free3:
290 fd_abort(p, rf, (int)retval[0]);
291 free2:
292 pipeclose(wpipe);
293 pipeclose(rpipe);
294
295 return (error);
296 }
297
298 int
299 sys_pipe(struct lwp *l, const void *v, register_t *retval)
300 {
301 return pipe1(l, retval, 0);
302 }
303
304 /*
305 * Allocate kva for pipe circular buffer, the space is pageable
306 * This routine will 'realloc' the size of a pipe safely, if it fails
307 * it will retain the old buffer.
308 * If it fails it will return ENOMEM.
309 */
310 static int
311 pipespace(struct pipe *pipe, int size)
312 {
313 void *buffer;
314
315 /*
316 * Allocate pageable virtual address space. Physical memory is
317 * allocated on demand.
318 */
319 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
320 buffer = (void *)pipe->pipe_kmem;
321 } else {
322 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
323 0, UVM_KMF_PAGEABLE);
324 if (buffer == NULL)
325 return (ENOMEM);
326 atomic_add_int(&amountpipekva, size);
327 }
328
329 /* free old resources if we're resizing */
330 pipe_free_kmem(pipe);
331 pipe->pipe_buffer.buffer = buffer;
332 pipe->pipe_buffer.size = size;
333 pipe->pipe_buffer.in = 0;
334 pipe->pipe_buffer.out = 0;
335 pipe->pipe_buffer.cnt = 0;
336 return (0);
337 }
338
339 /*
340 * Initialize and allocate VM and memory for pipe.
341 */
342 static int
343 pipe_create(struct pipe **pipep, pool_cache_t cache)
344 {
345 struct pipe *pipe;
346 int error;
347
348 pipe = pool_cache_get(cache, PR_WAITOK);
349 KASSERT(pipe != NULL);
350 *pipep = pipe;
351 error = 0;
352 getnanotime(&pipe->pipe_btime);
353 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
354 pipe->pipe_lock = NULL;
355 if (cache == pipe_rd_cache) {
356 error = pipespace(pipe, PIPE_SIZE);
357 } else {
358 pipe->pipe_buffer.buffer = NULL;
359 pipe->pipe_buffer.size = 0;
360 pipe->pipe_buffer.in = 0;
361 pipe->pipe_buffer.out = 0;
362 pipe->pipe_buffer.cnt = 0;
363 }
364 return error;
365 }
366
367 /*
368 * Lock a pipe for I/O, blocking other access
369 * Called with pipe spin lock held.
370 */
371 static int
372 pipelock(struct pipe *pipe, int catch)
373 {
374 int error;
375
376 KASSERT(mutex_owned(pipe->pipe_lock));
377
378 while (pipe->pipe_state & PIPE_LOCKFL) {
379 pipe->pipe_state |= PIPE_LWANT;
380 if (catch) {
381 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
382 if (error != 0)
383 return error;
384 } else
385 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
386 }
387
388 pipe->pipe_state |= PIPE_LOCKFL;
389
390 return 0;
391 }
392
393 /*
394 * unlock a pipe I/O lock
395 */
396 static inline void
397 pipeunlock(struct pipe *pipe)
398 {
399
400 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
401
402 pipe->pipe_state &= ~PIPE_LOCKFL;
403 if (pipe->pipe_state & PIPE_LWANT) {
404 pipe->pipe_state &= ~PIPE_LWANT;
405 cv_broadcast(&pipe->pipe_lkcv);
406 }
407 }
408
409 /*
410 * Select/poll wakup. This also sends SIGIO to peer connected to
411 * 'sigpipe' side of pipe.
412 */
413 static void
414 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
415 {
416 int band;
417
418 switch (code) {
419 case POLL_IN:
420 band = POLLIN|POLLRDNORM;
421 break;
422 case POLL_OUT:
423 band = POLLOUT|POLLWRNORM;
424 break;
425 case POLL_HUP:
426 band = POLLHUP;
427 break;
428 case POLL_ERR:
429 band = POLLERR;
430 break;
431 default:
432 band = 0;
433 #ifdef DIAGNOSTIC
434 printf("bad siginfo code %d in pipe notification.\n", code);
435 #endif
436 break;
437 }
438
439 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
440
441 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
442 return;
443
444 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
445 }
446
447 static int
448 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
449 int flags)
450 {
451 struct pipe *rpipe = (struct pipe *) fp->f_data;
452 struct pipebuf *bp = &rpipe->pipe_buffer;
453 kmutex_t *lock = rpipe->pipe_lock;
454 int error;
455 size_t nread = 0;
456 size_t size;
457 size_t ocnt;
458 unsigned int wakeup_state = 0;
459
460 mutex_enter(lock);
461 ++rpipe->pipe_busy;
462 ocnt = bp->cnt;
463
464 again:
465 error = pipelock(rpipe, 1);
466 if (error)
467 goto unlocked_error;
468
469 while (uio->uio_resid) {
470 /*
471 * Normal pipe buffer receive.
472 */
473 if (bp->cnt > 0) {
474 size = bp->size - bp->out;
475 if (size > bp->cnt)
476 size = bp->cnt;
477 if (size > uio->uio_resid)
478 size = uio->uio_resid;
479
480 mutex_exit(lock);
481 error = uiomove((char *)bp->buffer + bp->out, size, uio);
482 mutex_enter(lock);
483 if (error)
484 break;
485
486 bp->out += size;
487 if (bp->out >= bp->size)
488 bp->out = 0;
489
490 bp->cnt -= size;
491
492 /*
493 * If there is no more to read in the pipe, reset
494 * its pointers to the beginning. This improves
495 * cache hit stats.
496 */
497 if (bp->cnt == 0) {
498 bp->in = 0;
499 bp->out = 0;
500 }
501 nread += size;
502 continue;
503 }
504
505 #ifndef PIPE_NODIRECT
506 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
507 /*
508 * Direct copy, bypassing a kernel buffer.
509 */
510 void *va;
511 u_int gen;
512
513 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
514
515 size = rpipe->pipe_map.cnt;
516 if (size > uio->uio_resid)
517 size = uio->uio_resid;
518
519 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
520 gen = rpipe->pipe_map.egen;
521 mutex_exit(lock);
522
523 /*
524 * Consume emap and read the data from loaned pages.
525 */
526 uvm_emap_consume(gen);
527 error = uiomove(va, size, uio);
528
529 mutex_enter(lock);
530 if (error)
531 break;
532 nread += size;
533 rpipe->pipe_map.pos += size;
534 rpipe->pipe_map.cnt -= size;
535 if (rpipe->pipe_map.cnt == 0) {
536 rpipe->pipe_state &= ~PIPE_DIRECTR;
537 cv_broadcast(&rpipe->pipe_wcv);
538 }
539 continue;
540 }
541 #endif
542 /*
543 * Break if some data was read.
544 */
545 if (nread > 0)
546 break;
547
548 /*
549 * Detect EOF condition.
550 * Read returns 0 on EOF, no need to set error.
551 */
552 if (rpipe->pipe_state & PIPE_EOF)
553 break;
554
555 /*
556 * Don't block on non-blocking I/O.
557 */
558 if (fp->f_flag & FNONBLOCK) {
559 error = EAGAIN;
560 break;
561 }
562
563 /*
564 * Unlock the pipe buffer for our remaining processing.
565 * We will either break out with an error or we will
566 * sleep and relock to loop.
567 */
568 pipeunlock(rpipe);
569
570 /*
571 * Re-check to see if more direct writes are pending.
572 */
573 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
574 goto again;
575
576 #if 1 /* XXX (dsl) I'm sure these aren't needed here ... */
577 /*
578 * We want to read more, wake up select/poll.
579 */
580 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
581
582 /*
583 * If the "write-side" is blocked, wake it up now.
584 */
585 cv_broadcast(&rpipe->pipe_wcv);
586 #endif
587
588 if (wakeup_state & PIPE_RESTART) {
589 error = ERESTART;
590 goto unlocked_error;
591 }
592
593 /* Now wait until the pipe is filled */
594 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
595 if (error != 0)
596 goto unlocked_error;
597 wakeup_state = rpipe->pipe_state;
598 goto again;
599 }
600
601 if (error == 0)
602 getnanotime(&rpipe->pipe_atime);
603 pipeunlock(rpipe);
604
605 unlocked_error:
606 --rpipe->pipe_busy;
607 if (rpipe->pipe_busy == 0) {
608 rpipe->pipe_state &= ~PIPE_RESTART;
609 cv_broadcast(&rpipe->pipe_draincv);
610 }
611 if (bp->cnt < MINPIPESIZE) {
612 cv_broadcast(&rpipe->pipe_wcv);
613 }
614
615 /*
616 * If anything was read off the buffer, signal to the writer it's
617 * possible to write more data. Also send signal if we are here for the
618 * first time after last write.
619 */
620 if ((bp->size - bp->cnt) >= PIPE_BUF
621 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
622 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
623 rpipe->pipe_state &= ~PIPE_SIGNALR;
624 }
625
626 mutex_exit(lock);
627 return (error);
628 }
629
630 #ifndef PIPE_NODIRECT
631 /*
632 * Allocate structure for loan transfer.
633 */
634 static int
635 pipe_loan_alloc(struct pipe *wpipe, int npages)
636 {
637 vsize_t len;
638
639 len = (vsize_t)npages << PAGE_SHIFT;
640 atomic_add_int(&amountpipekva, len);
641 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
642 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
643 if (wpipe->pipe_map.kva == 0) {
644 atomic_add_int(&amountpipekva, -len);
645 return (ENOMEM);
646 }
647
648 wpipe->pipe_map.npages = npages;
649 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
650 KM_SLEEP);
651 return (0);
652 }
653
654 /*
655 * Free resources allocated for loan transfer.
656 */
657 static void
658 pipe_loan_free(struct pipe *wpipe)
659 {
660 vsize_t len;
661
662 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
663 uvm_emap_remove(wpipe->pipe_map.kva, len); /* XXX */
664 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
665 wpipe->pipe_map.kva = 0;
666 atomic_add_int(&amountpipekva, -len);
667 kmem_free(wpipe->pipe_map.pgs,
668 wpipe->pipe_map.npages * sizeof(struct vm_page *));
669 wpipe->pipe_map.pgs = NULL;
670 }
671
672 /*
673 * NetBSD direct write, using uvm_loan() mechanism.
674 * This implements the pipe buffer write mechanism. Note that only
675 * a direct write OR a normal pipe write can be pending at any given time.
676 * If there are any characters in the pipe buffer, the direct write will
677 * be deferred until the receiving process grabs all of the bytes from
678 * the pipe buffer. Then the direct mapping write is set-up.
679 *
680 * Called with the long-term pipe lock held.
681 */
682 static int
683 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
684 {
685 struct vm_page **pgs;
686 vaddr_t bbase, base, bend;
687 vsize_t blen, bcnt;
688 int error, npages;
689 voff_t bpos;
690 kmutex_t *lock = wpipe->pipe_lock;
691
692 KASSERT(mutex_owned(wpipe->pipe_lock));
693 KASSERT(wpipe->pipe_map.cnt == 0);
694
695 mutex_exit(lock);
696
697 /*
698 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
699 * not aligned to PAGE_SIZE.
700 */
701 bbase = (vaddr_t)uio->uio_iov->iov_base;
702 base = trunc_page(bbase);
703 bend = round_page(bbase + uio->uio_iov->iov_len);
704 blen = bend - base;
705 bpos = bbase - base;
706
707 if (blen > PIPE_DIRECT_CHUNK) {
708 blen = PIPE_DIRECT_CHUNK;
709 bend = base + blen;
710 bcnt = PIPE_DIRECT_CHUNK - bpos;
711 } else {
712 bcnt = uio->uio_iov->iov_len;
713 }
714 npages = blen >> PAGE_SHIFT;
715
716 /*
717 * Free the old kva if we need more pages than we have
718 * allocated.
719 */
720 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
721 pipe_loan_free(wpipe);
722
723 /* Allocate new kva. */
724 if (wpipe->pipe_map.kva == 0) {
725 error = pipe_loan_alloc(wpipe, npages);
726 if (error) {
727 mutex_enter(lock);
728 return (error);
729 }
730 }
731
732 /* Loan the write buffer memory from writer process */
733 pgs = wpipe->pipe_map.pgs;
734 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
735 pgs, UVM_LOAN_TOPAGE);
736 if (error) {
737 pipe_loan_free(wpipe);
738 mutex_enter(lock);
739 return (ENOMEM); /* so that caller fallback to ordinary write */
740 }
741
742 /* Enter the loaned pages to KVA, produce new emap generation number. */
743 uvm_emap_enter(wpipe->pipe_map.kva, pgs, npages);
744 wpipe->pipe_map.egen = uvm_emap_produce();
745
746 /* Now we can put the pipe in direct write mode */
747 wpipe->pipe_map.pos = bpos;
748 wpipe->pipe_map.cnt = bcnt;
749
750 /*
751 * But before we can let someone do a direct read, we
752 * have to wait until the pipe is drained. Release the
753 * pipe lock while we wait.
754 */
755 mutex_enter(lock);
756 wpipe->pipe_state |= PIPE_DIRECTW;
757 pipeunlock(wpipe);
758
759 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
760 cv_broadcast(&wpipe->pipe_rcv);
761 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
762 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
763 error = EPIPE;
764 }
765
766 /* Pipe is drained; next read will off the direct buffer */
767 wpipe->pipe_state |= PIPE_DIRECTR;
768
769 /* Wait until the reader is done */
770 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
771 cv_broadcast(&wpipe->pipe_rcv);
772 pipeselwakeup(wpipe, wpipe, POLL_IN);
773 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
774 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
775 error = EPIPE;
776 }
777
778 /* Take pipe out of direct write mode */
779 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
780
781 /* Acquire the pipe lock and cleanup */
782 (void)pipelock(wpipe, 0);
783 mutex_exit(lock);
784
785 if (pgs != NULL) {
786 /* XXX: uvm_emap_remove */
787 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
788 }
789 if (error || amountpipekva > maxpipekva)
790 pipe_loan_free(wpipe);
791
792 mutex_enter(lock);
793 if (error) {
794 pipeselwakeup(wpipe, wpipe, POLL_ERR);
795
796 /*
797 * If nothing was read from what we offered, return error
798 * straight on. Otherwise update uio resid first. Caller
799 * will deal with the error condition, returning short
800 * write, error, or restarting the write(2) as appropriate.
801 */
802 if (wpipe->pipe_map.cnt == bcnt) {
803 wpipe->pipe_map.cnt = 0;
804 cv_broadcast(&wpipe->pipe_wcv);
805 return (error);
806 }
807
808 bcnt -= wpipe->pipe_map.cnt;
809 }
810
811 uio->uio_resid -= bcnt;
812 /* uio_offset not updated, not set/used for write(2) */
813 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
814 uio->uio_iov->iov_len -= bcnt;
815 if (uio->uio_iov->iov_len == 0) {
816 uio->uio_iov++;
817 uio->uio_iovcnt--;
818 }
819
820 wpipe->pipe_map.cnt = 0;
821 return (error);
822 }
823 #endif /* !PIPE_NODIRECT */
824
825 static int
826 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
827 int flags)
828 {
829 struct pipe *wpipe, *rpipe;
830 struct pipebuf *bp;
831 kmutex_t *lock;
832 int error;
833 unsigned int wakeup_state = 0;
834
835 /* We want to write to our peer */
836 rpipe = (struct pipe *) fp->f_data;
837 lock = rpipe->pipe_lock;
838 error = 0;
839
840 mutex_enter(lock);
841 wpipe = rpipe->pipe_peer;
842
843 /*
844 * Detect loss of pipe read side, issue SIGPIPE if lost.
845 */
846 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
847 mutex_exit(lock);
848 return EPIPE;
849 }
850 ++wpipe->pipe_busy;
851
852 /* Aquire the long-term pipe lock */
853 if ((error = pipelock(wpipe, 1)) != 0) {
854 --wpipe->pipe_busy;
855 if (wpipe->pipe_busy == 0) {
856 wpipe->pipe_state &= ~PIPE_RESTART;
857 cv_broadcast(&wpipe->pipe_draincv);
858 }
859 mutex_exit(lock);
860 return (error);
861 }
862
863 bp = &wpipe->pipe_buffer;
864
865 /*
866 * If it is advantageous to resize the pipe buffer, do so.
867 */
868 if ((uio->uio_resid > PIPE_SIZE) &&
869 (nbigpipe < maxbigpipes) &&
870 #ifndef PIPE_NODIRECT
871 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
872 #endif
873 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
874
875 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
876 atomic_inc_uint(&nbigpipe);
877 }
878
879 while (uio->uio_resid) {
880 size_t space;
881
882 #ifndef PIPE_NODIRECT
883 /*
884 * Pipe buffered writes cannot be coincidental with
885 * direct writes. Also, only one direct write can be
886 * in progress at any one time. We wait until the currently
887 * executing direct write is completed before continuing.
888 *
889 * We break out if a signal occurs or the reader goes away.
890 */
891 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
892 cv_broadcast(&wpipe->pipe_rcv);
893 pipeunlock(wpipe);
894 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
895 (void)pipelock(wpipe, 0);
896 if (wpipe->pipe_state & PIPE_EOF)
897 error = EPIPE;
898 }
899 if (error)
900 break;
901
902 /*
903 * If the transfer is large, we can gain performance if
904 * we do process-to-process copies directly.
905 * If the write is non-blocking, we don't use the
906 * direct write mechanism.
907 *
908 * The direct write mechanism will detect the reader going
909 * away on us.
910 */
911 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
912 (fp->f_flag & FNONBLOCK) == 0 &&
913 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
914 error = pipe_direct_write(fp, wpipe, uio);
915
916 /*
917 * Break out if error occurred, unless it's ENOMEM.
918 * ENOMEM means we failed to allocate some resources
919 * for direct write, so we just fallback to ordinary
920 * write. If the direct write was successful,
921 * process rest of data via ordinary write.
922 */
923 if (error == 0)
924 continue;
925
926 if (error != ENOMEM)
927 break;
928 }
929 #endif /* PIPE_NODIRECT */
930
931 space = bp->size - bp->cnt;
932
933 /* Writes of size <= PIPE_BUF must be atomic. */
934 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
935 space = 0;
936
937 if (space > 0) {
938 int size; /* Transfer size */
939 int segsize; /* first segment to transfer */
940
941 /*
942 * Transfer size is minimum of uio transfer
943 * and free space in pipe buffer.
944 */
945 if (space > uio->uio_resid)
946 size = uio->uio_resid;
947 else
948 size = space;
949 /*
950 * First segment to transfer is minimum of
951 * transfer size and contiguous space in
952 * pipe buffer. If first segment to transfer
953 * is less than the transfer size, we've got
954 * a wraparound in the buffer.
955 */
956 segsize = bp->size - bp->in;
957 if (segsize > size)
958 segsize = size;
959
960 /* Transfer first segment */
961 mutex_exit(lock);
962 error = uiomove((char *)bp->buffer + bp->in, segsize,
963 uio);
964
965 if (error == 0 && segsize < size) {
966 /*
967 * Transfer remaining part now, to
968 * support atomic writes. Wraparound
969 * happened.
970 */
971 KASSERT(bp->in + segsize == bp->size);
972 error = uiomove(bp->buffer,
973 size - segsize, uio);
974 }
975 mutex_enter(lock);
976 if (error)
977 break;
978
979 bp->in += size;
980 if (bp->in >= bp->size) {
981 KASSERT(bp->in == size - segsize + bp->size);
982 bp->in = size - segsize;
983 }
984
985 bp->cnt += size;
986 KASSERT(bp->cnt <= bp->size);
987 wakeup_state = 0;
988 } else {
989 /*
990 * If the "read-side" has been blocked, wake it up now.
991 */
992 cv_broadcast(&wpipe->pipe_rcv);
993
994 /*
995 * Don't block on non-blocking I/O.
996 */
997 if (fp->f_flag & FNONBLOCK) {
998 error = EAGAIN;
999 break;
1000 }
1001
1002 /*
1003 * We have no more space and have something to offer,
1004 * wake up select/poll.
1005 */
1006 if (bp->cnt)
1007 pipeselwakeup(wpipe, wpipe, POLL_IN);
1008
1009 if (wakeup_state & PIPE_RESTART) {
1010 error = ERESTART;
1011 break;
1012 }
1013
1014 pipeunlock(wpipe);
1015 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1016 (void)pipelock(wpipe, 0);
1017 if (error != 0)
1018 break;
1019 /*
1020 * If read side wants to go away, we just issue a signal
1021 * to ourselves.
1022 */
1023 if (wpipe->pipe_state & PIPE_EOF) {
1024 error = EPIPE;
1025 break;
1026 }
1027 wakeup_state = wpipe->pipe_state;
1028 }
1029 }
1030
1031 --wpipe->pipe_busy;
1032 if (wpipe->pipe_busy == 0) {
1033 wpipe->pipe_state &= ~PIPE_RESTART;
1034 cv_broadcast(&wpipe->pipe_draincv);
1035 }
1036 if (bp->cnt > 0) {
1037 cv_broadcast(&wpipe->pipe_rcv);
1038 }
1039
1040 /*
1041 * Don't return EPIPE if I/O was successful
1042 */
1043 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1044 error = 0;
1045
1046 if (error == 0)
1047 getnanotime(&wpipe->pipe_mtime);
1048
1049 /*
1050 * We have something to offer, wake up select/poll.
1051 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1052 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1053 */
1054 if (bp->cnt)
1055 pipeselwakeup(wpipe, wpipe, POLL_IN);
1056
1057 /*
1058 * Arrange for next read(2) to do a signal.
1059 */
1060 wpipe->pipe_state |= PIPE_SIGNALR;
1061
1062 pipeunlock(wpipe);
1063 mutex_exit(lock);
1064 return (error);
1065 }
1066
1067 /*
1068 * We implement a very minimal set of ioctls for compatibility with sockets.
1069 */
1070 int
1071 pipe_ioctl(file_t *fp, u_long cmd, void *data)
1072 {
1073 struct pipe *pipe = fp->f_data;
1074 kmutex_t *lock = pipe->pipe_lock;
1075
1076 switch (cmd) {
1077
1078 case FIONBIO:
1079 return (0);
1080
1081 case FIOASYNC:
1082 mutex_enter(lock);
1083 if (*(int *)data) {
1084 pipe->pipe_state |= PIPE_ASYNC;
1085 } else {
1086 pipe->pipe_state &= ~PIPE_ASYNC;
1087 }
1088 mutex_exit(lock);
1089 return (0);
1090
1091 case FIONREAD:
1092 mutex_enter(lock);
1093 #ifndef PIPE_NODIRECT
1094 if (pipe->pipe_state & PIPE_DIRECTW)
1095 *(int *)data = pipe->pipe_map.cnt;
1096 else
1097 #endif
1098 *(int *)data = pipe->pipe_buffer.cnt;
1099 mutex_exit(lock);
1100 return (0);
1101
1102 case FIONWRITE:
1103 /* Look at other side */
1104 pipe = pipe->pipe_peer;
1105 mutex_enter(lock);
1106 #ifndef PIPE_NODIRECT
1107 if (pipe->pipe_state & PIPE_DIRECTW)
1108 *(int *)data = pipe->pipe_map.cnt;
1109 else
1110 #endif
1111 *(int *)data = pipe->pipe_buffer.cnt;
1112 mutex_exit(lock);
1113 return (0);
1114
1115 case FIONSPACE:
1116 /* Look at other side */
1117 pipe = pipe->pipe_peer;
1118 mutex_enter(lock);
1119 #ifndef PIPE_NODIRECT
1120 /*
1121 * If we're in direct-mode, we don't really have a
1122 * send queue, and any other write will block. Thus
1123 * zero seems like the best answer.
1124 */
1125 if (pipe->pipe_state & PIPE_DIRECTW)
1126 *(int *)data = 0;
1127 else
1128 #endif
1129 *(int *)data = pipe->pipe_buffer.size -
1130 pipe->pipe_buffer.cnt;
1131 mutex_exit(lock);
1132 return (0);
1133
1134 case TIOCSPGRP:
1135 case FIOSETOWN:
1136 return fsetown(&pipe->pipe_pgid, cmd, data);
1137
1138 case TIOCGPGRP:
1139 case FIOGETOWN:
1140 return fgetown(pipe->pipe_pgid, cmd, data);
1141
1142 }
1143 return (EPASSTHROUGH);
1144 }
1145
1146 int
1147 pipe_poll(file_t *fp, int events)
1148 {
1149 struct pipe *rpipe = fp->f_data;
1150 struct pipe *wpipe;
1151 int eof = 0;
1152 int revents = 0;
1153
1154 mutex_enter(rpipe->pipe_lock);
1155 wpipe = rpipe->pipe_peer;
1156
1157 if (events & (POLLIN | POLLRDNORM))
1158 if ((rpipe->pipe_buffer.cnt > 0) ||
1159 #ifndef PIPE_NODIRECT
1160 (rpipe->pipe_state & PIPE_DIRECTR) ||
1161 #endif
1162 (rpipe->pipe_state & PIPE_EOF))
1163 revents |= events & (POLLIN | POLLRDNORM);
1164
1165 eof |= (rpipe->pipe_state & PIPE_EOF);
1166
1167 if (wpipe == NULL)
1168 revents |= events & (POLLOUT | POLLWRNORM);
1169 else {
1170 if (events & (POLLOUT | POLLWRNORM))
1171 if ((wpipe->pipe_state & PIPE_EOF) || (
1172 #ifndef PIPE_NODIRECT
1173 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1174 #endif
1175 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1176 revents |= events & (POLLOUT | POLLWRNORM);
1177
1178 eof |= (wpipe->pipe_state & PIPE_EOF);
1179 }
1180
1181 if (wpipe == NULL || eof)
1182 revents |= POLLHUP;
1183
1184 if (revents == 0) {
1185 if (events & (POLLIN | POLLRDNORM))
1186 selrecord(curlwp, &rpipe->pipe_sel);
1187
1188 if (events & (POLLOUT | POLLWRNORM))
1189 selrecord(curlwp, &wpipe->pipe_sel);
1190 }
1191 mutex_exit(rpipe->pipe_lock);
1192
1193 return (revents);
1194 }
1195
1196 static int
1197 pipe_stat(file_t *fp, struct stat *ub)
1198 {
1199 struct pipe *pipe = fp->f_data;
1200
1201 mutex_enter(pipe->pipe_lock);
1202 memset(ub, 0, sizeof(*ub));
1203 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1204 ub->st_blksize = pipe->pipe_buffer.size;
1205 if (ub->st_blksize == 0 && pipe->pipe_peer)
1206 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1207 ub->st_size = pipe->pipe_buffer.cnt;
1208 ub->st_blocks = (ub->st_size) ? 1 : 0;
1209 ub->st_atimespec = pipe->pipe_atime;
1210 ub->st_mtimespec = pipe->pipe_mtime;
1211 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1212 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1213 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1214
1215 /*
1216 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1217 * XXX (st_dev, st_ino) should be unique.
1218 */
1219 mutex_exit(pipe->pipe_lock);
1220 return 0;
1221 }
1222
1223 static int
1224 pipe_close(file_t *fp)
1225 {
1226 struct pipe *pipe = fp->f_data;
1227
1228 fp->f_data = NULL;
1229 pipeclose(pipe);
1230 return (0);
1231 }
1232
1233 static void
1234 pipe_restart(file_t *fp)
1235 {
1236 struct pipe *pipe = fp->f_data;
1237
1238 /*
1239 * Unblock blocked reads/writes in order to allow close() to complete.
1240 * System calls return ERESTART so that the fd is revalidated.
1241 * (Partial writes return the transfer length.)
1242 */
1243 mutex_enter(pipe->pipe_lock);
1244 pipe->pipe_state |= PIPE_RESTART;
1245 /* Wakeup both cvs, maybe we only need one, but maybe there are some
1246 * other paths where wakeup is needed, and it saves deciding which! */
1247 cv_broadcast(&pipe->pipe_rcv);
1248 cv_broadcast(&pipe->pipe_wcv);
1249 mutex_exit(pipe->pipe_lock);
1250 }
1251
1252 static void
1253 pipe_free_kmem(struct pipe *pipe)
1254 {
1255
1256 if (pipe->pipe_buffer.buffer != NULL) {
1257 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1258 atomic_dec_uint(&nbigpipe);
1259 }
1260 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1261 uvm_km_free(kernel_map,
1262 (vaddr_t)pipe->pipe_buffer.buffer,
1263 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1264 atomic_add_int(&amountpipekva,
1265 -pipe->pipe_buffer.size);
1266 }
1267 pipe->pipe_buffer.buffer = NULL;
1268 }
1269 #ifndef PIPE_NODIRECT
1270 if (pipe->pipe_map.kva != 0) {
1271 pipe_loan_free(pipe);
1272 pipe->pipe_map.cnt = 0;
1273 pipe->pipe_map.kva = 0;
1274 pipe->pipe_map.pos = 0;
1275 pipe->pipe_map.npages = 0;
1276 }
1277 #endif /* !PIPE_NODIRECT */
1278 }
1279
1280 /*
1281 * Shutdown the pipe.
1282 */
1283 static void
1284 pipeclose(struct pipe *pipe)
1285 {
1286 kmutex_t *lock;
1287 struct pipe *ppipe;
1288
1289 if (pipe == NULL)
1290 return;
1291
1292 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1293 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1294 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1295 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1296
1297 lock = pipe->pipe_lock;
1298 if (lock == NULL)
1299 /* Must have failed during create */
1300 goto free_resources;
1301
1302 mutex_enter(lock);
1303 pipeselwakeup(pipe, pipe, POLL_HUP);
1304
1305 /*
1306 * If the other side is blocked, wake it up saying that
1307 * we want to close it down.
1308 */
1309 pipe->pipe_state |= PIPE_EOF;
1310 if (pipe->pipe_busy) {
1311 while (pipe->pipe_busy) {
1312 cv_broadcast(&pipe->pipe_wcv);
1313 cv_wait_sig(&pipe->pipe_draincv, lock);
1314 }
1315 }
1316
1317 /*
1318 * Disconnect from peer.
1319 */
1320 if ((ppipe = pipe->pipe_peer) != NULL) {
1321 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1322 ppipe->pipe_state |= PIPE_EOF;
1323 cv_broadcast(&ppipe->pipe_rcv);
1324 ppipe->pipe_peer = NULL;
1325 }
1326
1327 /*
1328 * Any knote objects still left in the list are
1329 * the one attached by peer. Since no one will
1330 * traverse this list, we just clear it.
1331 */
1332 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1333
1334 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1335 mutex_exit(lock);
1336 mutex_obj_free(lock);
1337
1338 /*
1339 * Free resources.
1340 */
1341 free_resources:
1342 pipe->pipe_pgid = 0;
1343 pipe->pipe_state = PIPE_SIGNALR;
1344 pipe_free_kmem(pipe);
1345 if (pipe->pipe_kmem != 0) {
1346 pool_cache_put(pipe_rd_cache, pipe);
1347 } else {
1348 pool_cache_put(pipe_wr_cache, pipe);
1349 }
1350 }
1351
1352 static void
1353 filt_pipedetach(struct knote *kn)
1354 {
1355 struct pipe *pipe;
1356 kmutex_t *lock;
1357
1358 pipe = ((file_t *)kn->kn_obj)->f_data;
1359 lock = pipe->pipe_lock;
1360
1361 mutex_enter(lock);
1362
1363 switch(kn->kn_filter) {
1364 case EVFILT_WRITE:
1365 /* Need the peer structure, not our own. */
1366 pipe = pipe->pipe_peer;
1367
1368 /* If reader end already closed, just return. */
1369 if (pipe == NULL) {
1370 mutex_exit(lock);
1371 return;
1372 }
1373
1374 break;
1375 default:
1376 /* Nothing to do. */
1377 break;
1378 }
1379
1380 KASSERT(kn->kn_hook == pipe);
1381 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1382 mutex_exit(lock);
1383 }
1384
1385 static int
1386 filt_piperead(struct knote *kn, long hint)
1387 {
1388 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1389 struct pipe *wpipe;
1390
1391 if ((hint & NOTE_SUBMIT) == 0) {
1392 mutex_enter(rpipe->pipe_lock);
1393 }
1394 wpipe = rpipe->pipe_peer;
1395 kn->kn_data = rpipe->pipe_buffer.cnt;
1396
1397 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1398 kn->kn_data = rpipe->pipe_map.cnt;
1399
1400 if ((rpipe->pipe_state & PIPE_EOF) ||
1401 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1402 kn->kn_flags |= EV_EOF;
1403 if ((hint & NOTE_SUBMIT) == 0) {
1404 mutex_exit(rpipe->pipe_lock);
1405 }
1406 return (1);
1407 }
1408
1409 if ((hint & NOTE_SUBMIT) == 0) {
1410 mutex_exit(rpipe->pipe_lock);
1411 }
1412 return (kn->kn_data > 0);
1413 }
1414
1415 static int
1416 filt_pipewrite(struct knote *kn, long hint)
1417 {
1418 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1419 struct pipe *wpipe;
1420
1421 if ((hint & NOTE_SUBMIT) == 0) {
1422 mutex_enter(rpipe->pipe_lock);
1423 }
1424 wpipe = rpipe->pipe_peer;
1425
1426 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1427 kn->kn_data = 0;
1428 kn->kn_flags |= EV_EOF;
1429 if ((hint & NOTE_SUBMIT) == 0) {
1430 mutex_exit(rpipe->pipe_lock);
1431 }
1432 return (1);
1433 }
1434 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1435 if (wpipe->pipe_state & PIPE_DIRECTW)
1436 kn->kn_data = 0;
1437
1438 if ((hint & NOTE_SUBMIT) == 0) {
1439 mutex_exit(rpipe->pipe_lock);
1440 }
1441 return (kn->kn_data >= PIPE_BUF);
1442 }
1443
1444 static const struct filterops pipe_rfiltops =
1445 { 1, NULL, filt_pipedetach, filt_piperead };
1446 static const struct filterops pipe_wfiltops =
1447 { 1, NULL, filt_pipedetach, filt_pipewrite };
1448
1449 static int
1450 pipe_kqfilter(file_t *fp, struct knote *kn)
1451 {
1452 struct pipe *pipe;
1453 kmutex_t *lock;
1454
1455 pipe = ((file_t *)kn->kn_obj)->f_data;
1456 lock = pipe->pipe_lock;
1457
1458 mutex_enter(lock);
1459
1460 switch (kn->kn_filter) {
1461 case EVFILT_READ:
1462 kn->kn_fop = &pipe_rfiltops;
1463 break;
1464 case EVFILT_WRITE:
1465 kn->kn_fop = &pipe_wfiltops;
1466 pipe = pipe->pipe_peer;
1467 if (pipe == NULL) {
1468 /* Other end of pipe has been closed. */
1469 mutex_exit(lock);
1470 return (EBADF);
1471 }
1472 break;
1473 default:
1474 mutex_exit(lock);
1475 return (EINVAL);
1476 }
1477
1478 kn->kn_hook = pipe;
1479 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1480 mutex_exit(lock);
1481
1482 return (0);
1483 }
1484
1485 /*
1486 * Handle pipe sysctls.
1487 */
1488 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1489 {
1490
1491 sysctl_createv(clog, 0, NULL, NULL,
1492 CTLFLAG_PERMANENT,
1493 CTLTYPE_NODE, "kern", NULL,
1494 NULL, 0, NULL, 0,
1495 CTL_KERN, CTL_EOL);
1496 sysctl_createv(clog, 0, NULL, NULL,
1497 CTLFLAG_PERMANENT,
1498 CTLTYPE_NODE, "pipe",
1499 SYSCTL_DESCR("Pipe settings"),
1500 NULL, 0, NULL, 0,
1501 CTL_KERN, KERN_PIPE, CTL_EOL);
1502
1503 sysctl_createv(clog, 0, NULL, NULL,
1504 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1505 CTLTYPE_INT, "maxkvasz",
1506 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1507 "used for pipes"),
1508 NULL, 0, &maxpipekva, 0,
1509 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1510 sysctl_createv(clog, 0, NULL, NULL,
1511 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1512 CTLTYPE_INT, "maxloankvasz",
1513 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1514 NULL, 0, &limitpipekva, 0,
1515 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1516 sysctl_createv(clog, 0, NULL, NULL,
1517 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1518 CTLTYPE_INT, "maxbigpipes",
1519 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1520 NULL, 0, &maxbigpipes, 0,
1521 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1522 sysctl_createv(clog, 0, NULL, NULL,
1523 CTLFLAG_PERMANENT,
1524 CTLTYPE_INT, "nbigpipes",
1525 SYSCTL_DESCR("Number of \"big\" pipes"),
1526 NULL, 0, &nbigpipe, 0,
1527 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1528 sysctl_createv(clog, 0, NULL, NULL,
1529 CTLFLAG_PERMANENT,
1530 CTLTYPE_INT, "kvasize",
1531 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1532 "buffers"),
1533 NULL, 0, &amountpipekva, 0,
1534 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1535 }
1536