sys_pipe.c revision 1.134 1 /* $NetBSD: sys_pipe.c,v 1.134 2011/10/20 18:18:21 njoly Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.134 2011/10/20 18:18:21 njoly Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 #include <uvm/uvm_extern.h>
96
97 /*
98 * Use this to disable direct I/O and decrease the code size:
99 * #define PIPE_NODIRECT
100 */
101
102 /* XXX Disabled for now; rare hangs switching between direct/buffered */
103 #define PIPE_NODIRECT
104
105 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
106 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
107 static int pipe_close(file_t *);
108 static int pipe_poll(file_t *, int);
109 static int pipe_kqfilter(file_t *, struct knote *);
110 static int pipe_stat(file_t *, struct stat *);
111 static int pipe_ioctl(file_t *, u_long, void *);
112 static void pipe_restart(file_t *);
113
114 static const struct fileops pipeops = {
115 .fo_read = pipe_read,
116 .fo_write = pipe_write,
117 .fo_ioctl = pipe_ioctl,
118 .fo_fcntl = fnullop_fcntl,
119 .fo_poll = pipe_poll,
120 .fo_stat = pipe_stat,
121 .fo_close = pipe_close,
122 .fo_kqfilter = pipe_kqfilter,
123 .fo_restart = pipe_restart,
124 };
125
126 /*
127 * Default pipe buffer size(s), this can be kind-of large now because pipe
128 * space is pageable. The pipe code will try to maintain locality of
129 * reference for performance reasons, so small amounts of outstanding I/O
130 * will not wipe the cache.
131 */
132 #define MINPIPESIZE (PIPE_SIZE / 3)
133 #define MAXPIPESIZE (2 * PIPE_SIZE / 3)
134
135 /*
136 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
137 * is there so that on large systems, we don't exhaust it.
138 */
139 #define MAXPIPEKVA (8 * 1024 * 1024)
140 static u_int maxpipekva = MAXPIPEKVA;
141
142 /*
143 * Limit for direct transfers, we cannot, of course limit
144 * the amount of kva for pipes in general though.
145 */
146 #define LIMITPIPEKVA (16 * 1024 * 1024)
147 static u_int limitpipekva = LIMITPIPEKVA;
148
149 /*
150 * Limit the number of "big" pipes
151 */
152 #define LIMITBIGPIPES 32
153 static u_int maxbigpipes = LIMITBIGPIPES;
154 static u_int nbigpipe = 0;
155
156 /*
157 * Amount of KVA consumed by pipe buffers.
158 */
159 static u_int amountpipekva = 0;
160
161 static void pipeclose(struct pipe *);
162 static void pipe_free_kmem(struct pipe *);
163 static int pipe_create(struct pipe **, pool_cache_t);
164 static int pipelock(struct pipe *, int);
165 static inline void pipeunlock(struct pipe *);
166 static void pipeselwakeup(struct pipe *, struct pipe *, int);
167 #ifndef PIPE_NODIRECT
168 static int pipe_direct_write(file_t *, struct pipe *, struct uio *);
169 #endif
170 static int pipespace(struct pipe *, int);
171 static int pipe_ctor(void *, void *, int);
172 static void pipe_dtor(void *, void *);
173
174 #ifndef PIPE_NODIRECT
175 static int pipe_loan_alloc(struct pipe *, int);
176 static void pipe_loan_free(struct pipe *);
177 #endif /* PIPE_NODIRECT */
178
179 static pool_cache_t pipe_wr_cache;
180 static pool_cache_t pipe_rd_cache;
181
182 void
183 pipe_init(void)
184 {
185
186 /* Writer side is not automatically allocated KVA. */
187 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
188 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
189 KASSERT(pipe_wr_cache != NULL);
190
191 /* Reader side gets preallocated KVA. */
192 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
193 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
194 KASSERT(pipe_rd_cache != NULL);
195 }
196
197 static int
198 pipe_ctor(void *arg, void *obj, int flags)
199 {
200 struct pipe *pipe;
201 vaddr_t va;
202
203 pipe = obj;
204
205 memset(pipe, 0, sizeof(struct pipe));
206 if (arg != NULL) {
207 /* Preallocate space. */
208 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
209 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
210 KASSERT(va != 0);
211 pipe->pipe_kmem = va;
212 atomic_add_int(&amountpipekva, PIPE_SIZE);
213 }
214 cv_init(&pipe->pipe_rcv, "pipe_rd");
215 cv_init(&pipe->pipe_wcv, "pipe_wr");
216 cv_init(&pipe->pipe_draincv, "pipe_drn");
217 cv_init(&pipe->pipe_lkcv, "pipe_lk");
218 selinit(&pipe->pipe_sel);
219 pipe->pipe_state = PIPE_SIGNALR;
220
221 return 0;
222 }
223
224 static void
225 pipe_dtor(void *arg, void *obj)
226 {
227 struct pipe *pipe;
228
229 pipe = obj;
230
231 cv_destroy(&pipe->pipe_rcv);
232 cv_destroy(&pipe->pipe_wcv);
233 cv_destroy(&pipe->pipe_draincv);
234 cv_destroy(&pipe->pipe_lkcv);
235 seldestroy(&pipe->pipe_sel);
236 if (pipe->pipe_kmem != 0) {
237 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
238 UVM_KMF_PAGEABLE);
239 atomic_add_int(&amountpipekva, -PIPE_SIZE);
240 }
241 }
242
243 /*
244 * The pipe system call for the DTYPE_PIPE type of pipes
245 */
246 int
247 pipe1(struct lwp *l, register_t *retval, int flags)
248 {
249 struct pipe *rpipe, *wpipe;
250 file_t *rf, *wf;
251 int fd, error;
252 proc_t *p;
253
254 if (flags & ~(O_CLOEXEC|O_NONBLOCK))
255 return EINVAL;
256 p = curproc;
257 rpipe = wpipe = NULL;
258 if ((error = pipe_create(&rpipe, pipe_rd_cache)) ||
259 (error = pipe_create(&wpipe, pipe_wr_cache))) {
260 goto free2;
261 }
262 rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
263 wpipe->pipe_lock = rpipe->pipe_lock;
264 mutex_obj_hold(wpipe->pipe_lock);
265
266 error = fd_allocfile(&rf, &fd);
267 if (error)
268 goto free2;
269 retval[0] = fd;
270 rf->f_flag = FREAD | flags;
271 rf->f_type = DTYPE_PIPE;
272 rf->f_data = (void *)rpipe;
273 rf->f_ops = &pipeops;
274 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
275
276 error = fd_allocfile(&wf, &fd);
277 if (error)
278 goto free3;
279 retval[1] = fd;
280 wf->f_flag = FWRITE | flags;
281 wf->f_type = DTYPE_PIPE;
282 wf->f_data = (void *)wpipe;
283 wf->f_ops = &pipeops;
284 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
285
286 rpipe->pipe_peer = wpipe;
287 wpipe->pipe_peer = rpipe;
288
289 fd_affix(p, rf, (int)retval[0]);
290 fd_affix(p, wf, (int)retval[1]);
291 return (0);
292 free3:
293 fd_abort(p, rf, (int)retval[0]);
294 free2:
295 pipeclose(wpipe);
296 pipeclose(rpipe);
297
298 return (error);
299 }
300
301 /*
302 * Allocate kva for pipe circular buffer, the space is pageable
303 * This routine will 'realloc' the size of a pipe safely, if it fails
304 * it will retain the old buffer.
305 * If it fails it will return ENOMEM.
306 */
307 static int
308 pipespace(struct pipe *pipe, int size)
309 {
310 void *buffer;
311
312 /*
313 * Allocate pageable virtual address space. Physical memory is
314 * allocated on demand.
315 */
316 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
317 buffer = (void *)pipe->pipe_kmem;
318 } else {
319 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
320 0, UVM_KMF_PAGEABLE);
321 if (buffer == NULL)
322 return (ENOMEM);
323 atomic_add_int(&amountpipekva, size);
324 }
325
326 /* free old resources if we're resizing */
327 pipe_free_kmem(pipe);
328 pipe->pipe_buffer.buffer = buffer;
329 pipe->pipe_buffer.size = size;
330 pipe->pipe_buffer.in = 0;
331 pipe->pipe_buffer.out = 0;
332 pipe->pipe_buffer.cnt = 0;
333 return (0);
334 }
335
336 /*
337 * Initialize and allocate VM and memory for pipe.
338 */
339 static int
340 pipe_create(struct pipe **pipep, pool_cache_t cache)
341 {
342 struct pipe *pipe;
343 int error;
344
345 pipe = pool_cache_get(cache, PR_WAITOK);
346 KASSERT(pipe != NULL);
347 *pipep = pipe;
348 error = 0;
349 getnanotime(&pipe->pipe_btime);
350 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
351 pipe->pipe_lock = NULL;
352 if (cache == pipe_rd_cache) {
353 error = pipespace(pipe, PIPE_SIZE);
354 } else {
355 pipe->pipe_buffer.buffer = NULL;
356 pipe->pipe_buffer.size = 0;
357 pipe->pipe_buffer.in = 0;
358 pipe->pipe_buffer.out = 0;
359 pipe->pipe_buffer.cnt = 0;
360 }
361 return error;
362 }
363
364 /*
365 * Lock a pipe for I/O, blocking other access
366 * Called with pipe spin lock held.
367 */
368 static int
369 pipelock(struct pipe *pipe, int catch)
370 {
371 int error;
372
373 KASSERT(mutex_owned(pipe->pipe_lock));
374
375 while (pipe->pipe_state & PIPE_LOCKFL) {
376 pipe->pipe_state |= PIPE_LWANT;
377 if (catch) {
378 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
379 if (error != 0)
380 return error;
381 } else
382 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
383 }
384
385 pipe->pipe_state |= PIPE_LOCKFL;
386
387 return 0;
388 }
389
390 /*
391 * unlock a pipe I/O lock
392 */
393 static inline void
394 pipeunlock(struct pipe *pipe)
395 {
396
397 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
398
399 pipe->pipe_state &= ~PIPE_LOCKFL;
400 if (pipe->pipe_state & PIPE_LWANT) {
401 pipe->pipe_state &= ~PIPE_LWANT;
402 cv_broadcast(&pipe->pipe_lkcv);
403 }
404 }
405
406 /*
407 * Select/poll wakup. This also sends SIGIO to peer connected to
408 * 'sigpipe' side of pipe.
409 */
410 static void
411 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
412 {
413 int band;
414
415 switch (code) {
416 case POLL_IN:
417 band = POLLIN|POLLRDNORM;
418 break;
419 case POLL_OUT:
420 band = POLLOUT|POLLWRNORM;
421 break;
422 case POLL_HUP:
423 band = POLLHUP;
424 break;
425 case POLL_ERR:
426 band = POLLERR;
427 break;
428 default:
429 band = 0;
430 #ifdef DIAGNOSTIC
431 printf("bad siginfo code %d in pipe notification.\n", code);
432 #endif
433 break;
434 }
435
436 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
437
438 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
439 return;
440
441 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
442 }
443
444 static int
445 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
446 int flags)
447 {
448 struct pipe *rpipe = (struct pipe *) fp->f_data;
449 struct pipebuf *bp = &rpipe->pipe_buffer;
450 kmutex_t *lock = rpipe->pipe_lock;
451 int error;
452 size_t nread = 0;
453 size_t size;
454 size_t ocnt;
455 unsigned int wakeup_state = 0;
456
457 mutex_enter(lock);
458 ++rpipe->pipe_busy;
459 ocnt = bp->cnt;
460
461 again:
462 error = pipelock(rpipe, 1);
463 if (error)
464 goto unlocked_error;
465
466 while (uio->uio_resid) {
467 /*
468 * Normal pipe buffer receive.
469 */
470 if (bp->cnt > 0) {
471 size = bp->size - bp->out;
472 if (size > bp->cnt)
473 size = bp->cnt;
474 if (size > uio->uio_resid)
475 size = uio->uio_resid;
476
477 mutex_exit(lock);
478 error = uiomove((char *)bp->buffer + bp->out, size, uio);
479 mutex_enter(lock);
480 if (error)
481 break;
482
483 bp->out += size;
484 if (bp->out >= bp->size)
485 bp->out = 0;
486
487 bp->cnt -= size;
488
489 /*
490 * If there is no more to read in the pipe, reset
491 * its pointers to the beginning. This improves
492 * cache hit stats.
493 */
494 if (bp->cnt == 0) {
495 bp->in = 0;
496 bp->out = 0;
497 }
498 nread += size;
499 continue;
500 }
501
502 #ifndef PIPE_NODIRECT
503 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
504 /*
505 * Direct copy, bypassing a kernel buffer.
506 */
507 void *va;
508 u_int gen;
509
510 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
511
512 size = rpipe->pipe_map.cnt;
513 if (size > uio->uio_resid)
514 size = uio->uio_resid;
515
516 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
517 gen = rpipe->pipe_map.egen;
518 mutex_exit(lock);
519
520 /*
521 * Consume emap and read the data from loaned pages.
522 */
523 uvm_emap_consume(gen);
524 error = uiomove(va, size, uio);
525
526 mutex_enter(lock);
527 if (error)
528 break;
529 nread += size;
530 rpipe->pipe_map.pos += size;
531 rpipe->pipe_map.cnt -= size;
532 if (rpipe->pipe_map.cnt == 0) {
533 rpipe->pipe_state &= ~PIPE_DIRECTR;
534 cv_broadcast(&rpipe->pipe_wcv);
535 }
536 continue;
537 }
538 #endif
539 /*
540 * Break if some data was read.
541 */
542 if (nread > 0)
543 break;
544
545 /*
546 * Detect EOF condition.
547 * Read returns 0 on EOF, no need to set error.
548 */
549 if (rpipe->pipe_state & PIPE_EOF)
550 break;
551
552 /*
553 * Don't block on non-blocking I/O.
554 */
555 if (fp->f_flag & FNONBLOCK) {
556 error = EAGAIN;
557 break;
558 }
559
560 /*
561 * Unlock the pipe buffer for our remaining processing.
562 * We will either break out with an error or we will
563 * sleep and relock to loop.
564 */
565 pipeunlock(rpipe);
566
567 /*
568 * Re-check to see if more direct writes are pending.
569 */
570 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
571 goto again;
572
573 #if 1 /* XXX (dsl) I'm sure these aren't needed here ... */
574 /*
575 * We want to read more, wake up select/poll.
576 */
577 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
578
579 /*
580 * If the "write-side" is blocked, wake it up now.
581 */
582 cv_broadcast(&rpipe->pipe_wcv);
583 #endif
584
585 if (wakeup_state & PIPE_RESTART) {
586 error = ERESTART;
587 goto unlocked_error;
588 }
589
590 /* Now wait until the pipe is filled */
591 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
592 if (error != 0)
593 goto unlocked_error;
594 wakeup_state = rpipe->pipe_state;
595 goto again;
596 }
597
598 if (error == 0)
599 getnanotime(&rpipe->pipe_atime);
600 pipeunlock(rpipe);
601
602 unlocked_error:
603 --rpipe->pipe_busy;
604 if (rpipe->pipe_busy == 0) {
605 rpipe->pipe_state &= ~PIPE_RESTART;
606 cv_broadcast(&rpipe->pipe_draincv);
607 }
608 if (bp->cnt < MINPIPESIZE) {
609 cv_broadcast(&rpipe->pipe_wcv);
610 }
611
612 /*
613 * If anything was read off the buffer, signal to the writer it's
614 * possible to write more data. Also send signal if we are here for the
615 * first time after last write.
616 */
617 if ((bp->size - bp->cnt) >= PIPE_BUF
618 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
619 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
620 rpipe->pipe_state &= ~PIPE_SIGNALR;
621 }
622
623 mutex_exit(lock);
624 return (error);
625 }
626
627 #ifndef PIPE_NODIRECT
628 /*
629 * Allocate structure for loan transfer.
630 */
631 static int
632 pipe_loan_alloc(struct pipe *wpipe, int npages)
633 {
634 vsize_t len;
635
636 len = (vsize_t)npages << PAGE_SHIFT;
637 atomic_add_int(&amountpipekva, len);
638 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
639 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
640 if (wpipe->pipe_map.kva == 0) {
641 atomic_add_int(&amountpipekva, -len);
642 return (ENOMEM);
643 }
644
645 wpipe->pipe_map.npages = npages;
646 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
647 KM_SLEEP);
648 return (0);
649 }
650
651 /*
652 * Free resources allocated for loan transfer.
653 */
654 static void
655 pipe_loan_free(struct pipe *wpipe)
656 {
657 vsize_t len;
658
659 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
660 uvm_emap_remove(wpipe->pipe_map.kva, len); /* XXX */
661 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
662 wpipe->pipe_map.kva = 0;
663 atomic_add_int(&amountpipekva, -len);
664 kmem_free(wpipe->pipe_map.pgs,
665 wpipe->pipe_map.npages * sizeof(struct vm_page *));
666 wpipe->pipe_map.pgs = NULL;
667 }
668
669 /*
670 * NetBSD direct write, using uvm_loan() mechanism.
671 * This implements the pipe buffer write mechanism. Note that only
672 * a direct write OR a normal pipe write can be pending at any given time.
673 * If there are any characters in the pipe buffer, the direct write will
674 * be deferred until the receiving process grabs all of the bytes from
675 * the pipe buffer. Then the direct mapping write is set-up.
676 *
677 * Called with the long-term pipe lock held.
678 */
679 static int
680 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
681 {
682 struct vm_page **pgs;
683 vaddr_t bbase, base, bend;
684 vsize_t blen, bcnt;
685 int error, npages;
686 voff_t bpos;
687 kmutex_t *lock = wpipe->pipe_lock;
688
689 KASSERT(mutex_owned(wpipe->pipe_lock));
690 KASSERT(wpipe->pipe_map.cnt == 0);
691
692 mutex_exit(lock);
693
694 /*
695 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
696 * not aligned to PAGE_SIZE.
697 */
698 bbase = (vaddr_t)uio->uio_iov->iov_base;
699 base = trunc_page(bbase);
700 bend = round_page(bbase + uio->uio_iov->iov_len);
701 blen = bend - base;
702 bpos = bbase - base;
703
704 if (blen > PIPE_DIRECT_CHUNK) {
705 blen = PIPE_DIRECT_CHUNK;
706 bend = base + blen;
707 bcnt = PIPE_DIRECT_CHUNK - bpos;
708 } else {
709 bcnt = uio->uio_iov->iov_len;
710 }
711 npages = blen >> PAGE_SHIFT;
712
713 /*
714 * Free the old kva if we need more pages than we have
715 * allocated.
716 */
717 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
718 pipe_loan_free(wpipe);
719
720 /* Allocate new kva. */
721 if (wpipe->pipe_map.kva == 0) {
722 error = pipe_loan_alloc(wpipe, npages);
723 if (error) {
724 mutex_enter(lock);
725 return (error);
726 }
727 }
728
729 /* Loan the write buffer memory from writer process */
730 pgs = wpipe->pipe_map.pgs;
731 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
732 pgs, UVM_LOAN_TOPAGE);
733 if (error) {
734 pipe_loan_free(wpipe);
735 mutex_enter(lock);
736 return (ENOMEM); /* so that caller fallback to ordinary write */
737 }
738
739 /* Enter the loaned pages to KVA, produce new emap generation number. */
740 uvm_emap_enter(wpipe->pipe_map.kva, pgs, npages);
741 wpipe->pipe_map.egen = uvm_emap_produce();
742
743 /* Now we can put the pipe in direct write mode */
744 wpipe->pipe_map.pos = bpos;
745 wpipe->pipe_map.cnt = bcnt;
746
747 /*
748 * But before we can let someone do a direct read, we
749 * have to wait until the pipe is drained. Release the
750 * pipe lock while we wait.
751 */
752 mutex_enter(lock);
753 wpipe->pipe_state |= PIPE_DIRECTW;
754 pipeunlock(wpipe);
755
756 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
757 cv_broadcast(&wpipe->pipe_rcv);
758 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
759 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
760 error = EPIPE;
761 }
762
763 /* Pipe is drained; next read will off the direct buffer */
764 wpipe->pipe_state |= PIPE_DIRECTR;
765
766 /* Wait until the reader is done */
767 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
768 cv_broadcast(&wpipe->pipe_rcv);
769 pipeselwakeup(wpipe, wpipe, POLL_IN);
770 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
771 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
772 error = EPIPE;
773 }
774
775 /* Take pipe out of direct write mode */
776 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
777
778 /* Acquire the pipe lock and cleanup */
779 (void)pipelock(wpipe, 0);
780 mutex_exit(lock);
781
782 if (pgs != NULL) {
783 /* XXX: uvm_emap_remove */
784 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
785 }
786 if (error || amountpipekva > maxpipekva)
787 pipe_loan_free(wpipe);
788
789 mutex_enter(lock);
790 if (error) {
791 pipeselwakeup(wpipe, wpipe, POLL_ERR);
792
793 /*
794 * If nothing was read from what we offered, return error
795 * straight on. Otherwise update uio resid first. Caller
796 * will deal with the error condition, returning short
797 * write, error, or restarting the write(2) as appropriate.
798 */
799 if (wpipe->pipe_map.cnt == bcnt) {
800 wpipe->pipe_map.cnt = 0;
801 cv_broadcast(&wpipe->pipe_wcv);
802 return (error);
803 }
804
805 bcnt -= wpipe->pipe_map.cnt;
806 }
807
808 uio->uio_resid -= bcnt;
809 /* uio_offset not updated, not set/used for write(2) */
810 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
811 uio->uio_iov->iov_len -= bcnt;
812 if (uio->uio_iov->iov_len == 0) {
813 uio->uio_iov++;
814 uio->uio_iovcnt--;
815 }
816
817 wpipe->pipe_map.cnt = 0;
818 return (error);
819 }
820 #endif /* !PIPE_NODIRECT */
821
822 static int
823 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
824 int flags)
825 {
826 struct pipe *wpipe, *rpipe;
827 struct pipebuf *bp;
828 kmutex_t *lock;
829 int error;
830 unsigned int wakeup_state = 0;
831
832 /* We want to write to our peer */
833 rpipe = (struct pipe *) fp->f_data;
834 lock = rpipe->pipe_lock;
835 error = 0;
836
837 mutex_enter(lock);
838 wpipe = rpipe->pipe_peer;
839
840 /*
841 * Detect loss of pipe read side, issue SIGPIPE if lost.
842 */
843 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
844 mutex_exit(lock);
845 return EPIPE;
846 }
847 ++wpipe->pipe_busy;
848
849 /* Aquire the long-term pipe lock */
850 if ((error = pipelock(wpipe, 1)) != 0) {
851 --wpipe->pipe_busy;
852 if (wpipe->pipe_busy == 0) {
853 wpipe->pipe_state &= ~PIPE_RESTART;
854 cv_broadcast(&wpipe->pipe_draincv);
855 }
856 mutex_exit(lock);
857 return (error);
858 }
859
860 bp = &wpipe->pipe_buffer;
861
862 /*
863 * If it is advantageous to resize the pipe buffer, do so.
864 */
865 if ((uio->uio_resid > PIPE_SIZE) &&
866 (nbigpipe < maxbigpipes) &&
867 #ifndef PIPE_NODIRECT
868 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
869 #endif
870 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
871
872 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
873 atomic_inc_uint(&nbigpipe);
874 }
875
876 while (uio->uio_resid) {
877 size_t space;
878
879 #ifndef PIPE_NODIRECT
880 /*
881 * Pipe buffered writes cannot be coincidental with
882 * direct writes. Also, only one direct write can be
883 * in progress at any one time. We wait until the currently
884 * executing direct write is completed before continuing.
885 *
886 * We break out if a signal occurs or the reader goes away.
887 */
888 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
889 cv_broadcast(&wpipe->pipe_rcv);
890 pipeunlock(wpipe);
891 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
892 (void)pipelock(wpipe, 0);
893 if (wpipe->pipe_state & PIPE_EOF)
894 error = EPIPE;
895 }
896 if (error)
897 break;
898
899 /*
900 * If the transfer is large, we can gain performance if
901 * we do process-to-process copies directly.
902 * If the write is non-blocking, we don't use the
903 * direct write mechanism.
904 *
905 * The direct write mechanism will detect the reader going
906 * away on us.
907 */
908 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
909 (fp->f_flag & FNONBLOCK) == 0 &&
910 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
911 error = pipe_direct_write(fp, wpipe, uio);
912
913 /*
914 * Break out if error occurred, unless it's ENOMEM.
915 * ENOMEM means we failed to allocate some resources
916 * for direct write, so we just fallback to ordinary
917 * write. If the direct write was successful,
918 * process rest of data via ordinary write.
919 */
920 if (error == 0)
921 continue;
922
923 if (error != ENOMEM)
924 break;
925 }
926 #endif /* PIPE_NODIRECT */
927
928 space = bp->size - bp->cnt;
929
930 /* Writes of size <= PIPE_BUF must be atomic. */
931 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
932 space = 0;
933
934 if (space > 0) {
935 int size; /* Transfer size */
936 int segsize; /* first segment to transfer */
937
938 /*
939 * Transfer size is minimum of uio transfer
940 * and free space in pipe buffer.
941 */
942 if (space > uio->uio_resid)
943 size = uio->uio_resid;
944 else
945 size = space;
946 /*
947 * First segment to transfer is minimum of
948 * transfer size and contiguous space in
949 * pipe buffer. If first segment to transfer
950 * is less than the transfer size, we've got
951 * a wraparound in the buffer.
952 */
953 segsize = bp->size - bp->in;
954 if (segsize > size)
955 segsize = size;
956
957 /* Transfer first segment */
958 mutex_exit(lock);
959 error = uiomove((char *)bp->buffer + bp->in, segsize,
960 uio);
961
962 if (error == 0 && segsize < size) {
963 /*
964 * Transfer remaining part now, to
965 * support atomic writes. Wraparound
966 * happened.
967 */
968 KASSERT(bp->in + segsize == bp->size);
969 error = uiomove(bp->buffer,
970 size - segsize, uio);
971 }
972 mutex_enter(lock);
973 if (error)
974 break;
975
976 bp->in += size;
977 if (bp->in >= bp->size) {
978 KASSERT(bp->in == size - segsize + bp->size);
979 bp->in = size - segsize;
980 }
981
982 bp->cnt += size;
983 KASSERT(bp->cnt <= bp->size);
984 wakeup_state = 0;
985 } else {
986 /*
987 * If the "read-side" has been blocked, wake it up now.
988 */
989 cv_broadcast(&wpipe->pipe_rcv);
990
991 /*
992 * Don't block on non-blocking I/O.
993 */
994 if (fp->f_flag & FNONBLOCK) {
995 error = EAGAIN;
996 break;
997 }
998
999 /*
1000 * We have no more space and have something to offer,
1001 * wake up select/poll.
1002 */
1003 if (bp->cnt)
1004 pipeselwakeup(wpipe, wpipe, POLL_IN);
1005
1006 if (wakeup_state & PIPE_RESTART) {
1007 error = ERESTART;
1008 break;
1009 }
1010
1011 pipeunlock(wpipe);
1012 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1013 (void)pipelock(wpipe, 0);
1014 if (error != 0)
1015 break;
1016 /*
1017 * If read side wants to go away, we just issue a signal
1018 * to ourselves.
1019 */
1020 if (wpipe->pipe_state & PIPE_EOF) {
1021 error = EPIPE;
1022 break;
1023 }
1024 wakeup_state = wpipe->pipe_state;
1025 }
1026 }
1027
1028 --wpipe->pipe_busy;
1029 if (wpipe->pipe_busy == 0) {
1030 wpipe->pipe_state &= ~PIPE_RESTART;
1031 cv_broadcast(&wpipe->pipe_draincv);
1032 }
1033 if (bp->cnt > 0) {
1034 cv_broadcast(&wpipe->pipe_rcv);
1035 }
1036
1037 /*
1038 * Don't return EPIPE if I/O was successful
1039 */
1040 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1041 error = 0;
1042
1043 if (error == 0)
1044 getnanotime(&wpipe->pipe_mtime);
1045
1046 /*
1047 * We have something to offer, wake up select/poll.
1048 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1049 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1050 */
1051 if (bp->cnt)
1052 pipeselwakeup(wpipe, wpipe, POLL_IN);
1053
1054 /*
1055 * Arrange for next read(2) to do a signal.
1056 */
1057 wpipe->pipe_state |= PIPE_SIGNALR;
1058
1059 pipeunlock(wpipe);
1060 mutex_exit(lock);
1061 return (error);
1062 }
1063
1064 /*
1065 * We implement a very minimal set of ioctls for compatibility with sockets.
1066 */
1067 int
1068 pipe_ioctl(file_t *fp, u_long cmd, void *data)
1069 {
1070 struct pipe *pipe = fp->f_data;
1071 kmutex_t *lock = pipe->pipe_lock;
1072
1073 switch (cmd) {
1074
1075 case FIONBIO:
1076 return (0);
1077
1078 case FIOASYNC:
1079 mutex_enter(lock);
1080 if (*(int *)data) {
1081 pipe->pipe_state |= PIPE_ASYNC;
1082 } else {
1083 pipe->pipe_state &= ~PIPE_ASYNC;
1084 }
1085 mutex_exit(lock);
1086 return (0);
1087
1088 case FIONREAD:
1089 mutex_enter(lock);
1090 #ifndef PIPE_NODIRECT
1091 if (pipe->pipe_state & PIPE_DIRECTW)
1092 *(int *)data = pipe->pipe_map.cnt;
1093 else
1094 #endif
1095 *(int *)data = pipe->pipe_buffer.cnt;
1096 mutex_exit(lock);
1097 return (0);
1098
1099 case FIONWRITE:
1100 /* Look at other side */
1101 pipe = pipe->pipe_peer;
1102 mutex_enter(lock);
1103 #ifndef PIPE_NODIRECT
1104 if (pipe->pipe_state & PIPE_DIRECTW)
1105 *(int *)data = pipe->pipe_map.cnt;
1106 else
1107 #endif
1108 *(int *)data = pipe->pipe_buffer.cnt;
1109 mutex_exit(lock);
1110 return (0);
1111
1112 case FIONSPACE:
1113 /* Look at other side */
1114 pipe = pipe->pipe_peer;
1115 mutex_enter(lock);
1116 #ifndef PIPE_NODIRECT
1117 /*
1118 * If we're in direct-mode, we don't really have a
1119 * send queue, and any other write will block. Thus
1120 * zero seems like the best answer.
1121 */
1122 if (pipe->pipe_state & PIPE_DIRECTW)
1123 *(int *)data = 0;
1124 else
1125 #endif
1126 *(int *)data = pipe->pipe_buffer.size -
1127 pipe->pipe_buffer.cnt;
1128 mutex_exit(lock);
1129 return (0);
1130
1131 case TIOCSPGRP:
1132 case FIOSETOWN:
1133 return fsetown(&pipe->pipe_pgid, cmd, data);
1134
1135 case TIOCGPGRP:
1136 case FIOGETOWN:
1137 return fgetown(pipe->pipe_pgid, cmd, data);
1138
1139 }
1140 return (EPASSTHROUGH);
1141 }
1142
1143 int
1144 pipe_poll(file_t *fp, int events)
1145 {
1146 struct pipe *rpipe = fp->f_data;
1147 struct pipe *wpipe;
1148 int eof = 0;
1149 int revents = 0;
1150
1151 mutex_enter(rpipe->pipe_lock);
1152 wpipe = rpipe->pipe_peer;
1153
1154 if (events & (POLLIN | POLLRDNORM))
1155 if ((rpipe->pipe_buffer.cnt > 0) ||
1156 #ifndef PIPE_NODIRECT
1157 (rpipe->pipe_state & PIPE_DIRECTR) ||
1158 #endif
1159 (rpipe->pipe_state & PIPE_EOF))
1160 revents |= events & (POLLIN | POLLRDNORM);
1161
1162 eof |= (rpipe->pipe_state & PIPE_EOF);
1163
1164 if (wpipe == NULL)
1165 revents |= events & (POLLOUT | POLLWRNORM);
1166 else {
1167 if (events & (POLLOUT | POLLWRNORM))
1168 if ((wpipe->pipe_state & PIPE_EOF) || (
1169 #ifndef PIPE_NODIRECT
1170 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1171 #endif
1172 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1173 revents |= events & (POLLOUT | POLLWRNORM);
1174
1175 eof |= (wpipe->pipe_state & PIPE_EOF);
1176 }
1177
1178 if (wpipe == NULL || eof)
1179 revents |= POLLHUP;
1180
1181 if (revents == 0) {
1182 if (events & (POLLIN | POLLRDNORM))
1183 selrecord(curlwp, &rpipe->pipe_sel);
1184
1185 if (events & (POLLOUT | POLLWRNORM))
1186 selrecord(curlwp, &wpipe->pipe_sel);
1187 }
1188 mutex_exit(rpipe->pipe_lock);
1189
1190 return (revents);
1191 }
1192
1193 static int
1194 pipe_stat(file_t *fp, struct stat *ub)
1195 {
1196 struct pipe *pipe = fp->f_data;
1197
1198 mutex_enter(pipe->pipe_lock);
1199 memset(ub, 0, sizeof(*ub));
1200 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1201 ub->st_blksize = pipe->pipe_buffer.size;
1202 if (ub->st_blksize == 0 && pipe->pipe_peer)
1203 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1204 ub->st_size = pipe->pipe_buffer.cnt;
1205 ub->st_blocks = (ub->st_size) ? 1 : 0;
1206 ub->st_atimespec = pipe->pipe_atime;
1207 ub->st_mtimespec = pipe->pipe_mtime;
1208 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1209 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1210 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1211
1212 /*
1213 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1214 * XXX (st_dev, st_ino) should be unique.
1215 */
1216 mutex_exit(pipe->pipe_lock);
1217 return 0;
1218 }
1219
1220 static int
1221 pipe_close(file_t *fp)
1222 {
1223 struct pipe *pipe = fp->f_data;
1224
1225 fp->f_data = NULL;
1226 pipeclose(pipe);
1227 return (0);
1228 }
1229
1230 static void
1231 pipe_restart(file_t *fp)
1232 {
1233 struct pipe *pipe = fp->f_data;
1234
1235 /*
1236 * Unblock blocked reads/writes in order to allow close() to complete.
1237 * System calls return ERESTART so that the fd is revalidated.
1238 * (Partial writes return the transfer length.)
1239 */
1240 mutex_enter(pipe->pipe_lock);
1241 pipe->pipe_state |= PIPE_RESTART;
1242 /* Wakeup both cvs, maybe we only need one, but maybe there are some
1243 * other paths where wakeup is needed, and it saves deciding which! */
1244 cv_broadcast(&pipe->pipe_rcv);
1245 cv_broadcast(&pipe->pipe_wcv);
1246 mutex_exit(pipe->pipe_lock);
1247 }
1248
1249 static void
1250 pipe_free_kmem(struct pipe *pipe)
1251 {
1252
1253 if (pipe->pipe_buffer.buffer != NULL) {
1254 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1255 atomic_dec_uint(&nbigpipe);
1256 }
1257 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1258 uvm_km_free(kernel_map,
1259 (vaddr_t)pipe->pipe_buffer.buffer,
1260 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1261 atomic_add_int(&amountpipekva,
1262 -pipe->pipe_buffer.size);
1263 }
1264 pipe->pipe_buffer.buffer = NULL;
1265 }
1266 #ifndef PIPE_NODIRECT
1267 if (pipe->pipe_map.kva != 0) {
1268 pipe_loan_free(pipe);
1269 pipe->pipe_map.cnt = 0;
1270 pipe->pipe_map.kva = 0;
1271 pipe->pipe_map.pos = 0;
1272 pipe->pipe_map.npages = 0;
1273 }
1274 #endif /* !PIPE_NODIRECT */
1275 }
1276
1277 /*
1278 * Shutdown the pipe.
1279 */
1280 static void
1281 pipeclose(struct pipe *pipe)
1282 {
1283 kmutex_t *lock;
1284 struct pipe *ppipe;
1285
1286 if (pipe == NULL)
1287 return;
1288
1289 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1290 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1291 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1292 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1293
1294 lock = pipe->pipe_lock;
1295 if (lock == NULL)
1296 /* Must have failed during create */
1297 goto free_resources;
1298
1299 mutex_enter(lock);
1300 pipeselwakeup(pipe, pipe, POLL_HUP);
1301
1302 /*
1303 * If the other side is blocked, wake it up saying that
1304 * we want to close it down.
1305 */
1306 pipe->pipe_state |= PIPE_EOF;
1307 if (pipe->pipe_busy) {
1308 while (pipe->pipe_busy) {
1309 cv_broadcast(&pipe->pipe_wcv);
1310 cv_wait_sig(&pipe->pipe_draincv, lock);
1311 }
1312 }
1313
1314 /*
1315 * Disconnect from peer.
1316 */
1317 if ((ppipe = pipe->pipe_peer) != NULL) {
1318 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1319 ppipe->pipe_state |= PIPE_EOF;
1320 cv_broadcast(&ppipe->pipe_rcv);
1321 ppipe->pipe_peer = NULL;
1322 }
1323
1324 /*
1325 * Any knote objects still left in the list are
1326 * the one attached by peer. Since no one will
1327 * traverse this list, we just clear it.
1328 */
1329 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1330
1331 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1332 mutex_exit(lock);
1333 mutex_obj_free(lock);
1334
1335 /*
1336 * Free resources.
1337 */
1338 free_resources:
1339 pipe->pipe_pgid = 0;
1340 pipe->pipe_state = PIPE_SIGNALR;
1341 pipe_free_kmem(pipe);
1342 if (pipe->pipe_kmem != 0) {
1343 pool_cache_put(pipe_rd_cache, pipe);
1344 } else {
1345 pool_cache_put(pipe_wr_cache, pipe);
1346 }
1347 }
1348
1349 static void
1350 filt_pipedetach(struct knote *kn)
1351 {
1352 struct pipe *pipe;
1353 kmutex_t *lock;
1354
1355 pipe = ((file_t *)kn->kn_obj)->f_data;
1356 lock = pipe->pipe_lock;
1357
1358 mutex_enter(lock);
1359
1360 switch(kn->kn_filter) {
1361 case EVFILT_WRITE:
1362 /* Need the peer structure, not our own. */
1363 pipe = pipe->pipe_peer;
1364
1365 /* If reader end already closed, just return. */
1366 if (pipe == NULL) {
1367 mutex_exit(lock);
1368 return;
1369 }
1370
1371 break;
1372 default:
1373 /* Nothing to do. */
1374 break;
1375 }
1376
1377 KASSERT(kn->kn_hook == pipe);
1378 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1379 mutex_exit(lock);
1380 }
1381
1382 static int
1383 filt_piperead(struct knote *kn, long hint)
1384 {
1385 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1386 struct pipe *wpipe;
1387
1388 if ((hint & NOTE_SUBMIT) == 0) {
1389 mutex_enter(rpipe->pipe_lock);
1390 }
1391 wpipe = rpipe->pipe_peer;
1392 kn->kn_data = rpipe->pipe_buffer.cnt;
1393
1394 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1395 kn->kn_data = rpipe->pipe_map.cnt;
1396
1397 if ((rpipe->pipe_state & PIPE_EOF) ||
1398 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1399 kn->kn_flags |= EV_EOF;
1400 if ((hint & NOTE_SUBMIT) == 0) {
1401 mutex_exit(rpipe->pipe_lock);
1402 }
1403 return (1);
1404 }
1405
1406 if ((hint & NOTE_SUBMIT) == 0) {
1407 mutex_exit(rpipe->pipe_lock);
1408 }
1409 return (kn->kn_data > 0);
1410 }
1411
1412 static int
1413 filt_pipewrite(struct knote *kn, long hint)
1414 {
1415 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1416 struct pipe *wpipe;
1417
1418 if ((hint & NOTE_SUBMIT) == 0) {
1419 mutex_enter(rpipe->pipe_lock);
1420 }
1421 wpipe = rpipe->pipe_peer;
1422
1423 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1424 kn->kn_data = 0;
1425 kn->kn_flags |= EV_EOF;
1426 if ((hint & NOTE_SUBMIT) == 0) {
1427 mutex_exit(rpipe->pipe_lock);
1428 }
1429 return (1);
1430 }
1431 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1432 if (wpipe->pipe_state & PIPE_DIRECTW)
1433 kn->kn_data = 0;
1434
1435 if ((hint & NOTE_SUBMIT) == 0) {
1436 mutex_exit(rpipe->pipe_lock);
1437 }
1438 return (kn->kn_data >= PIPE_BUF);
1439 }
1440
1441 static const struct filterops pipe_rfiltops =
1442 { 1, NULL, filt_pipedetach, filt_piperead };
1443 static const struct filterops pipe_wfiltops =
1444 { 1, NULL, filt_pipedetach, filt_pipewrite };
1445
1446 static int
1447 pipe_kqfilter(file_t *fp, struct knote *kn)
1448 {
1449 struct pipe *pipe;
1450 kmutex_t *lock;
1451
1452 pipe = ((file_t *)kn->kn_obj)->f_data;
1453 lock = pipe->pipe_lock;
1454
1455 mutex_enter(lock);
1456
1457 switch (kn->kn_filter) {
1458 case EVFILT_READ:
1459 kn->kn_fop = &pipe_rfiltops;
1460 break;
1461 case EVFILT_WRITE:
1462 kn->kn_fop = &pipe_wfiltops;
1463 pipe = pipe->pipe_peer;
1464 if (pipe == NULL) {
1465 /* Other end of pipe has been closed. */
1466 mutex_exit(lock);
1467 return (EBADF);
1468 }
1469 break;
1470 default:
1471 mutex_exit(lock);
1472 return (EINVAL);
1473 }
1474
1475 kn->kn_hook = pipe;
1476 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1477 mutex_exit(lock);
1478
1479 return (0);
1480 }
1481
1482 /*
1483 * Handle pipe sysctls.
1484 */
1485 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1486 {
1487
1488 sysctl_createv(clog, 0, NULL, NULL,
1489 CTLFLAG_PERMANENT,
1490 CTLTYPE_NODE, "kern", NULL,
1491 NULL, 0, NULL, 0,
1492 CTL_KERN, CTL_EOL);
1493 sysctl_createv(clog, 0, NULL, NULL,
1494 CTLFLAG_PERMANENT,
1495 CTLTYPE_NODE, "pipe",
1496 SYSCTL_DESCR("Pipe settings"),
1497 NULL, 0, NULL, 0,
1498 CTL_KERN, KERN_PIPE, CTL_EOL);
1499
1500 sysctl_createv(clog, 0, NULL, NULL,
1501 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1502 CTLTYPE_INT, "maxkvasz",
1503 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1504 "used for pipes"),
1505 NULL, 0, &maxpipekva, 0,
1506 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1507 sysctl_createv(clog, 0, NULL, NULL,
1508 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1509 CTLTYPE_INT, "maxloankvasz",
1510 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1511 NULL, 0, &limitpipekva, 0,
1512 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1513 sysctl_createv(clog, 0, NULL, NULL,
1514 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1515 CTLTYPE_INT, "maxbigpipes",
1516 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1517 NULL, 0, &maxbigpipes, 0,
1518 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1519 sysctl_createv(clog, 0, NULL, NULL,
1520 CTLFLAG_PERMANENT,
1521 CTLTYPE_INT, "nbigpipes",
1522 SYSCTL_DESCR("Number of \"big\" pipes"),
1523 NULL, 0, &nbigpipe, 0,
1524 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1525 sysctl_createv(clog, 0, NULL, NULL,
1526 CTLFLAG_PERMANENT,
1527 CTLTYPE_INT, "kvasize",
1528 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1529 "buffers"),
1530 NULL, 0, &amountpipekva, 0,
1531 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1532 }
1533