sys_pipe.c revision 1.134.2.2 1 /* $NetBSD: sys_pipe.c,v 1.134.2.2 2012/05/23 10:08:12 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.134.2.2 2012/05/23 10:08:12 yamt Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 #include <uvm/uvm_extern.h>
96
97 /*
98 * Use this to disable direct I/O and decrease the code size:
99 * #define PIPE_NODIRECT
100 */
101
102 /* XXX Disabled for now; rare hangs switching between direct/buffered */
103 #define PIPE_NODIRECT
104
105 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
106 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
107 static int pipe_close(file_t *);
108 static int pipe_poll(file_t *, int);
109 static int pipe_kqfilter(file_t *, struct knote *);
110 static int pipe_stat(file_t *, struct stat *);
111 static int pipe_ioctl(file_t *, u_long, void *);
112 static void pipe_restart(file_t *);
113
114 static const struct fileops pipeops = {
115 .fo_read = pipe_read,
116 .fo_write = pipe_write,
117 .fo_ioctl = pipe_ioctl,
118 .fo_fcntl = fnullop_fcntl,
119 .fo_poll = pipe_poll,
120 .fo_stat = pipe_stat,
121 .fo_close = pipe_close,
122 .fo_kqfilter = pipe_kqfilter,
123 .fo_restart = pipe_restart,
124 };
125
126 /*
127 * Default pipe buffer size(s), this can be kind-of large now because pipe
128 * space is pageable. The pipe code will try to maintain locality of
129 * reference for performance reasons, so small amounts of outstanding I/O
130 * will not wipe the cache.
131 */
132 #define MINPIPESIZE (PIPE_SIZE / 3)
133 #define MAXPIPESIZE (2 * PIPE_SIZE / 3)
134
135 /*
136 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
137 * is there so that on large systems, we don't exhaust it.
138 */
139 #define MAXPIPEKVA (8 * 1024 * 1024)
140 static u_int maxpipekva = MAXPIPEKVA;
141
142 /*
143 * Limit for direct transfers, we cannot, of course limit
144 * the amount of kva for pipes in general though.
145 */
146 #define LIMITPIPEKVA (16 * 1024 * 1024)
147 static u_int limitpipekva = LIMITPIPEKVA;
148
149 /*
150 * Limit the number of "big" pipes
151 */
152 #define LIMITBIGPIPES 32
153 static u_int maxbigpipes = LIMITBIGPIPES;
154 static u_int nbigpipe = 0;
155
156 /*
157 * Amount of KVA consumed by pipe buffers.
158 */
159 static u_int amountpipekva = 0;
160
161 static void pipeclose(struct pipe *);
162 static void pipe_free_kmem(struct pipe *);
163 static int pipe_create(struct pipe **, pool_cache_t);
164 static int pipelock(struct pipe *, int);
165 static inline void pipeunlock(struct pipe *);
166 static void pipeselwakeup(struct pipe *, struct pipe *, int);
167 #ifndef PIPE_NODIRECT
168 static int pipe_direct_write(file_t *, struct pipe *, struct uio *);
169 #endif
170 static int pipespace(struct pipe *, int);
171 static int pipe_ctor(void *, void *, int);
172 static void pipe_dtor(void *, void *);
173
174 #ifndef PIPE_NODIRECT
175 static int pipe_loan_alloc(struct pipe *, int);
176 static void pipe_loan_free(struct pipe *);
177 #endif /* PIPE_NODIRECT */
178
179 static pool_cache_t pipe_wr_cache;
180 static pool_cache_t pipe_rd_cache;
181
182 void
183 pipe_init(void)
184 {
185
186 /* Writer side is not automatically allocated KVA. */
187 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
188 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
189 KASSERT(pipe_wr_cache != NULL);
190
191 /* Reader side gets preallocated KVA. */
192 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
193 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
194 KASSERT(pipe_rd_cache != NULL);
195 }
196
197 static int
198 pipe_ctor(void *arg, void *obj, int flags)
199 {
200 struct pipe *pipe;
201 vaddr_t va;
202
203 pipe = obj;
204
205 memset(pipe, 0, sizeof(struct pipe));
206 if (arg != NULL) {
207 /* Preallocate space. */
208 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
209 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
210 KASSERT(va != 0);
211 pipe->pipe_kmem = va;
212 atomic_add_int(&amountpipekva, PIPE_SIZE);
213 }
214 cv_init(&pipe->pipe_rcv, "pipe_rd");
215 cv_init(&pipe->pipe_wcv, "pipe_wr");
216 cv_init(&pipe->pipe_draincv, "pipe_drn");
217 cv_init(&pipe->pipe_lkcv, "pipe_lk");
218 selinit(&pipe->pipe_sel);
219 pipe->pipe_state = PIPE_SIGNALR;
220
221 return 0;
222 }
223
224 static void
225 pipe_dtor(void *arg, void *obj)
226 {
227 struct pipe *pipe;
228
229 pipe = obj;
230
231 cv_destroy(&pipe->pipe_rcv);
232 cv_destroy(&pipe->pipe_wcv);
233 cv_destroy(&pipe->pipe_draincv);
234 cv_destroy(&pipe->pipe_lkcv);
235 seldestroy(&pipe->pipe_sel);
236 if (pipe->pipe_kmem != 0) {
237 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
238 UVM_KMF_PAGEABLE);
239 atomic_add_int(&amountpipekva, -PIPE_SIZE);
240 }
241 }
242
243 /*
244 * The pipe system call for the DTYPE_PIPE type of pipes
245 */
246 int
247 pipe1(struct lwp *l, register_t *retval, int flags)
248 {
249 struct pipe *rpipe, *wpipe;
250 file_t *rf, *wf;
251 int fd, error;
252 proc_t *p;
253
254 if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
255 return EINVAL;
256 p = curproc;
257 rpipe = wpipe = NULL;
258 if ((error = pipe_create(&rpipe, pipe_rd_cache)) ||
259 (error = pipe_create(&wpipe, pipe_wr_cache))) {
260 goto free2;
261 }
262 rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
263 wpipe->pipe_lock = rpipe->pipe_lock;
264 mutex_obj_hold(wpipe->pipe_lock);
265
266 error = fd_allocfile(&rf, &fd);
267 if (error)
268 goto free2;
269 retval[0] = fd;
270
271 error = fd_allocfile(&wf, &fd);
272 if (error)
273 goto free3;
274 retval[1] = fd;
275
276 rf->f_flag = FREAD | flags;
277 rf->f_type = DTYPE_PIPE;
278 rf->f_data = (void *)rpipe;
279 rf->f_ops = &pipeops;
280 fd_set_exclose(l, (int)retval[0], (flags & O_CLOEXEC) != 0);
281
282 wf->f_flag = FWRITE | flags;
283 wf->f_type = DTYPE_PIPE;
284 wf->f_data = (void *)wpipe;
285 wf->f_ops = &pipeops;
286 fd_set_exclose(l, (int)retval[1], (flags & O_CLOEXEC) != 0);
287
288 rpipe->pipe_peer = wpipe;
289 wpipe->pipe_peer = rpipe;
290
291 fd_affix(p, rf, (int)retval[0]);
292 fd_affix(p, wf, (int)retval[1]);
293 return (0);
294 free3:
295 fd_abort(p, rf, (int)retval[0]);
296 free2:
297 pipeclose(wpipe);
298 pipeclose(rpipe);
299
300 return (error);
301 }
302
303 /*
304 * Allocate kva for pipe circular buffer, the space is pageable
305 * This routine will 'realloc' the size of a pipe safely, if it fails
306 * it will retain the old buffer.
307 * If it fails it will return ENOMEM.
308 */
309 static int
310 pipespace(struct pipe *pipe, int size)
311 {
312 void *buffer;
313
314 /*
315 * Allocate pageable virtual address space. Physical memory is
316 * allocated on demand.
317 */
318 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
319 buffer = (void *)pipe->pipe_kmem;
320 } else {
321 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
322 0, UVM_KMF_PAGEABLE);
323 if (buffer == NULL)
324 return (ENOMEM);
325 atomic_add_int(&amountpipekva, size);
326 }
327
328 /* free old resources if we're resizing */
329 pipe_free_kmem(pipe);
330 pipe->pipe_buffer.buffer = buffer;
331 pipe->pipe_buffer.size = size;
332 pipe->pipe_buffer.in = 0;
333 pipe->pipe_buffer.out = 0;
334 pipe->pipe_buffer.cnt = 0;
335 return (0);
336 }
337
338 /*
339 * Initialize and allocate VM and memory for pipe.
340 */
341 static int
342 pipe_create(struct pipe **pipep, pool_cache_t cache)
343 {
344 struct pipe *pipe;
345 int error;
346
347 pipe = pool_cache_get(cache, PR_WAITOK);
348 KASSERT(pipe != NULL);
349 *pipep = pipe;
350 error = 0;
351 getnanotime(&pipe->pipe_btime);
352 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
353 pipe->pipe_lock = NULL;
354 if (cache == pipe_rd_cache) {
355 error = pipespace(pipe, PIPE_SIZE);
356 } else {
357 pipe->pipe_buffer.buffer = NULL;
358 pipe->pipe_buffer.size = 0;
359 pipe->pipe_buffer.in = 0;
360 pipe->pipe_buffer.out = 0;
361 pipe->pipe_buffer.cnt = 0;
362 }
363 return error;
364 }
365
366 /*
367 * Lock a pipe for I/O, blocking other access
368 * Called with pipe spin lock held.
369 */
370 static int
371 pipelock(struct pipe *pipe, int catch)
372 {
373 int error;
374
375 KASSERT(mutex_owned(pipe->pipe_lock));
376
377 while (pipe->pipe_state & PIPE_LOCKFL) {
378 pipe->pipe_state |= PIPE_LWANT;
379 if (catch) {
380 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
381 if (error != 0)
382 return error;
383 } else
384 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
385 }
386
387 pipe->pipe_state |= PIPE_LOCKFL;
388
389 return 0;
390 }
391
392 /*
393 * unlock a pipe I/O lock
394 */
395 static inline void
396 pipeunlock(struct pipe *pipe)
397 {
398
399 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
400
401 pipe->pipe_state &= ~PIPE_LOCKFL;
402 if (pipe->pipe_state & PIPE_LWANT) {
403 pipe->pipe_state &= ~PIPE_LWANT;
404 cv_broadcast(&pipe->pipe_lkcv);
405 }
406 }
407
408 /*
409 * Select/poll wakup. This also sends SIGIO to peer connected to
410 * 'sigpipe' side of pipe.
411 */
412 static void
413 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
414 {
415 int band;
416
417 switch (code) {
418 case POLL_IN:
419 band = POLLIN|POLLRDNORM;
420 break;
421 case POLL_OUT:
422 band = POLLOUT|POLLWRNORM;
423 break;
424 case POLL_HUP:
425 band = POLLHUP;
426 break;
427 case POLL_ERR:
428 band = POLLERR;
429 break;
430 default:
431 band = 0;
432 #ifdef DIAGNOSTIC
433 printf("bad siginfo code %d in pipe notification.\n", code);
434 #endif
435 break;
436 }
437
438 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
439
440 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
441 return;
442
443 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
444 }
445
446 static int
447 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
448 int flags)
449 {
450 struct pipe *rpipe = (struct pipe *) fp->f_data;
451 struct pipebuf *bp = &rpipe->pipe_buffer;
452 kmutex_t *lock = rpipe->pipe_lock;
453 int error;
454 size_t nread = 0;
455 size_t size;
456 size_t ocnt;
457 unsigned int wakeup_state = 0;
458
459 mutex_enter(lock);
460 ++rpipe->pipe_busy;
461 ocnt = bp->cnt;
462
463 again:
464 error = pipelock(rpipe, 1);
465 if (error)
466 goto unlocked_error;
467
468 while (uio->uio_resid) {
469 /*
470 * Normal pipe buffer receive.
471 */
472 if (bp->cnt > 0) {
473 size = bp->size - bp->out;
474 if (size > bp->cnt)
475 size = bp->cnt;
476 if (size > uio->uio_resid)
477 size = uio->uio_resid;
478
479 mutex_exit(lock);
480 error = uiomove((char *)bp->buffer + bp->out, size, uio);
481 mutex_enter(lock);
482 if (error)
483 break;
484
485 bp->out += size;
486 if (bp->out >= bp->size)
487 bp->out = 0;
488
489 bp->cnt -= size;
490
491 /*
492 * If there is no more to read in the pipe, reset
493 * its pointers to the beginning. This improves
494 * cache hit stats.
495 */
496 if (bp->cnt == 0) {
497 bp->in = 0;
498 bp->out = 0;
499 }
500 nread += size;
501 continue;
502 }
503
504 #ifndef PIPE_NODIRECT
505 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
506 /*
507 * Direct copy, bypassing a kernel buffer.
508 */
509 void *va;
510 u_int gen;
511
512 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
513
514 size = rpipe->pipe_map.cnt;
515 if (size > uio->uio_resid)
516 size = uio->uio_resid;
517
518 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
519 gen = rpipe->pipe_map.egen;
520 mutex_exit(lock);
521
522 /*
523 * Consume emap and read the data from loaned pages.
524 */
525 uvm_emap_consume(gen);
526 error = uiomove(va, size, uio);
527
528 mutex_enter(lock);
529 if (error)
530 break;
531 nread += size;
532 rpipe->pipe_map.pos += size;
533 rpipe->pipe_map.cnt -= size;
534 if (rpipe->pipe_map.cnt == 0) {
535 rpipe->pipe_state &= ~PIPE_DIRECTR;
536 cv_broadcast(&rpipe->pipe_wcv);
537 }
538 continue;
539 }
540 #endif
541 /*
542 * Break if some data was read.
543 */
544 if (nread > 0)
545 break;
546
547 /*
548 * Detect EOF condition.
549 * Read returns 0 on EOF, no need to set error.
550 */
551 if (rpipe->pipe_state & PIPE_EOF)
552 break;
553
554 /*
555 * Don't block on non-blocking I/O.
556 */
557 if (fp->f_flag & FNONBLOCK) {
558 error = EAGAIN;
559 break;
560 }
561
562 /*
563 * Unlock the pipe buffer for our remaining processing.
564 * We will either break out with an error or we will
565 * sleep and relock to loop.
566 */
567 pipeunlock(rpipe);
568
569 /*
570 * Re-check to see if more direct writes are pending.
571 */
572 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
573 goto again;
574
575 #if 1 /* XXX (dsl) I'm sure these aren't needed here ... */
576 /*
577 * We want to read more, wake up select/poll.
578 */
579 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
580
581 /*
582 * If the "write-side" is blocked, wake it up now.
583 */
584 cv_broadcast(&rpipe->pipe_wcv);
585 #endif
586
587 if (wakeup_state & PIPE_RESTART) {
588 error = ERESTART;
589 goto unlocked_error;
590 }
591
592 /* Now wait until the pipe is filled */
593 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
594 if (error != 0)
595 goto unlocked_error;
596 wakeup_state = rpipe->pipe_state;
597 goto again;
598 }
599
600 if (error == 0)
601 getnanotime(&rpipe->pipe_atime);
602 pipeunlock(rpipe);
603
604 unlocked_error:
605 --rpipe->pipe_busy;
606 if (rpipe->pipe_busy == 0) {
607 rpipe->pipe_state &= ~PIPE_RESTART;
608 cv_broadcast(&rpipe->pipe_draincv);
609 }
610 if (bp->cnt < MINPIPESIZE) {
611 cv_broadcast(&rpipe->pipe_wcv);
612 }
613
614 /*
615 * If anything was read off the buffer, signal to the writer it's
616 * possible to write more data. Also send signal if we are here for the
617 * first time after last write.
618 */
619 if ((bp->size - bp->cnt) >= PIPE_BUF
620 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
621 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
622 rpipe->pipe_state &= ~PIPE_SIGNALR;
623 }
624
625 mutex_exit(lock);
626 return (error);
627 }
628
629 #ifndef PIPE_NODIRECT
630 /*
631 * Allocate structure for loan transfer.
632 */
633 static int
634 pipe_loan_alloc(struct pipe *wpipe, int npages)
635 {
636 vsize_t len;
637
638 len = (vsize_t)npages << PAGE_SHIFT;
639 atomic_add_int(&amountpipekva, len);
640 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
641 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
642 if (wpipe->pipe_map.kva == 0) {
643 atomic_add_int(&amountpipekva, -len);
644 return (ENOMEM);
645 }
646
647 wpipe->pipe_map.npages = npages;
648 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
649 KM_SLEEP);
650 return (0);
651 }
652
653 /*
654 * Free resources allocated for loan transfer.
655 */
656 static void
657 pipe_loan_free(struct pipe *wpipe)
658 {
659 vsize_t len;
660
661 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
662 uvm_emap_remove(wpipe->pipe_map.kva, len); /* XXX */
663 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
664 wpipe->pipe_map.kva = 0;
665 atomic_add_int(&amountpipekva, -len);
666 kmem_free(wpipe->pipe_map.pgs,
667 wpipe->pipe_map.npages * sizeof(struct vm_page *));
668 wpipe->pipe_map.pgs = NULL;
669 }
670
671 /*
672 * NetBSD direct write, using uvm_loan() mechanism.
673 * This implements the pipe buffer write mechanism. Note that only
674 * a direct write OR a normal pipe write can be pending at any given time.
675 * If there are any characters in the pipe buffer, the direct write will
676 * be deferred until the receiving process grabs all of the bytes from
677 * the pipe buffer. Then the direct mapping write is set-up.
678 *
679 * Called with the long-term pipe lock held.
680 */
681 static int
682 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
683 {
684 struct vm_page **pgs;
685 vaddr_t bbase, base, bend;
686 vsize_t blen, bcnt;
687 int error, npages;
688 voff_t bpos;
689 kmutex_t *lock = wpipe->pipe_lock;
690
691 KASSERT(mutex_owned(wpipe->pipe_lock));
692 KASSERT(wpipe->pipe_map.cnt == 0);
693
694 mutex_exit(lock);
695
696 /*
697 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
698 * not aligned to PAGE_SIZE.
699 */
700 bbase = (vaddr_t)uio->uio_iov->iov_base;
701 base = trunc_page(bbase);
702 bend = round_page(bbase + uio->uio_iov->iov_len);
703 blen = bend - base;
704 bpos = bbase - base;
705
706 if (blen > PIPE_DIRECT_CHUNK) {
707 blen = PIPE_DIRECT_CHUNK;
708 bend = base + blen;
709 bcnt = PIPE_DIRECT_CHUNK - bpos;
710 } else {
711 bcnt = uio->uio_iov->iov_len;
712 }
713 npages = blen >> PAGE_SHIFT;
714
715 /*
716 * Free the old kva if we need more pages than we have
717 * allocated.
718 */
719 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
720 pipe_loan_free(wpipe);
721
722 /* Allocate new kva. */
723 if (wpipe->pipe_map.kva == 0) {
724 error = pipe_loan_alloc(wpipe, npages);
725 if (error) {
726 mutex_enter(lock);
727 return (error);
728 }
729 }
730
731 /* Loan the write buffer memory from writer process */
732 pgs = wpipe->pipe_map.pgs;
733 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
734 pgs, UVM_LOAN_TOPAGE);
735 if (error) {
736 pipe_loan_free(wpipe);
737 mutex_enter(lock);
738 return (ENOMEM); /* so that caller fallback to ordinary write */
739 }
740
741 /* Enter the loaned pages to KVA, produce new emap generation number. */
742 uvm_emap_enter(wpipe->pipe_map.kva, pgs, npages);
743 wpipe->pipe_map.egen = uvm_emap_produce();
744
745 /* Now we can put the pipe in direct write mode */
746 wpipe->pipe_map.pos = bpos;
747 wpipe->pipe_map.cnt = bcnt;
748
749 /*
750 * But before we can let someone do a direct read, we
751 * have to wait until the pipe is drained. Release the
752 * pipe lock while we wait.
753 */
754 mutex_enter(lock);
755 wpipe->pipe_state |= PIPE_DIRECTW;
756 pipeunlock(wpipe);
757
758 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
759 cv_broadcast(&wpipe->pipe_rcv);
760 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
761 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
762 error = EPIPE;
763 }
764
765 /* Pipe is drained; next read will off the direct buffer */
766 wpipe->pipe_state |= PIPE_DIRECTR;
767
768 /* Wait until the reader is done */
769 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
770 cv_broadcast(&wpipe->pipe_rcv);
771 pipeselwakeup(wpipe, wpipe, POLL_IN);
772 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
773 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
774 error = EPIPE;
775 }
776
777 /* Take pipe out of direct write mode */
778 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
779
780 /* Acquire the pipe lock and cleanup */
781 (void)pipelock(wpipe, 0);
782 mutex_exit(lock);
783
784 if (pgs != NULL) {
785 /* XXX: uvm_emap_remove */
786 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
787 }
788 if (error || amountpipekva > maxpipekva)
789 pipe_loan_free(wpipe);
790
791 mutex_enter(lock);
792 if (error) {
793 pipeselwakeup(wpipe, wpipe, POLL_ERR);
794
795 /*
796 * If nothing was read from what we offered, return error
797 * straight on. Otherwise update uio resid first. Caller
798 * will deal with the error condition, returning short
799 * write, error, or restarting the write(2) as appropriate.
800 */
801 if (wpipe->pipe_map.cnt == bcnt) {
802 wpipe->pipe_map.cnt = 0;
803 cv_broadcast(&wpipe->pipe_wcv);
804 return (error);
805 }
806
807 bcnt -= wpipe->pipe_map.cnt;
808 }
809
810 uio->uio_resid -= bcnt;
811 /* uio_offset not updated, not set/used for write(2) */
812 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
813 uio->uio_iov->iov_len -= bcnt;
814 if (uio->uio_iov->iov_len == 0) {
815 uio->uio_iov++;
816 uio->uio_iovcnt--;
817 }
818
819 wpipe->pipe_map.cnt = 0;
820 return (error);
821 }
822 #endif /* !PIPE_NODIRECT */
823
824 static int
825 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
826 int flags)
827 {
828 struct pipe *wpipe, *rpipe;
829 struct pipebuf *bp;
830 kmutex_t *lock;
831 int error;
832 unsigned int wakeup_state = 0;
833
834 /* We want to write to our peer */
835 rpipe = (struct pipe *) fp->f_data;
836 lock = rpipe->pipe_lock;
837 error = 0;
838
839 mutex_enter(lock);
840 wpipe = rpipe->pipe_peer;
841
842 /*
843 * Detect loss of pipe read side, issue SIGPIPE if lost.
844 */
845 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
846 mutex_exit(lock);
847 return EPIPE;
848 }
849 ++wpipe->pipe_busy;
850
851 /* Aquire the long-term pipe lock */
852 if ((error = pipelock(wpipe, 1)) != 0) {
853 --wpipe->pipe_busy;
854 if (wpipe->pipe_busy == 0) {
855 wpipe->pipe_state &= ~PIPE_RESTART;
856 cv_broadcast(&wpipe->pipe_draincv);
857 }
858 mutex_exit(lock);
859 return (error);
860 }
861
862 bp = &wpipe->pipe_buffer;
863
864 /*
865 * If it is advantageous to resize the pipe buffer, do so.
866 */
867 if ((uio->uio_resid > PIPE_SIZE) &&
868 (nbigpipe < maxbigpipes) &&
869 #ifndef PIPE_NODIRECT
870 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
871 #endif
872 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
873
874 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
875 atomic_inc_uint(&nbigpipe);
876 }
877
878 while (uio->uio_resid) {
879 size_t space;
880
881 #ifndef PIPE_NODIRECT
882 /*
883 * Pipe buffered writes cannot be coincidental with
884 * direct writes. Also, only one direct write can be
885 * in progress at any one time. We wait until the currently
886 * executing direct write is completed before continuing.
887 *
888 * We break out if a signal occurs or the reader goes away.
889 */
890 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
891 cv_broadcast(&wpipe->pipe_rcv);
892 pipeunlock(wpipe);
893 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
894 (void)pipelock(wpipe, 0);
895 if (wpipe->pipe_state & PIPE_EOF)
896 error = EPIPE;
897 }
898 if (error)
899 break;
900
901 /*
902 * If the transfer is large, we can gain performance if
903 * we do process-to-process copies directly.
904 * If the write is non-blocking, we don't use the
905 * direct write mechanism.
906 *
907 * The direct write mechanism will detect the reader going
908 * away on us.
909 */
910 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
911 (fp->f_flag & FNONBLOCK) == 0 &&
912 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
913 error = pipe_direct_write(fp, wpipe, uio);
914
915 /*
916 * Break out if error occurred, unless it's ENOMEM.
917 * ENOMEM means we failed to allocate some resources
918 * for direct write, so we just fallback to ordinary
919 * write. If the direct write was successful,
920 * process rest of data via ordinary write.
921 */
922 if (error == 0)
923 continue;
924
925 if (error != ENOMEM)
926 break;
927 }
928 #endif /* PIPE_NODIRECT */
929
930 space = bp->size - bp->cnt;
931
932 /* Writes of size <= PIPE_BUF must be atomic. */
933 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
934 space = 0;
935
936 if (space > 0) {
937 int size; /* Transfer size */
938 int segsize; /* first segment to transfer */
939
940 /*
941 * Transfer size is minimum of uio transfer
942 * and free space in pipe buffer.
943 */
944 if (space > uio->uio_resid)
945 size = uio->uio_resid;
946 else
947 size = space;
948 /*
949 * First segment to transfer is minimum of
950 * transfer size and contiguous space in
951 * pipe buffer. If first segment to transfer
952 * is less than the transfer size, we've got
953 * a wraparound in the buffer.
954 */
955 segsize = bp->size - bp->in;
956 if (segsize > size)
957 segsize = size;
958
959 /* Transfer first segment */
960 mutex_exit(lock);
961 error = uiomove((char *)bp->buffer + bp->in, segsize,
962 uio);
963
964 if (error == 0 && segsize < size) {
965 /*
966 * Transfer remaining part now, to
967 * support atomic writes. Wraparound
968 * happened.
969 */
970 KASSERT(bp->in + segsize == bp->size);
971 error = uiomove(bp->buffer,
972 size - segsize, uio);
973 }
974 mutex_enter(lock);
975 if (error)
976 break;
977
978 bp->in += size;
979 if (bp->in >= bp->size) {
980 KASSERT(bp->in == size - segsize + bp->size);
981 bp->in = size - segsize;
982 }
983
984 bp->cnt += size;
985 KASSERT(bp->cnt <= bp->size);
986 wakeup_state = 0;
987 } else {
988 /*
989 * If the "read-side" has been blocked, wake it up now.
990 */
991 cv_broadcast(&wpipe->pipe_rcv);
992
993 /*
994 * Don't block on non-blocking I/O.
995 */
996 if (fp->f_flag & FNONBLOCK) {
997 error = EAGAIN;
998 break;
999 }
1000
1001 /*
1002 * We have no more space and have something to offer,
1003 * wake up select/poll.
1004 */
1005 if (bp->cnt)
1006 pipeselwakeup(wpipe, wpipe, POLL_IN);
1007
1008 if (wakeup_state & PIPE_RESTART) {
1009 error = ERESTART;
1010 break;
1011 }
1012
1013 pipeunlock(wpipe);
1014 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1015 (void)pipelock(wpipe, 0);
1016 if (error != 0)
1017 break;
1018 /*
1019 * If read side wants to go away, we just issue a signal
1020 * to ourselves.
1021 */
1022 if (wpipe->pipe_state & PIPE_EOF) {
1023 error = EPIPE;
1024 break;
1025 }
1026 wakeup_state = wpipe->pipe_state;
1027 }
1028 }
1029
1030 --wpipe->pipe_busy;
1031 if (wpipe->pipe_busy == 0) {
1032 wpipe->pipe_state &= ~PIPE_RESTART;
1033 cv_broadcast(&wpipe->pipe_draincv);
1034 }
1035 if (bp->cnt > 0) {
1036 cv_broadcast(&wpipe->pipe_rcv);
1037 }
1038
1039 /*
1040 * Don't return EPIPE if I/O was successful
1041 */
1042 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1043 error = 0;
1044
1045 if (error == 0)
1046 getnanotime(&wpipe->pipe_mtime);
1047
1048 /*
1049 * We have something to offer, wake up select/poll.
1050 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1051 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1052 */
1053 if (bp->cnt)
1054 pipeselwakeup(wpipe, wpipe, POLL_IN);
1055
1056 /*
1057 * Arrange for next read(2) to do a signal.
1058 */
1059 wpipe->pipe_state |= PIPE_SIGNALR;
1060
1061 pipeunlock(wpipe);
1062 mutex_exit(lock);
1063 return (error);
1064 }
1065
1066 /*
1067 * We implement a very minimal set of ioctls for compatibility with sockets.
1068 */
1069 int
1070 pipe_ioctl(file_t *fp, u_long cmd, void *data)
1071 {
1072 struct pipe *pipe = fp->f_data;
1073 kmutex_t *lock = pipe->pipe_lock;
1074
1075 switch (cmd) {
1076
1077 case FIONBIO:
1078 return (0);
1079
1080 case FIOASYNC:
1081 mutex_enter(lock);
1082 if (*(int *)data) {
1083 pipe->pipe_state |= PIPE_ASYNC;
1084 } else {
1085 pipe->pipe_state &= ~PIPE_ASYNC;
1086 }
1087 mutex_exit(lock);
1088 return (0);
1089
1090 case FIONREAD:
1091 mutex_enter(lock);
1092 #ifndef PIPE_NODIRECT
1093 if (pipe->pipe_state & PIPE_DIRECTW)
1094 *(int *)data = pipe->pipe_map.cnt;
1095 else
1096 #endif
1097 *(int *)data = pipe->pipe_buffer.cnt;
1098 mutex_exit(lock);
1099 return (0);
1100
1101 case FIONWRITE:
1102 /* Look at other side */
1103 pipe = pipe->pipe_peer;
1104 mutex_enter(lock);
1105 #ifndef PIPE_NODIRECT
1106 if (pipe->pipe_state & PIPE_DIRECTW)
1107 *(int *)data = pipe->pipe_map.cnt;
1108 else
1109 #endif
1110 *(int *)data = pipe->pipe_buffer.cnt;
1111 mutex_exit(lock);
1112 return (0);
1113
1114 case FIONSPACE:
1115 /* Look at other side */
1116 pipe = pipe->pipe_peer;
1117 mutex_enter(lock);
1118 #ifndef PIPE_NODIRECT
1119 /*
1120 * If we're in direct-mode, we don't really have a
1121 * send queue, and any other write will block. Thus
1122 * zero seems like the best answer.
1123 */
1124 if (pipe->pipe_state & PIPE_DIRECTW)
1125 *(int *)data = 0;
1126 else
1127 #endif
1128 *(int *)data = pipe->pipe_buffer.size -
1129 pipe->pipe_buffer.cnt;
1130 mutex_exit(lock);
1131 return (0);
1132
1133 case TIOCSPGRP:
1134 case FIOSETOWN:
1135 return fsetown(&pipe->pipe_pgid, cmd, data);
1136
1137 case TIOCGPGRP:
1138 case FIOGETOWN:
1139 return fgetown(pipe->pipe_pgid, cmd, data);
1140
1141 }
1142 return (EPASSTHROUGH);
1143 }
1144
1145 int
1146 pipe_poll(file_t *fp, int events)
1147 {
1148 struct pipe *rpipe = fp->f_data;
1149 struct pipe *wpipe;
1150 int eof = 0;
1151 int revents = 0;
1152
1153 mutex_enter(rpipe->pipe_lock);
1154 wpipe = rpipe->pipe_peer;
1155
1156 if (events & (POLLIN | POLLRDNORM))
1157 if ((rpipe->pipe_buffer.cnt > 0) ||
1158 #ifndef PIPE_NODIRECT
1159 (rpipe->pipe_state & PIPE_DIRECTR) ||
1160 #endif
1161 (rpipe->pipe_state & PIPE_EOF))
1162 revents |= events & (POLLIN | POLLRDNORM);
1163
1164 eof |= (rpipe->pipe_state & PIPE_EOF);
1165
1166 if (wpipe == NULL)
1167 revents |= events & (POLLOUT | POLLWRNORM);
1168 else {
1169 if (events & (POLLOUT | POLLWRNORM))
1170 if ((wpipe->pipe_state & PIPE_EOF) || (
1171 #ifndef PIPE_NODIRECT
1172 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1173 #endif
1174 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1175 revents |= events & (POLLOUT | POLLWRNORM);
1176
1177 eof |= (wpipe->pipe_state & PIPE_EOF);
1178 }
1179
1180 if (wpipe == NULL || eof)
1181 revents |= POLLHUP;
1182
1183 if (revents == 0) {
1184 if (events & (POLLIN | POLLRDNORM))
1185 selrecord(curlwp, &rpipe->pipe_sel);
1186
1187 if (events & (POLLOUT | POLLWRNORM))
1188 selrecord(curlwp, &wpipe->pipe_sel);
1189 }
1190 mutex_exit(rpipe->pipe_lock);
1191
1192 return (revents);
1193 }
1194
1195 static int
1196 pipe_stat(file_t *fp, struct stat *ub)
1197 {
1198 struct pipe *pipe = fp->f_data;
1199
1200 mutex_enter(pipe->pipe_lock);
1201 memset(ub, 0, sizeof(*ub));
1202 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1203 ub->st_blksize = pipe->pipe_buffer.size;
1204 if (ub->st_blksize == 0 && pipe->pipe_peer)
1205 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1206 ub->st_size = pipe->pipe_buffer.cnt;
1207 ub->st_blocks = (ub->st_size) ? 1 : 0;
1208 ub->st_atimespec = pipe->pipe_atime;
1209 ub->st_mtimespec = pipe->pipe_mtime;
1210 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1211 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1212 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1213
1214 /*
1215 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1216 * XXX (st_dev, st_ino) should be unique.
1217 */
1218 mutex_exit(pipe->pipe_lock);
1219 return 0;
1220 }
1221
1222 static int
1223 pipe_close(file_t *fp)
1224 {
1225 struct pipe *pipe = fp->f_data;
1226
1227 fp->f_data = NULL;
1228 pipeclose(pipe);
1229 return (0);
1230 }
1231
1232 static void
1233 pipe_restart(file_t *fp)
1234 {
1235 struct pipe *pipe = fp->f_data;
1236
1237 /*
1238 * Unblock blocked reads/writes in order to allow close() to complete.
1239 * System calls return ERESTART so that the fd is revalidated.
1240 * (Partial writes return the transfer length.)
1241 */
1242 mutex_enter(pipe->pipe_lock);
1243 pipe->pipe_state |= PIPE_RESTART;
1244 /* Wakeup both cvs, maybe we only need one, but maybe there are some
1245 * other paths where wakeup is needed, and it saves deciding which! */
1246 cv_broadcast(&pipe->pipe_rcv);
1247 cv_broadcast(&pipe->pipe_wcv);
1248 mutex_exit(pipe->pipe_lock);
1249 }
1250
1251 static void
1252 pipe_free_kmem(struct pipe *pipe)
1253 {
1254
1255 if (pipe->pipe_buffer.buffer != NULL) {
1256 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1257 atomic_dec_uint(&nbigpipe);
1258 }
1259 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1260 uvm_km_free(kernel_map,
1261 (vaddr_t)pipe->pipe_buffer.buffer,
1262 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1263 atomic_add_int(&amountpipekva,
1264 -pipe->pipe_buffer.size);
1265 }
1266 pipe->pipe_buffer.buffer = NULL;
1267 }
1268 #ifndef PIPE_NODIRECT
1269 if (pipe->pipe_map.kva != 0) {
1270 pipe_loan_free(pipe);
1271 pipe->pipe_map.cnt = 0;
1272 pipe->pipe_map.kva = 0;
1273 pipe->pipe_map.pos = 0;
1274 pipe->pipe_map.npages = 0;
1275 }
1276 #endif /* !PIPE_NODIRECT */
1277 }
1278
1279 /*
1280 * Shutdown the pipe.
1281 */
1282 static void
1283 pipeclose(struct pipe *pipe)
1284 {
1285 kmutex_t *lock;
1286 struct pipe *ppipe;
1287
1288 if (pipe == NULL)
1289 return;
1290
1291 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1292 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1293 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1294 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1295
1296 lock = pipe->pipe_lock;
1297 if (lock == NULL)
1298 /* Must have failed during create */
1299 goto free_resources;
1300
1301 mutex_enter(lock);
1302 pipeselwakeup(pipe, pipe, POLL_HUP);
1303
1304 /*
1305 * If the other side is blocked, wake it up saying that
1306 * we want to close it down.
1307 */
1308 pipe->pipe_state |= PIPE_EOF;
1309 if (pipe->pipe_busy) {
1310 while (pipe->pipe_busy) {
1311 cv_broadcast(&pipe->pipe_wcv);
1312 cv_wait_sig(&pipe->pipe_draincv, lock);
1313 }
1314 }
1315
1316 /*
1317 * Disconnect from peer.
1318 */
1319 if ((ppipe = pipe->pipe_peer) != NULL) {
1320 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1321 ppipe->pipe_state |= PIPE_EOF;
1322 cv_broadcast(&ppipe->pipe_rcv);
1323 ppipe->pipe_peer = NULL;
1324 }
1325
1326 /*
1327 * Any knote objects still left in the list are
1328 * the one attached by peer. Since no one will
1329 * traverse this list, we just clear it.
1330 */
1331 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1332
1333 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1334 mutex_exit(lock);
1335 mutex_obj_free(lock);
1336
1337 /*
1338 * Free resources.
1339 */
1340 free_resources:
1341 pipe->pipe_pgid = 0;
1342 pipe->pipe_state = PIPE_SIGNALR;
1343 pipe_free_kmem(pipe);
1344 if (pipe->pipe_kmem != 0) {
1345 pool_cache_put(pipe_rd_cache, pipe);
1346 } else {
1347 pool_cache_put(pipe_wr_cache, pipe);
1348 }
1349 }
1350
1351 static void
1352 filt_pipedetach(struct knote *kn)
1353 {
1354 struct pipe *pipe;
1355 kmutex_t *lock;
1356
1357 pipe = ((file_t *)kn->kn_obj)->f_data;
1358 lock = pipe->pipe_lock;
1359
1360 mutex_enter(lock);
1361
1362 switch(kn->kn_filter) {
1363 case EVFILT_WRITE:
1364 /* Need the peer structure, not our own. */
1365 pipe = pipe->pipe_peer;
1366
1367 /* If reader end already closed, just return. */
1368 if (pipe == NULL) {
1369 mutex_exit(lock);
1370 return;
1371 }
1372
1373 break;
1374 default:
1375 /* Nothing to do. */
1376 break;
1377 }
1378
1379 KASSERT(kn->kn_hook == pipe);
1380 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1381 mutex_exit(lock);
1382 }
1383
1384 static int
1385 filt_piperead(struct knote *kn, long hint)
1386 {
1387 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1388 struct pipe *wpipe;
1389
1390 if ((hint & NOTE_SUBMIT) == 0) {
1391 mutex_enter(rpipe->pipe_lock);
1392 }
1393 wpipe = rpipe->pipe_peer;
1394 kn->kn_data = rpipe->pipe_buffer.cnt;
1395
1396 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1397 kn->kn_data = rpipe->pipe_map.cnt;
1398
1399 if ((rpipe->pipe_state & PIPE_EOF) ||
1400 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1401 kn->kn_flags |= EV_EOF;
1402 if ((hint & NOTE_SUBMIT) == 0) {
1403 mutex_exit(rpipe->pipe_lock);
1404 }
1405 return (1);
1406 }
1407
1408 if ((hint & NOTE_SUBMIT) == 0) {
1409 mutex_exit(rpipe->pipe_lock);
1410 }
1411 return (kn->kn_data > 0);
1412 }
1413
1414 static int
1415 filt_pipewrite(struct knote *kn, long hint)
1416 {
1417 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1418 struct pipe *wpipe;
1419
1420 if ((hint & NOTE_SUBMIT) == 0) {
1421 mutex_enter(rpipe->pipe_lock);
1422 }
1423 wpipe = rpipe->pipe_peer;
1424
1425 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1426 kn->kn_data = 0;
1427 kn->kn_flags |= EV_EOF;
1428 if ((hint & NOTE_SUBMIT) == 0) {
1429 mutex_exit(rpipe->pipe_lock);
1430 }
1431 return (1);
1432 }
1433 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1434 if (wpipe->pipe_state & PIPE_DIRECTW)
1435 kn->kn_data = 0;
1436
1437 if ((hint & NOTE_SUBMIT) == 0) {
1438 mutex_exit(rpipe->pipe_lock);
1439 }
1440 return (kn->kn_data >= PIPE_BUF);
1441 }
1442
1443 static const struct filterops pipe_rfiltops =
1444 { 1, NULL, filt_pipedetach, filt_piperead };
1445 static const struct filterops pipe_wfiltops =
1446 { 1, NULL, filt_pipedetach, filt_pipewrite };
1447
1448 static int
1449 pipe_kqfilter(file_t *fp, struct knote *kn)
1450 {
1451 struct pipe *pipe;
1452 kmutex_t *lock;
1453
1454 pipe = ((file_t *)kn->kn_obj)->f_data;
1455 lock = pipe->pipe_lock;
1456
1457 mutex_enter(lock);
1458
1459 switch (kn->kn_filter) {
1460 case EVFILT_READ:
1461 kn->kn_fop = &pipe_rfiltops;
1462 break;
1463 case EVFILT_WRITE:
1464 kn->kn_fop = &pipe_wfiltops;
1465 pipe = pipe->pipe_peer;
1466 if (pipe == NULL) {
1467 /* Other end of pipe has been closed. */
1468 mutex_exit(lock);
1469 return (EBADF);
1470 }
1471 break;
1472 default:
1473 mutex_exit(lock);
1474 return (EINVAL);
1475 }
1476
1477 kn->kn_hook = pipe;
1478 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1479 mutex_exit(lock);
1480
1481 return (0);
1482 }
1483
1484 /*
1485 * Handle pipe sysctls.
1486 */
1487 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1488 {
1489
1490 sysctl_createv(clog, 0, NULL, NULL,
1491 CTLFLAG_PERMANENT,
1492 CTLTYPE_NODE, "kern", NULL,
1493 NULL, 0, NULL, 0,
1494 CTL_KERN, CTL_EOL);
1495 sysctl_createv(clog, 0, NULL, NULL,
1496 CTLFLAG_PERMANENT,
1497 CTLTYPE_NODE, "pipe",
1498 SYSCTL_DESCR("Pipe settings"),
1499 NULL, 0, NULL, 0,
1500 CTL_KERN, KERN_PIPE, CTL_EOL);
1501
1502 sysctl_createv(clog, 0, NULL, NULL,
1503 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1504 CTLTYPE_INT, "maxkvasz",
1505 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1506 "used for pipes"),
1507 NULL, 0, &maxpipekva, 0,
1508 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1509 sysctl_createv(clog, 0, NULL, NULL,
1510 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1511 CTLTYPE_INT, "maxloankvasz",
1512 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1513 NULL, 0, &limitpipekva, 0,
1514 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1515 sysctl_createv(clog, 0, NULL, NULL,
1516 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1517 CTLTYPE_INT, "maxbigpipes",
1518 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1519 NULL, 0, &maxbigpipes, 0,
1520 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1521 sysctl_createv(clog, 0, NULL, NULL,
1522 CTLFLAG_PERMANENT,
1523 CTLTYPE_INT, "nbigpipes",
1524 SYSCTL_DESCR("Number of \"big\" pipes"),
1525 NULL, 0, &nbigpipe, 0,
1526 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1527 sysctl_createv(clog, 0, NULL, NULL,
1528 CTLFLAG_PERMANENT,
1529 CTLTYPE_INT, "kvasize",
1530 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1531 "buffers"),
1532 NULL, 0, &amountpipekva, 0,
1533 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1534 }
1535