Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.134.6.2
      1 /*	$NetBSD: sys_pipe.c,v 1.134.6.2 2012/06/02 11:09:34 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1996 John S. Dyson
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice immediately at the beginning of the file, without modification,
     41  *    this list of conditions, and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Absolutely no warranty of function or purpose is made by the author
     46  *    John S. Dyson.
     47  * 4. Modifications may be freely made to this file if the above conditions
     48  *    are met.
     49  */
     50 
     51 /*
     52  * This file contains a high-performance replacement for the socket-based
     53  * pipes scheme originally used.  It does not support all features of
     54  * sockets, but does do everything that pipes normally do.
     55  *
     56  * This code has two modes of operation, a small write mode and a large
     57  * write mode.  The small write mode acts like conventional pipes with
     58  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     59  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     60  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
     61  * using the UVM page loan facility from where the receiving process can copy
     62  * the data directly from the pages in the sending process.
     63  *
     64  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     65  * happen for small transfers so that the system will not spend all of
     66  * its time context switching.  PIPE_SIZE is constrained by the
     67  * amount of kernel virtual memory.
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.134.6.2 2012/06/02 11:09:34 mrg Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/proc.h>
     76 #include <sys/fcntl.h>
     77 #include <sys/file.h>
     78 #include <sys/filedesc.h>
     79 #include <sys/filio.h>
     80 #include <sys/kernel.h>
     81 #include <sys/ttycom.h>
     82 #include <sys/stat.h>
     83 #include <sys/poll.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/vnode.h>
     86 #include <sys/uio.h>
     87 #include <sys/select.h>
     88 #include <sys/mount.h>
     89 #include <sys/syscallargs.h>
     90 #include <sys/sysctl.h>
     91 #include <sys/kauth.h>
     92 #include <sys/atomic.h>
     93 #include <sys/pipe.h>
     94 
     95 #include <uvm/uvm_extern.h>
     96 
     97 /*
     98  * Use this to disable direct I/O and decrease the code size:
     99  * #define PIPE_NODIRECT
    100  */
    101 
    102 /* XXX Disabled for now; rare hangs switching between direct/buffered */
    103 #define PIPE_NODIRECT
    104 
    105 static int	pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
    106 static int	pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
    107 static int	pipe_close(file_t *);
    108 static int	pipe_poll(file_t *, int);
    109 static int	pipe_kqfilter(file_t *, struct knote *);
    110 static int	pipe_stat(file_t *, struct stat *);
    111 static int	pipe_ioctl(file_t *, u_long, void *);
    112 static void	pipe_restart(file_t *);
    113 
    114 static const struct fileops pipeops = {
    115 	.fo_read = pipe_read,
    116 	.fo_write = pipe_write,
    117 	.fo_ioctl = pipe_ioctl,
    118 	.fo_fcntl = fnullop_fcntl,
    119 	.fo_poll = pipe_poll,
    120 	.fo_stat = pipe_stat,
    121 	.fo_close = pipe_close,
    122 	.fo_kqfilter = pipe_kqfilter,
    123 	.fo_restart = pipe_restart,
    124 };
    125 
    126 /*
    127  * Default pipe buffer size(s), this can be kind-of large now because pipe
    128  * space is pageable.  The pipe code will try to maintain locality of
    129  * reference for performance reasons, so small amounts of outstanding I/O
    130  * will not wipe the cache.
    131  */
    132 #define	MINPIPESIZE	(PIPE_SIZE / 3)
    133 #define	MAXPIPESIZE	(2 * PIPE_SIZE / 3)
    134 
    135 /*
    136  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    137  * is there so that on large systems, we don't exhaust it.
    138  */
    139 #define	MAXPIPEKVA	(8 * 1024 * 1024)
    140 static u_int	maxpipekva = MAXPIPEKVA;
    141 
    142 /*
    143  * Limit for direct transfers, we cannot, of course limit
    144  * the amount of kva for pipes in general though.
    145  */
    146 #define	LIMITPIPEKVA	(16 * 1024 * 1024)
    147 static u_int	limitpipekva = LIMITPIPEKVA;
    148 
    149 /*
    150  * Limit the number of "big" pipes
    151  */
    152 #define	LIMITBIGPIPES	32
    153 static u_int	maxbigpipes = LIMITBIGPIPES;
    154 static u_int	nbigpipe = 0;
    155 
    156 /*
    157  * Amount of KVA consumed by pipe buffers.
    158  */
    159 static u_int	amountpipekva = 0;
    160 
    161 static void	pipeclose(struct pipe *);
    162 static void	pipe_free_kmem(struct pipe *);
    163 static int	pipe_create(struct pipe **, pool_cache_t);
    164 static int	pipelock(struct pipe *, int);
    165 static inline void pipeunlock(struct pipe *);
    166 static void	pipeselwakeup(struct pipe *, struct pipe *, int);
    167 #ifndef PIPE_NODIRECT
    168 static int	pipe_direct_write(file_t *, struct pipe *, struct uio *);
    169 #endif
    170 static int	pipespace(struct pipe *, int);
    171 static int	pipe_ctor(void *, void *, int);
    172 static void	pipe_dtor(void *, void *);
    173 
    174 #ifndef PIPE_NODIRECT
    175 static int	pipe_loan_alloc(struct pipe *, int);
    176 static void	pipe_loan_free(struct pipe *);
    177 #endif /* PIPE_NODIRECT */
    178 
    179 static pool_cache_t	pipe_wr_cache;
    180 static pool_cache_t	pipe_rd_cache;
    181 
    182 void
    183 pipe_init(void)
    184 {
    185 
    186 	/* Writer side is not automatically allocated KVA. */
    187 	pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
    188 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
    189 	KASSERT(pipe_wr_cache != NULL);
    190 
    191 	/* Reader side gets preallocated KVA. */
    192 	pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
    193 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
    194 	KASSERT(pipe_rd_cache != NULL);
    195 }
    196 
    197 static int
    198 pipe_ctor(void *arg, void *obj, int flags)
    199 {
    200 	struct pipe *pipe;
    201 	vaddr_t va;
    202 
    203 	pipe = obj;
    204 
    205 	memset(pipe, 0, sizeof(struct pipe));
    206 	if (arg != NULL) {
    207 		/* Preallocate space. */
    208 		va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
    209 		    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    210 		KASSERT(va != 0);
    211 		pipe->pipe_kmem = va;
    212 		atomic_add_int(&amountpipekva, PIPE_SIZE);
    213 	}
    214 	cv_init(&pipe->pipe_rcv, "pipe_rd");
    215 	cv_init(&pipe->pipe_wcv, "pipe_wr");
    216 	cv_init(&pipe->pipe_draincv, "pipe_drn");
    217 	cv_init(&pipe->pipe_lkcv, "pipe_lk");
    218 	selinit(&pipe->pipe_sel);
    219 	pipe->pipe_state = PIPE_SIGNALR;
    220 
    221 	return 0;
    222 }
    223 
    224 static void
    225 pipe_dtor(void *arg, void *obj)
    226 {
    227 	struct pipe *pipe;
    228 
    229 	pipe = obj;
    230 
    231 	cv_destroy(&pipe->pipe_rcv);
    232 	cv_destroy(&pipe->pipe_wcv);
    233 	cv_destroy(&pipe->pipe_draincv);
    234 	cv_destroy(&pipe->pipe_lkcv);
    235 	seldestroy(&pipe->pipe_sel);
    236 	if (pipe->pipe_kmem != 0) {
    237 		uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
    238 		    UVM_KMF_PAGEABLE);
    239 		atomic_add_int(&amountpipekva, -PIPE_SIZE);
    240 	}
    241 }
    242 
    243 /*
    244  * The pipe system call for the DTYPE_PIPE type of pipes
    245  */
    246 int
    247 pipe1(struct lwp *l, register_t *retval, int flags)
    248 {
    249 	struct pipe *rpipe, *wpipe;
    250 	file_t *rf, *wf;
    251 	int fd, error;
    252 	proc_t *p;
    253 
    254 	if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
    255 		return EINVAL;
    256 	p = curproc;
    257 	rpipe = wpipe = NULL;
    258 	if ((error = pipe_create(&rpipe, pipe_rd_cache)) ||
    259 	    (error = pipe_create(&wpipe, pipe_wr_cache))) {
    260 		goto free2;
    261 	}
    262 	rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    263 	wpipe->pipe_lock = rpipe->pipe_lock;
    264 	mutex_obj_hold(wpipe->pipe_lock);
    265 
    266 	error = fd_allocfile(&rf, &fd);
    267 	if (error)
    268 		goto free2;
    269 	retval[0] = fd;
    270 
    271 	error = fd_allocfile(&wf, &fd);
    272 	if (error)
    273 		goto free3;
    274 	retval[1] = fd;
    275 
    276 	rf->f_flag = FREAD | flags;
    277 	rf->f_type = DTYPE_PIPE;
    278 	rf->f_data = (void *)rpipe;
    279 	rf->f_ops = &pipeops;
    280 	fd_set_exclose(l, (int)retval[0], (flags & O_CLOEXEC) != 0);
    281 
    282 	wf->f_flag = FWRITE | flags;
    283 	wf->f_type = DTYPE_PIPE;
    284 	wf->f_data = (void *)wpipe;
    285 	wf->f_ops = &pipeops;
    286 	fd_set_exclose(l, (int)retval[1], (flags & O_CLOEXEC) != 0);
    287 
    288 	rpipe->pipe_peer = wpipe;
    289 	wpipe->pipe_peer = rpipe;
    290 
    291 	fd_affix(p, rf, (int)retval[0]);
    292 	fd_affix(p, wf, (int)retval[1]);
    293 	return (0);
    294 free3:
    295 	fd_abort(p, rf, (int)retval[0]);
    296 free2:
    297 	pipeclose(wpipe);
    298 	pipeclose(rpipe);
    299 
    300 	return (error);
    301 }
    302 
    303 /*
    304  * Allocate kva for pipe circular buffer, the space is pageable
    305  * This routine will 'realloc' the size of a pipe safely, if it fails
    306  * it will retain the old buffer.
    307  * If it fails it will return ENOMEM.
    308  */
    309 static int
    310 pipespace(struct pipe *pipe, int size)
    311 {
    312 	void *buffer;
    313 
    314 	/*
    315 	 * Allocate pageable virtual address space.  Physical memory is
    316 	 * allocated on demand.
    317 	 */
    318 	if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
    319 		buffer = (void *)pipe->pipe_kmem;
    320 	} else {
    321 		buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
    322 		    0, UVM_KMF_PAGEABLE);
    323 		if (buffer == NULL)
    324 			return (ENOMEM);
    325 		atomic_add_int(&amountpipekva, size);
    326 	}
    327 
    328 	/* free old resources if we're resizing */
    329 	pipe_free_kmem(pipe);
    330 	pipe->pipe_buffer.buffer = buffer;
    331 	pipe->pipe_buffer.size = size;
    332 	pipe->pipe_buffer.in = 0;
    333 	pipe->pipe_buffer.out = 0;
    334 	pipe->pipe_buffer.cnt = 0;
    335 	return (0);
    336 }
    337 
    338 /*
    339  * Initialize and allocate VM and memory for pipe.
    340  */
    341 static int
    342 pipe_create(struct pipe **pipep, pool_cache_t cache)
    343 {
    344 	struct pipe *pipe;
    345 	int error;
    346 
    347 	pipe = pool_cache_get(cache, PR_WAITOK);
    348 	KASSERT(pipe != NULL);
    349 	*pipep = pipe;
    350 	error = 0;
    351 	getnanotime(&pipe->pipe_btime);
    352 	pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
    353 	pipe->pipe_lock = NULL;
    354 	if (cache == pipe_rd_cache) {
    355 		error = pipespace(pipe, PIPE_SIZE);
    356 	} else {
    357 		pipe->pipe_buffer.buffer = NULL;
    358 		pipe->pipe_buffer.size = 0;
    359 		pipe->pipe_buffer.in = 0;
    360 		pipe->pipe_buffer.out = 0;
    361 		pipe->pipe_buffer.cnt = 0;
    362 	}
    363 	return error;
    364 }
    365 
    366 /*
    367  * Lock a pipe for I/O, blocking other access
    368  * Called with pipe spin lock held.
    369  */
    370 static int
    371 pipelock(struct pipe *pipe, int catch)
    372 {
    373 	int error;
    374 
    375 	KASSERT(mutex_owned(pipe->pipe_lock));
    376 
    377 	while (pipe->pipe_state & PIPE_LOCKFL) {
    378 		pipe->pipe_state |= PIPE_LWANT;
    379 		if (catch) {
    380 			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
    381 			if (error != 0)
    382 				return error;
    383 		} else
    384 			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
    385 	}
    386 
    387 	pipe->pipe_state |= PIPE_LOCKFL;
    388 
    389 	return 0;
    390 }
    391 
    392 /*
    393  * unlock a pipe I/O lock
    394  */
    395 static inline void
    396 pipeunlock(struct pipe *pipe)
    397 {
    398 
    399 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
    400 
    401 	pipe->pipe_state &= ~PIPE_LOCKFL;
    402 	if (pipe->pipe_state & PIPE_LWANT) {
    403 		pipe->pipe_state &= ~PIPE_LWANT;
    404 		cv_broadcast(&pipe->pipe_lkcv);
    405 	}
    406 }
    407 
    408 /*
    409  * Select/poll wakup. This also sends SIGIO to peer connected to
    410  * 'sigpipe' side of pipe.
    411  */
    412 static void
    413 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
    414 {
    415 	int band;
    416 
    417 	switch (code) {
    418 	case POLL_IN:
    419 		band = POLLIN|POLLRDNORM;
    420 		break;
    421 	case POLL_OUT:
    422 		band = POLLOUT|POLLWRNORM;
    423 		break;
    424 	case POLL_HUP:
    425 		band = POLLHUP;
    426 		break;
    427 	case POLL_ERR:
    428 		band = POLLERR;
    429 		break;
    430 	default:
    431 		band = 0;
    432 #ifdef DIAGNOSTIC
    433 		printf("bad siginfo code %d in pipe notification.\n", code);
    434 #endif
    435 		break;
    436 	}
    437 
    438 	selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
    439 
    440 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    441 		return;
    442 
    443 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    444 }
    445 
    446 static int
    447 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    448     int flags)
    449 {
    450 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    451 	struct pipebuf *bp = &rpipe->pipe_buffer;
    452 	kmutex_t *lock = rpipe->pipe_lock;
    453 	int error;
    454 	size_t nread = 0;
    455 	size_t size;
    456 	size_t ocnt;
    457 	unsigned int wakeup_state = 0;
    458 
    459 	mutex_enter(lock);
    460 	++rpipe->pipe_busy;
    461 	ocnt = bp->cnt;
    462 
    463 again:
    464 	error = pipelock(rpipe, 1);
    465 	if (error)
    466 		goto unlocked_error;
    467 
    468 	while (uio->uio_resid) {
    469 		/*
    470 		 * Normal pipe buffer receive.
    471 		 */
    472 		if (bp->cnt > 0) {
    473 			size = bp->size - bp->out;
    474 			if (size > bp->cnt)
    475 				size = bp->cnt;
    476 			if (size > uio->uio_resid)
    477 				size = uio->uio_resid;
    478 
    479 			mutex_exit(lock);
    480 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
    481 			mutex_enter(lock);
    482 			if (error)
    483 				break;
    484 
    485 			bp->out += size;
    486 			if (bp->out >= bp->size)
    487 				bp->out = 0;
    488 
    489 			bp->cnt -= size;
    490 
    491 			/*
    492 			 * If there is no more to read in the pipe, reset
    493 			 * its pointers to the beginning.  This improves
    494 			 * cache hit stats.
    495 			 */
    496 			if (bp->cnt == 0) {
    497 				bp->in = 0;
    498 				bp->out = 0;
    499 			}
    500 			nread += size;
    501 			continue;
    502 		}
    503 
    504 #ifndef PIPE_NODIRECT
    505 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
    506 			/*
    507 			 * Direct copy, bypassing a kernel buffer.
    508 			 */
    509 			void *va;
    510 			u_int gen;
    511 
    512 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
    513 
    514 			size = rpipe->pipe_map.cnt;
    515 			if (size > uio->uio_resid)
    516 				size = uio->uio_resid;
    517 
    518 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
    519 			gen = rpipe->pipe_map.egen;
    520 			mutex_exit(lock);
    521 
    522 			/*
    523 			 * Consume emap and read the data from loaned pages.
    524 			 */
    525 			uvm_emap_consume(gen);
    526 			error = uiomove(va, size, uio);
    527 
    528 			mutex_enter(lock);
    529 			if (error)
    530 				break;
    531 			nread += size;
    532 			rpipe->pipe_map.pos += size;
    533 			rpipe->pipe_map.cnt -= size;
    534 			if (rpipe->pipe_map.cnt == 0) {
    535 				rpipe->pipe_state &= ~PIPE_DIRECTR;
    536 				cv_broadcast(&rpipe->pipe_wcv);
    537 			}
    538 			continue;
    539 		}
    540 #endif
    541 		/*
    542 		 * Break if some data was read.
    543 		 */
    544 		if (nread > 0)
    545 			break;
    546 
    547 		/*
    548 		 * Detect EOF condition.
    549 		 * Read returns 0 on EOF, no need to set error.
    550 		 */
    551 		if (rpipe->pipe_state & PIPE_EOF)
    552 			break;
    553 
    554 		/*
    555 		 * Don't block on non-blocking I/O.
    556 		 */
    557 		if (fp->f_flag & FNONBLOCK) {
    558 			error = EAGAIN;
    559 			break;
    560 		}
    561 
    562 		/*
    563 		 * Unlock the pipe buffer for our remaining processing.
    564 		 * We will either break out with an error or we will
    565 		 * sleep and relock to loop.
    566 		 */
    567 		pipeunlock(rpipe);
    568 
    569 		/*
    570 		 * Re-check to see if more direct writes are pending.
    571 		 */
    572 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
    573 			goto again;
    574 
    575 #if 1   /* XXX (dsl) I'm sure these aren't needed here ... */
    576 		/*
    577 		 * We want to read more, wake up select/poll.
    578 		 */
    579 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    580 
    581 		/*
    582 		 * If the "write-side" is blocked, wake it up now.
    583 		 */
    584 		cv_broadcast(&rpipe->pipe_wcv);
    585 #endif
    586 
    587 		if (wakeup_state & PIPE_RESTART) {
    588 			error = ERESTART;
    589 			goto unlocked_error;
    590 		}
    591 
    592 		/* Now wait until the pipe is filled */
    593 		error = cv_wait_sig(&rpipe->pipe_rcv, lock);
    594 		if (error != 0)
    595 			goto unlocked_error;
    596 		wakeup_state = rpipe->pipe_state;
    597 		goto again;
    598 	}
    599 
    600 	if (error == 0)
    601 		getnanotime(&rpipe->pipe_atime);
    602 	pipeunlock(rpipe);
    603 
    604 unlocked_error:
    605 	--rpipe->pipe_busy;
    606 	if (rpipe->pipe_busy == 0) {
    607 		rpipe->pipe_state &= ~PIPE_RESTART;
    608 		cv_broadcast(&rpipe->pipe_draincv);
    609 	}
    610 	if (bp->cnt < MINPIPESIZE) {
    611 		cv_broadcast(&rpipe->pipe_wcv);
    612 	}
    613 
    614 	/*
    615 	 * If anything was read off the buffer, signal to the writer it's
    616 	 * possible to write more data. Also send signal if we are here for the
    617 	 * first time after last write.
    618 	 */
    619 	if ((bp->size - bp->cnt) >= PIPE_BUF
    620 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    621 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    622 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    623 	}
    624 
    625 	mutex_exit(lock);
    626 	return (error);
    627 }
    628 
    629 #ifndef PIPE_NODIRECT
    630 /*
    631  * Allocate structure for loan transfer.
    632  */
    633 static int
    634 pipe_loan_alloc(struct pipe *wpipe, int npages)
    635 {
    636 	vsize_t len;
    637 
    638 	len = (vsize_t)npages << PAGE_SHIFT;
    639 	atomic_add_int(&amountpipekva, len);
    640 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
    641 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    642 	if (wpipe->pipe_map.kva == 0) {
    643 		atomic_add_int(&amountpipekva, -len);
    644 		return (ENOMEM);
    645 	}
    646 
    647 	wpipe->pipe_map.npages = npages;
    648 	wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
    649 	    KM_SLEEP);
    650 	return (0);
    651 }
    652 
    653 /*
    654  * Free resources allocated for loan transfer.
    655  */
    656 static void
    657 pipe_loan_free(struct pipe *wpipe)
    658 {
    659 	vsize_t len;
    660 
    661 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    662 	uvm_emap_remove(wpipe->pipe_map.kva, len);	/* XXX */
    663 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
    664 	wpipe->pipe_map.kva = 0;
    665 	atomic_add_int(&amountpipekva, -len);
    666 	kmem_free(wpipe->pipe_map.pgs,
    667 	    wpipe->pipe_map.npages * sizeof(struct vm_page *));
    668 	wpipe->pipe_map.pgs = NULL;
    669 }
    670 
    671 /*
    672  * NetBSD direct write, using uvm_loan() mechanism.
    673  * This implements the pipe buffer write mechanism.  Note that only
    674  * a direct write OR a normal pipe write can be pending at any given time.
    675  * If there are any characters in the pipe buffer, the direct write will
    676  * be deferred until the receiving process grabs all of the bytes from
    677  * the pipe buffer.  Then the direct mapping write is set-up.
    678  *
    679  * Called with the long-term pipe lock held.
    680  */
    681 static int
    682 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
    683 {
    684 	struct vm_page **pgs;
    685 	vaddr_t bbase, base, bend;
    686 	vsize_t blen, bcnt;
    687 	int error, npages;
    688 	voff_t bpos;
    689 	kmutex_t *lock = wpipe->pipe_lock;
    690 
    691 	KASSERT(mutex_owned(wpipe->pipe_lock));
    692 	KASSERT(wpipe->pipe_map.cnt == 0);
    693 
    694 	mutex_exit(lock);
    695 
    696 	/*
    697 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
    698 	 * not aligned to PAGE_SIZE.
    699 	 */
    700 	bbase = (vaddr_t)uio->uio_iov->iov_base;
    701 	base = trunc_page(bbase);
    702 	bend = round_page(bbase + uio->uio_iov->iov_len);
    703 	blen = bend - base;
    704 	bpos = bbase - base;
    705 
    706 	if (blen > PIPE_DIRECT_CHUNK) {
    707 		blen = PIPE_DIRECT_CHUNK;
    708 		bend = base + blen;
    709 		bcnt = PIPE_DIRECT_CHUNK - bpos;
    710 	} else {
    711 		bcnt = uio->uio_iov->iov_len;
    712 	}
    713 	npages = blen >> PAGE_SHIFT;
    714 
    715 	/*
    716 	 * Free the old kva if we need more pages than we have
    717 	 * allocated.
    718 	 */
    719 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
    720 		pipe_loan_free(wpipe);
    721 
    722 	/* Allocate new kva. */
    723 	if (wpipe->pipe_map.kva == 0) {
    724 		error = pipe_loan_alloc(wpipe, npages);
    725 		if (error) {
    726 			mutex_enter(lock);
    727 			return (error);
    728 		}
    729 	}
    730 
    731 	/* Loan the write buffer memory from writer process */
    732 	pgs = wpipe->pipe_map.pgs;
    733 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
    734 			 pgs, UVM_LOAN_TOPAGE);
    735 	if (error) {
    736 		pipe_loan_free(wpipe);
    737 		mutex_enter(lock);
    738 		return (ENOMEM); /* so that caller fallback to ordinary write */
    739 	}
    740 
    741 	/* Enter the loaned pages to KVA, produce new emap generation number. */
    742 	uvm_emap_enter(wpipe->pipe_map.kva, pgs, npages);
    743 	wpipe->pipe_map.egen = uvm_emap_produce();
    744 
    745 	/* Now we can put the pipe in direct write mode */
    746 	wpipe->pipe_map.pos = bpos;
    747 	wpipe->pipe_map.cnt = bcnt;
    748 
    749 	/*
    750 	 * But before we can let someone do a direct read, we
    751 	 * have to wait until the pipe is drained.  Release the
    752 	 * pipe lock while we wait.
    753 	 */
    754 	mutex_enter(lock);
    755 	wpipe->pipe_state |= PIPE_DIRECTW;
    756 	pipeunlock(wpipe);
    757 
    758 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
    759 		cv_broadcast(&wpipe->pipe_rcv);
    760 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    761 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    762 			error = EPIPE;
    763 	}
    764 
    765 	/* Pipe is drained; next read will off the direct buffer */
    766 	wpipe->pipe_state |= PIPE_DIRECTR;
    767 
    768 	/* Wait until the reader is done */
    769 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
    770 		cv_broadcast(&wpipe->pipe_rcv);
    771 		pipeselwakeup(wpipe, wpipe, POLL_IN);
    772 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    773 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    774 			error = EPIPE;
    775 	}
    776 
    777 	/* Take pipe out of direct write mode */
    778 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
    779 
    780 	/* Acquire the pipe lock and cleanup */
    781 	(void)pipelock(wpipe, 0);
    782 	mutex_exit(lock);
    783 
    784 	if (pgs != NULL) {
    785 		/* XXX: uvm_emap_remove */
    786 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
    787 	}
    788 	if (error || amountpipekva > maxpipekva)
    789 		pipe_loan_free(wpipe);
    790 
    791 	mutex_enter(lock);
    792 	if (error) {
    793 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
    794 
    795 		/*
    796 		 * If nothing was read from what we offered, return error
    797 		 * straight on. Otherwise update uio resid first. Caller
    798 		 * will deal with the error condition, returning short
    799 		 * write, error, or restarting the write(2) as appropriate.
    800 		 */
    801 		if (wpipe->pipe_map.cnt == bcnt) {
    802 			wpipe->pipe_map.cnt = 0;
    803 			cv_broadcast(&wpipe->pipe_wcv);
    804 			return (error);
    805 		}
    806 
    807 		bcnt -= wpipe->pipe_map.cnt;
    808 	}
    809 
    810 	uio->uio_resid -= bcnt;
    811 	/* uio_offset not updated, not set/used for write(2) */
    812 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
    813 	uio->uio_iov->iov_len -= bcnt;
    814 	if (uio->uio_iov->iov_len == 0) {
    815 		uio->uio_iov++;
    816 		uio->uio_iovcnt--;
    817 	}
    818 
    819 	wpipe->pipe_map.cnt = 0;
    820 	return (error);
    821 }
    822 #endif /* !PIPE_NODIRECT */
    823 
    824 static int
    825 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    826     int flags)
    827 {
    828 	struct pipe *wpipe, *rpipe;
    829 	struct pipebuf *bp;
    830 	kmutex_t *lock;
    831 	int error;
    832 	unsigned int wakeup_state = 0;
    833 
    834 	/* We want to write to our peer */
    835 	rpipe = (struct pipe *) fp->f_data;
    836 	lock = rpipe->pipe_lock;
    837 	error = 0;
    838 
    839 	mutex_enter(lock);
    840 	wpipe = rpipe->pipe_peer;
    841 
    842 	/*
    843 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    844 	 */
    845 	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
    846 		mutex_exit(lock);
    847 		return EPIPE;
    848 	}
    849 	++wpipe->pipe_busy;
    850 
    851 	/* Aquire the long-term pipe lock */
    852 	if ((error = pipelock(wpipe, 1)) != 0) {
    853 		--wpipe->pipe_busy;
    854 		if (wpipe->pipe_busy == 0) {
    855 			wpipe->pipe_state &= ~PIPE_RESTART;
    856 			cv_broadcast(&wpipe->pipe_draincv);
    857 		}
    858 		mutex_exit(lock);
    859 		return (error);
    860 	}
    861 
    862 	bp = &wpipe->pipe_buffer;
    863 
    864 	/*
    865 	 * If it is advantageous to resize the pipe buffer, do so.
    866 	 */
    867 	if ((uio->uio_resid > PIPE_SIZE) &&
    868 	    (nbigpipe < maxbigpipes) &&
    869 #ifndef PIPE_NODIRECT
    870 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    871 #endif
    872 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    873 
    874 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    875 			atomic_inc_uint(&nbigpipe);
    876 	}
    877 
    878 	while (uio->uio_resid) {
    879 		size_t space;
    880 
    881 #ifndef PIPE_NODIRECT
    882 		/*
    883 		 * Pipe buffered writes cannot be coincidental with
    884 		 * direct writes.  Also, only one direct write can be
    885 		 * in progress at any one time.  We wait until the currently
    886 		 * executing direct write is completed before continuing.
    887 		 *
    888 		 * We break out if a signal occurs or the reader goes away.
    889 		 */
    890 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
    891 			cv_broadcast(&wpipe->pipe_rcv);
    892 			pipeunlock(wpipe);
    893 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    894 			(void)pipelock(wpipe, 0);
    895 			if (wpipe->pipe_state & PIPE_EOF)
    896 				error = EPIPE;
    897 		}
    898 		if (error)
    899 			break;
    900 
    901 		/*
    902 		 * If the transfer is large, we can gain performance if
    903 		 * we do process-to-process copies directly.
    904 		 * If the write is non-blocking, we don't use the
    905 		 * direct write mechanism.
    906 		 *
    907 		 * The direct write mechanism will detect the reader going
    908 		 * away on us.
    909 		 */
    910 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    911 		    (fp->f_flag & FNONBLOCK) == 0 &&
    912 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
    913 			error = pipe_direct_write(fp, wpipe, uio);
    914 
    915 			/*
    916 			 * Break out if error occurred, unless it's ENOMEM.
    917 			 * ENOMEM means we failed to allocate some resources
    918 			 * for direct write, so we just fallback to ordinary
    919 			 * write. If the direct write was successful,
    920 			 * process rest of data via ordinary write.
    921 			 */
    922 			if (error == 0)
    923 				continue;
    924 
    925 			if (error != ENOMEM)
    926 				break;
    927 		}
    928 #endif /* PIPE_NODIRECT */
    929 
    930 		space = bp->size - bp->cnt;
    931 
    932 		/* Writes of size <= PIPE_BUF must be atomic. */
    933 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    934 			space = 0;
    935 
    936 		if (space > 0) {
    937 			int size;	/* Transfer size */
    938 			int segsize;	/* first segment to transfer */
    939 
    940 			/*
    941 			 * Transfer size is minimum of uio transfer
    942 			 * and free space in pipe buffer.
    943 			 */
    944 			if (space > uio->uio_resid)
    945 				size = uio->uio_resid;
    946 			else
    947 				size = space;
    948 			/*
    949 			 * First segment to transfer is minimum of
    950 			 * transfer size and contiguous space in
    951 			 * pipe buffer.  If first segment to transfer
    952 			 * is less than the transfer size, we've got
    953 			 * a wraparound in the buffer.
    954 			 */
    955 			segsize = bp->size - bp->in;
    956 			if (segsize > size)
    957 				segsize = size;
    958 
    959 			/* Transfer first segment */
    960 			mutex_exit(lock);
    961 			error = uiomove((char *)bp->buffer + bp->in, segsize,
    962 			    uio);
    963 
    964 			if (error == 0 && segsize < size) {
    965 				/*
    966 				 * Transfer remaining part now, to
    967 				 * support atomic writes.  Wraparound
    968 				 * happened.
    969 				 */
    970 				KASSERT(bp->in + segsize == bp->size);
    971 				error = uiomove(bp->buffer,
    972 				    size - segsize, uio);
    973 			}
    974 			mutex_enter(lock);
    975 			if (error)
    976 				break;
    977 
    978 			bp->in += size;
    979 			if (bp->in >= bp->size) {
    980 				KASSERT(bp->in == size - segsize + bp->size);
    981 				bp->in = size - segsize;
    982 			}
    983 
    984 			bp->cnt += size;
    985 			KASSERT(bp->cnt <= bp->size);
    986 			wakeup_state = 0;
    987 		} else {
    988 			/*
    989 			 * If the "read-side" has been blocked, wake it up now.
    990 			 */
    991 			cv_broadcast(&wpipe->pipe_rcv);
    992 
    993 			/*
    994 			 * Don't block on non-blocking I/O.
    995 			 */
    996 			if (fp->f_flag & FNONBLOCK) {
    997 				error = EAGAIN;
    998 				break;
    999 			}
   1000 
   1001 			/*
   1002 			 * We have no more space and have something to offer,
   1003 			 * wake up select/poll.
   1004 			 */
   1005 			if (bp->cnt)
   1006 				pipeselwakeup(wpipe, wpipe, POLL_IN);
   1007 
   1008 			if (wakeup_state & PIPE_RESTART) {
   1009 				error = ERESTART;
   1010 				break;
   1011 			}
   1012 
   1013 			pipeunlock(wpipe);
   1014 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
   1015 			(void)pipelock(wpipe, 0);
   1016 			if (error != 0)
   1017 				break;
   1018 			/*
   1019 			 * If read side wants to go away, we just issue a signal
   1020 			 * to ourselves.
   1021 			 */
   1022 			if (wpipe->pipe_state & PIPE_EOF) {
   1023 				error = EPIPE;
   1024 				break;
   1025 			}
   1026 			wakeup_state = wpipe->pipe_state;
   1027 		}
   1028 	}
   1029 
   1030 	--wpipe->pipe_busy;
   1031 	if (wpipe->pipe_busy == 0) {
   1032 		wpipe->pipe_state &= ~PIPE_RESTART;
   1033 		cv_broadcast(&wpipe->pipe_draincv);
   1034 	}
   1035 	if (bp->cnt > 0) {
   1036 		cv_broadcast(&wpipe->pipe_rcv);
   1037 	}
   1038 
   1039 	/*
   1040 	 * Don't return EPIPE if I/O was successful
   1041 	 */
   1042 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
   1043 		error = 0;
   1044 
   1045 	if (error == 0)
   1046 		getnanotime(&wpipe->pipe_mtime);
   1047 
   1048 	/*
   1049 	 * We have something to offer, wake up select/poll.
   1050 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1051 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1052 	 */
   1053 	if (bp->cnt)
   1054 		pipeselwakeup(wpipe, wpipe, POLL_IN);
   1055 
   1056 	/*
   1057 	 * Arrange for next read(2) to do a signal.
   1058 	 */
   1059 	wpipe->pipe_state |= PIPE_SIGNALR;
   1060 
   1061 	pipeunlock(wpipe);
   1062 	mutex_exit(lock);
   1063 	return (error);
   1064 }
   1065 
   1066 /*
   1067  * We implement a very minimal set of ioctls for compatibility with sockets.
   1068  */
   1069 int
   1070 pipe_ioctl(file_t *fp, u_long cmd, void *data)
   1071 {
   1072 	struct pipe *pipe = fp->f_data;
   1073 	kmutex_t *lock = pipe->pipe_lock;
   1074 
   1075 	switch (cmd) {
   1076 
   1077 	case FIONBIO:
   1078 		return (0);
   1079 
   1080 	case FIOASYNC:
   1081 		mutex_enter(lock);
   1082 		if (*(int *)data) {
   1083 			pipe->pipe_state |= PIPE_ASYNC;
   1084 		} else {
   1085 			pipe->pipe_state &= ~PIPE_ASYNC;
   1086 		}
   1087 		mutex_exit(lock);
   1088 		return (0);
   1089 
   1090 	case FIONREAD:
   1091 		mutex_enter(lock);
   1092 #ifndef PIPE_NODIRECT
   1093 		if (pipe->pipe_state & PIPE_DIRECTW)
   1094 			*(int *)data = pipe->pipe_map.cnt;
   1095 		else
   1096 #endif
   1097 			*(int *)data = pipe->pipe_buffer.cnt;
   1098 		mutex_exit(lock);
   1099 		return (0);
   1100 
   1101 	case FIONWRITE:
   1102 		/* Look at other side */
   1103 		pipe = pipe->pipe_peer;
   1104 		mutex_enter(lock);
   1105 #ifndef PIPE_NODIRECT
   1106 		if (pipe->pipe_state & PIPE_DIRECTW)
   1107 			*(int *)data = pipe->pipe_map.cnt;
   1108 		else
   1109 #endif
   1110 			*(int *)data = pipe->pipe_buffer.cnt;
   1111 		mutex_exit(lock);
   1112 		return (0);
   1113 
   1114 	case FIONSPACE:
   1115 		/* Look at other side */
   1116 		pipe = pipe->pipe_peer;
   1117 		mutex_enter(lock);
   1118 #ifndef PIPE_NODIRECT
   1119 		/*
   1120 		 * If we're in direct-mode, we don't really have a
   1121 		 * send queue, and any other write will block. Thus
   1122 		 * zero seems like the best answer.
   1123 		 */
   1124 		if (pipe->pipe_state & PIPE_DIRECTW)
   1125 			*(int *)data = 0;
   1126 		else
   1127 #endif
   1128 			*(int *)data = pipe->pipe_buffer.size -
   1129 			    pipe->pipe_buffer.cnt;
   1130 		mutex_exit(lock);
   1131 		return (0);
   1132 
   1133 	case TIOCSPGRP:
   1134 	case FIOSETOWN:
   1135 		return fsetown(&pipe->pipe_pgid, cmd, data);
   1136 
   1137 	case TIOCGPGRP:
   1138 	case FIOGETOWN:
   1139 		return fgetown(pipe->pipe_pgid, cmd, data);
   1140 
   1141 	}
   1142 	return (EPASSTHROUGH);
   1143 }
   1144 
   1145 int
   1146 pipe_poll(file_t *fp, int events)
   1147 {
   1148 	struct pipe *rpipe = fp->f_data;
   1149 	struct pipe *wpipe;
   1150 	int eof = 0;
   1151 	int revents = 0;
   1152 
   1153 	mutex_enter(rpipe->pipe_lock);
   1154 	wpipe = rpipe->pipe_peer;
   1155 
   1156 	if (events & (POLLIN | POLLRDNORM))
   1157 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1158 #ifndef PIPE_NODIRECT
   1159 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
   1160 #endif
   1161 		    (rpipe->pipe_state & PIPE_EOF))
   1162 			revents |= events & (POLLIN | POLLRDNORM);
   1163 
   1164 	eof |= (rpipe->pipe_state & PIPE_EOF);
   1165 
   1166 	if (wpipe == NULL)
   1167 		revents |= events & (POLLOUT | POLLWRNORM);
   1168 	else {
   1169 		if (events & (POLLOUT | POLLWRNORM))
   1170 			if ((wpipe->pipe_state & PIPE_EOF) || (
   1171 #ifndef PIPE_NODIRECT
   1172 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1173 #endif
   1174 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1175 				revents |= events & (POLLOUT | POLLWRNORM);
   1176 
   1177 		eof |= (wpipe->pipe_state & PIPE_EOF);
   1178 	}
   1179 
   1180 	if (wpipe == NULL || eof)
   1181 		revents |= POLLHUP;
   1182 
   1183 	if (revents == 0) {
   1184 		if (events & (POLLIN | POLLRDNORM))
   1185 			selrecord(curlwp, &rpipe->pipe_sel);
   1186 
   1187 		if (events & (POLLOUT | POLLWRNORM))
   1188 			selrecord(curlwp, &wpipe->pipe_sel);
   1189 	}
   1190 	mutex_exit(rpipe->pipe_lock);
   1191 
   1192 	return (revents);
   1193 }
   1194 
   1195 static int
   1196 pipe_stat(file_t *fp, struct stat *ub)
   1197 {
   1198 	struct pipe *pipe = fp->f_data;
   1199 
   1200 	mutex_enter(pipe->pipe_lock);
   1201 	memset(ub, 0, sizeof(*ub));
   1202 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1203 	ub->st_blksize = pipe->pipe_buffer.size;
   1204 	if (ub->st_blksize == 0 && pipe->pipe_peer)
   1205 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
   1206 	ub->st_size = pipe->pipe_buffer.cnt;
   1207 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1208 	ub->st_atimespec = pipe->pipe_atime;
   1209 	ub->st_mtimespec = pipe->pipe_mtime;
   1210 	ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
   1211 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
   1212 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
   1213 
   1214 	/*
   1215 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1216 	 * XXX (st_dev, st_ino) should be unique.
   1217 	 */
   1218 	mutex_exit(pipe->pipe_lock);
   1219 	return 0;
   1220 }
   1221 
   1222 static int
   1223 pipe_close(file_t *fp)
   1224 {
   1225 	struct pipe *pipe = fp->f_data;
   1226 
   1227 	fp->f_data = NULL;
   1228 	pipeclose(pipe);
   1229 	return (0);
   1230 }
   1231 
   1232 static void
   1233 pipe_restart(file_t *fp)
   1234 {
   1235 	struct pipe *pipe = fp->f_data;
   1236 
   1237 	/*
   1238 	 * Unblock blocked reads/writes in order to allow close() to complete.
   1239 	 * System calls return ERESTART so that the fd is revalidated.
   1240 	 * (Partial writes return the transfer length.)
   1241 	 */
   1242 	mutex_enter(pipe->pipe_lock);
   1243 	pipe->pipe_state |= PIPE_RESTART;
   1244 	/* Wakeup both cvs, maybe we only need one, but maybe there are some
   1245 	 * other paths where wakeup is needed, and it saves deciding which! */
   1246 	cv_broadcast(&pipe->pipe_rcv);
   1247 	cv_broadcast(&pipe->pipe_wcv);
   1248 	mutex_exit(pipe->pipe_lock);
   1249 }
   1250 
   1251 static void
   1252 pipe_free_kmem(struct pipe *pipe)
   1253 {
   1254 
   1255 	if (pipe->pipe_buffer.buffer != NULL) {
   1256 		if (pipe->pipe_buffer.size > PIPE_SIZE) {
   1257 			atomic_dec_uint(&nbigpipe);
   1258 		}
   1259 		if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
   1260 			uvm_km_free(kernel_map,
   1261 			    (vaddr_t)pipe->pipe_buffer.buffer,
   1262 			    pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
   1263 			atomic_add_int(&amountpipekva,
   1264 			    -pipe->pipe_buffer.size);
   1265 		}
   1266 		pipe->pipe_buffer.buffer = NULL;
   1267 	}
   1268 #ifndef PIPE_NODIRECT
   1269 	if (pipe->pipe_map.kva != 0) {
   1270 		pipe_loan_free(pipe);
   1271 		pipe->pipe_map.cnt = 0;
   1272 		pipe->pipe_map.kva = 0;
   1273 		pipe->pipe_map.pos = 0;
   1274 		pipe->pipe_map.npages = 0;
   1275 	}
   1276 #endif /* !PIPE_NODIRECT */
   1277 }
   1278 
   1279 /*
   1280  * Shutdown the pipe.
   1281  */
   1282 static void
   1283 pipeclose(struct pipe *pipe)
   1284 {
   1285 	kmutex_t *lock;
   1286 	struct pipe *ppipe;
   1287 
   1288 	if (pipe == NULL)
   1289 		return;
   1290 
   1291 	KASSERT(cv_is_valid(&pipe->pipe_rcv));
   1292 	KASSERT(cv_is_valid(&pipe->pipe_wcv));
   1293 	KASSERT(cv_is_valid(&pipe->pipe_draincv));
   1294 	KASSERT(cv_is_valid(&pipe->pipe_lkcv));
   1295 
   1296 	lock = pipe->pipe_lock;
   1297 	if (lock == NULL)
   1298 		/* Must have failed during create */
   1299 		goto free_resources;
   1300 
   1301 	mutex_enter(lock);
   1302 	pipeselwakeup(pipe, pipe, POLL_HUP);
   1303 
   1304 	/*
   1305 	 * If the other side is blocked, wake it up saying that
   1306 	 * we want to close it down.
   1307 	 */
   1308 	pipe->pipe_state |= PIPE_EOF;
   1309 	if (pipe->pipe_busy) {
   1310 		while (pipe->pipe_busy) {
   1311 			cv_broadcast(&pipe->pipe_wcv);
   1312 			cv_wait_sig(&pipe->pipe_draincv, lock);
   1313 		}
   1314 	}
   1315 
   1316 	/*
   1317 	 * Disconnect from peer.
   1318 	 */
   1319 	if ((ppipe = pipe->pipe_peer) != NULL) {
   1320 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
   1321 		ppipe->pipe_state |= PIPE_EOF;
   1322 		cv_broadcast(&ppipe->pipe_rcv);
   1323 		ppipe->pipe_peer = NULL;
   1324 	}
   1325 
   1326 	/*
   1327 	 * Any knote objects still left in the list are
   1328 	 * the one attached by peer.  Since no one will
   1329 	 * traverse this list, we just clear it.
   1330 	 */
   1331 	SLIST_INIT(&pipe->pipe_sel.sel_klist);
   1332 
   1333 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
   1334 	mutex_exit(lock);
   1335 	mutex_obj_free(lock);
   1336 
   1337 	/*
   1338 	 * Free resources.
   1339 	 */
   1340     free_resources:
   1341 	pipe->pipe_pgid = 0;
   1342 	pipe->pipe_state = PIPE_SIGNALR;
   1343 	pipe_free_kmem(pipe);
   1344 	if (pipe->pipe_kmem != 0) {
   1345 		pool_cache_put(pipe_rd_cache, pipe);
   1346 	} else {
   1347 		pool_cache_put(pipe_wr_cache, pipe);
   1348 	}
   1349 }
   1350 
   1351 static void
   1352 filt_pipedetach(struct knote *kn)
   1353 {
   1354 	struct pipe *pipe;
   1355 	kmutex_t *lock;
   1356 
   1357 	pipe = ((file_t *)kn->kn_obj)->f_data;
   1358 	lock = pipe->pipe_lock;
   1359 
   1360 	mutex_enter(lock);
   1361 
   1362 	switch(kn->kn_filter) {
   1363 	case EVFILT_WRITE:
   1364 		/* Need the peer structure, not our own. */
   1365 		pipe = pipe->pipe_peer;
   1366 
   1367 		/* If reader end already closed, just return. */
   1368 		if (pipe == NULL) {
   1369 			mutex_exit(lock);
   1370 			return;
   1371 		}
   1372 
   1373 		break;
   1374 	default:
   1375 		/* Nothing to do. */
   1376 		break;
   1377 	}
   1378 
   1379 	KASSERT(kn->kn_hook == pipe);
   1380 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
   1381 	mutex_exit(lock);
   1382 }
   1383 
   1384 static int
   1385 filt_piperead(struct knote *kn, long hint)
   1386 {
   1387 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
   1388 	struct pipe *wpipe;
   1389 
   1390 	if ((hint & NOTE_SUBMIT) == 0) {
   1391 		mutex_enter(rpipe->pipe_lock);
   1392 	}
   1393 	wpipe = rpipe->pipe_peer;
   1394 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1395 
   1396 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1397 		kn->kn_data = rpipe->pipe_map.cnt;
   1398 
   1399 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1400 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1401 		kn->kn_flags |= EV_EOF;
   1402 		if ((hint & NOTE_SUBMIT) == 0) {
   1403 			mutex_exit(rpipe->pipe_lock);
   1404 		}
   1405 		return (1);
   1406 	}
   1407 
   1408 	if ((hint & NOTE_SUBMIT) == 0) {
   1409 		mutex_exit(rpipe->pipe_lock);
   1410 	}
   1411 	return (kn->kn_data > 0);
   1412 }
   1413 
   1414 static int
   1415 filt_pipewrite(struct knote *kn, long hint)
   1416 {
   1417 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
   1418 	struct pipe *wpipe;
   1419 
   1420 	if ((hint & NOTE_SUBMIT) == 0) {
   1421 		mutex_enter(rpipe->pipe_lock);
   1422 	}
   1423 	wpipe = rpipe->pipe_peer;
   1424 
   1425 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1426 		kn->kn_data = 0;
   1427 		kn->kn_flags |= EV_EOF;
   1428 		if ((hint & NOTE_SUBMIT) == 0) {
   1429 			mutex_exit(rpipe->pipe_lock);
   1430 		}
   1431 		return (1);
   1432 	}
   1433 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1434 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1435 		kn->kn_data = 0;
   1436 
   1437 	if ((hint & NOTE_SUBMIT) == 0) {
   1438 		mutex_exit(rpipe->pipe_lock);
   1439 	}
   1440 	return (kn->kn_data >= PIPE_BUF);
   1441 }
   1442 
   1443 static const struct filterops pipe_rfiltops =
   1444 	{ 1, NULL, filt_pipedetach, filt_piperead };
   1445 static const struct filterops pipe_wfiltops =
   1446 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
   1447 
   1448 static int
   1449 pipe_kqfilter(file_t *fp, struct knote *kn)
   1450 {
   1451 	struct pipe *pipe;
   1452 	kmutex_t *lock;
   1453 
   1454 	pipe = ((file_t *)kn->kn_obj)->f_data;
   1455 	lock = pipe->pipe_lock;
   1456 
   1457 	mutex_enter(lock);
   1458 
   1459 	switch (kn->kn_filter) {
   1460 	case EVFILT_READ:
   1461 		kn->kn_fop = &pipe_rfiltops;
   1462 		break;
   1463 	case EVFILT_WRITE:
   1464 		kn->kn_fop = &pipe_wfiltops;
   1465 		pipe = pipe->pipe_peer;
   1466 		if (pipe == NULL) {
   1467 			/* Other end of pipe has been closed. */
   1468 			mutex_exit(lock);
   1469 			return (EBADF);
   1470 		}
   1471 		break;
   1472 	default:
   1473 		mutex_exit(lock);
   1474 		return (EINVAL);
   1475 	}
   1476 
   1477 	kn->kn_hook = pipe;
   1478 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
   1479 	mutex_exit(lock);
   1480 
   1481 	return (0);
   1482 }
   1483 
   1484 /*
   1485  * Handle pipe sysctls.
   1486  */
   1487 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1488 {
   1489 
   1490 	sysctl_createv(clog, 0, NULL, NULL,
   1491 		       CTLFLAG_PERMANENT,
   1492 		       CTLTYPE_NODE, "kern", NULL,
   1493 		       NULL, 0, NULL, 0,
   1494 		       CTL_KERN, CTL_EOL);
   1495 	sysctl_createv(clog, 0, NULL, NULL,
   1496 		       CTLFLAG_PERMANENT,
   1497 		       CTLTYPE_NODE, "pipe",
   1498 		       SYSCTL_DESCR("Pipe settings"),
   1499 		       NULL, 0, NULL, 0,
   1500 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1501 
   1502 	sysctl_createv(clog, 0, NULL, NULL,
   1503 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1504 		       CTLTYPE_INT, "maxkvasz",
   1505 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1506 				    "used for pipes"),
   1507 		       NULL, 0, &maxpipekva, 0,
   1508 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
   1509 	sysctl_createv(clog, 0, NULL, NULL,
   1510 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1511 		       CTLTYPE_INT, "maxloankvasz",
   1512 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
   1513 		       NULL, 0, &limitpipekva, 0,
   1514 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
   1515 	sysctl_createv(clog, 0, NULL, NULL,
   1516 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1517 		       CTLTYPE_INT, "maxbigpipes",
   1518 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
   1519 		       NULL, 0, &maxbigpipes, 0,
   1520 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1521 	sysctl_createv(clog, 0, NULL, NULL,
   1522 		       CTLFLAG_PERMANENT,
   1523 		       CTLTYPE_INT, "nbigpipes",
   1524 		       SYSCTL_DESCR("Number of \"big\" pipes"),
   1525 		       NULL, 0, &nbigpipe, 0,
   1526 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1527 	sysctl_createv(clog, 0, NULL, NULL,
   1528 		       CTLFLAG_PERMANENT,
   1529 		       CTLTYPE_INT, "kvasize",
   1530 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
   1531 				    "buffers"),
   1532 		       NULL, 0, &amountpipekva, 0,
   1533 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1534 }
   1535