Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.136.2.2
      1 /*	$NetBSD: sys_pipe.c,v 1.136.2.2 2017/12/03 11:38:45 jdolecek Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1996 John S. Dyson
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice immediately at the beginning of the file, without modification,
     41  *    this list of conditions, and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Absolutely no warranty of function or purpose is made by the author
     46  *    John S. Dyson.
     47  * 4. Modifications may be freely made to this file if the above conditions
     48  *    are met.
     49  */
     50 
     51 /*
     52  * This file contains a high-performance replacement for the socket-based
     53  * pipes scheme originally used.  It does not support all features of
     54  * sockets, but does do everything that pipes normally do.
     55  *
     56  * This code has two modes of operation, a small write mode and a large
     57  * write mode.  The small write mode acts like conventional pipes with
     58  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     59  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     60  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
     61  * using the UVM page loan facility from where the receiving process can copy
     62  * the data directly from the pages in the sending process.
     63  *
     64  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     65  * happen for small transfers so that the system will not spend all of
     66  * its time context switching.  PIPE_SIZE is constrained by the
     67  * amount of kernel virtual memory.
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.136.2.2 2017/12/03 11:38:45 jdolecek Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/proc.h>
     76 #include <sys/fcntl.h>
     77 #include <sys/file.h>
     78 #include <sys/filedesc.h>
     79 #include <sys/filio.h>
     80 #include <sys/kernel.h>
     81 #include <sys/ttycom.h>
     82 #include <sys/stat.h>
     83 #include <sys/poll.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/vnode.h>
     86 #include <sys/uio.h>
     87 #include <sys/select.h>
     88 #include <sys/mount.h>
     89 #include <sys/syscallargs.h>
     90 #include <sys/sysctl.h>
     91 #include <sys/kauth.h>
     92 #include <sys/atomic.h>
     93 #include <sys/pipe.h>
     94 
     95 #include <uvm/uvm_extern.h>
     96 
     97 /*
     98  * Use this to disable direct I/O and decrease the code size:
     99  * #define PIPE_NODIRECT
    100  */
    101 
    102 /* XXX Disabled for now; rare hangs switching between direct/buffered */
    103 #define PIPE_NODIRECT
    104 
    105 static int	pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
    106 static int	pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
    107 static int	pipe_close(file_t *);
    108 static int	pipe_poll(file_t *, int);
    109 static int	pipe_kqfilter(file_t *, struct knote *);
    110 static int	pipe_stat(file_t *, struct stat *);
    111 static int	pipe_ioctl(file_t *, u_long, void *);
    112 static void	pipe_restart(file_t *);
    113 
    114 static const struct fileops pipeops = {
    115 	.fo_name = "pipe",
    116 	.fo_read = pipe_read,
    117 	.fo_write = pipe_write,
    118 	.fo_ioctl = pipe_ioctl,
    119 	.fo_fcntl = fnullop_fcntl,
    120 	.fo_poll = pipe_poll,
    121 	.fo_stat = pipe_stat,
    122 	.fo_close = pipe_close,
    123 	.fo_kqfilter = pipe_kqfilter,
    124 	.fo_restart = pipe_restart,
    125 };
    126 
    127 /*
    128  * Default pipe buffer size(s), this can be kind-of large now because pipe
    129  * space is pageable.  The pipe code will try to maintain locality of
    130  * reference for performance reasons, so small amounts of outstanding I/O
    131  * will not wipe the cache.
    132  */
    133 #define	MINPIPESIZE	(PIPE_SIZE / 3)
    134 #define	MAXPIPESIZE	(2 * PIPE_SIZE / 3)
    135 
    136 /*
    137  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    138  * is there so that on large systems, we don't exhaust it.
    139  */
    140 #define	MAXPIPEKVA	(8 * 1024 * 1024)
    141 static u_int	maxpipekva = MAXPIPEKVA;
    142 
    143 /*
    144  * Limit for direct transfers, we cannot, of course limit
    145  * the amount of kva for pipes in general though.
    146  */
    147 #define	LIMITPIPEKVA	(16 * 1024 * 1024)
    148 static u_int	limitpipekva = LIMITPIPEKVA;
    149 
    150 /*
    151  * Limit the number of "big" pipes
    152  */
    153 #define	LIMITBIGPIPES	32
    154 static u_int	maxbigpipes = LIMITBIGPIPES;
    155 static u_int	nbigpipe = 0;
    156 
    157 /*
    158  * Amount of KVA consumed by pipe buffers.
    159  */
    160 static u_int	amountpipekva = 0;
    161 
    162 static void	pipeclose(struct pipe *);
    163 static void	pipe_free_kmem(struct pipe *);
    164 static int	pipe_create(struct pipe **, pool_cache_t);
    165 static int	pipelock(struct pipe *, bool);
    166 static inline void pipeunlock(struct pipe *);
    167 static void	pipeselwakeup(struct pipe *, struct pipe *, int);
    168 #ifndef PIPE_NODIRECT
    169 static int	pipe_direct_write(file_t *, struct pipe *, struct uio *);
    170 #endif
    171 static int	pipespace(struct pipe *, int);
    172 static int	pipe_ctor(void *, void *, int);
    173 static void	pipe_dtor(void *, void *);
    174 
    175 #ifndef PIPE_NODIRECT
    176 static int	pipe_loan_alloc(struct pipe *, int);
    177 static void	pipe_loan_free(struct pipe *);
    178 #endif /* PIPE_NODIRECT */
    179 
    180 static pool_cache_t	pipe_wr_cache;
    181 static pool_cache_t	pipe_rd_cache;
    182 
    183 void
    184 pipe_init(void)
    185 {
    186 
    187 	/* Writer side is not automatically allocated KVA. */
    188 	pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
    189 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
    190 	KASSERT(pipe_wr_cache != NULL);
    191 
    192 	/* Reader side gets preallocated KVA. */
    193 	pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
    194 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
    195 	KASSERT(pipe_rd_cache != NULL);
    196 }
    197 
    198 static int
    199 pipe_ctor(void *arg, void *obj, int flags)
    200 {
    201 	struct pipe *pipe;
    202 	vaddr_t va;
    203 
    204 	pipe = obj;
    205 
    206 	memset(pipe, 0, sizeof(struct pipe));
    207 	if (arg != NULL) {
    208 		/* Preallocate space. */
    209 		va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
    210 		    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    211 		KASSERT(va != 0);
    212 		pipe->pipe_kmem = va;
    213 		atomic_add_int(&amountpipekva, PIPE_SIZE);
    214 	}
    215 	cv_init(&pipe->pipe_rcv, "pipe_rd");
    216 	cv_init(&pipe->pipe_wcv, "pipe_wr");
    217 	cv_init(&pipe->pipe_draincv, "pipe_drn");
    218 	cv_init(&pipe->pipe_lkcv, "pipe_lk");
    219 	selinit(&pipe->pipe_sel);
    220 	pipe->pipe_state = PIPE_SIGNALR;
    221 
    222 	return 0;
    223 }
    224 
    225 static void
    226 pipe_dtor(void *arg, void *obj)
    227 {
    228 	struct pipe *pipe;
    229 
    230 	pipe = obj;
    231 
    232 	cv_destroy(&pipe->pipe_rcv);
    233 	cv_destroy(&pipe->pipe_wcv);
    234 	cv_destroy(&pipe->pipe_draincv);
    235 	cv_destroy(&pipe->pipe_lkcv);
    236 	seldestroy(&pipe->pipe_sel);
    237 	if (pipe->pipe_kmem != 0) {
    238 		uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
    239 		    UVM_KMF_PAGEABLE);
    240 		atomic_add_int(&amountpipekva, -PIPE_SIZE);
    241 	}
    242 }
    243 
    244 /*
    245  * The pipe system call for the DTYPE_PIPE type of pipes
    246  */
    247 int
    248 pipe1(struct lwp *l, register_t *retval, int flags)
    249 {
    250 	struct pipe *rpipe, *wpipe;
    251 	file_t *rf, *wf;
    252 	int fd, error;
    253 	proc_t *p;
    254 
    255 	if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
    256 		return EINVAL;
    257 	p = curproc;
    258 	rpipe = wpipe = NULL;
    259 	if ((error = pipe_create(&rpipe, pipe_rd_cache)) ||
    260 	    (error = pipe_create(&wpipe, pipe_wr_cache))) {
    261 		goto free2;
    262 	}
    263 	rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    264 	wpipe->pipe_lock = rpipe->pipe_lock;
    265 	mutex_obj_hold(wpipe->pipe_lock);
    266 
    267 	error = fd_allocfile(&rf, &fd);
    268 	if (error)
    269 		goto free2;
    270 	retval[0] = fd;
    271 
    272 	error = fd_allocfile(&wf, &fd);
    273 	if (error)
    274 		goto free3;
    275 	retval[1] = fd;
    276 
    277 	rf->f_flag = FREAD | flags;
    278 	rf->f_type = DTYPE_PIPE;
    279 	rf->f_pipe = rpipe;
    280 	rf->f_ops = &pipeops;
    281 	fd_set_exclose(l, (int)retval[0], (flags & O_CLOEXEC) != 0);
    282 
    283 	wf->f_flag = FWRITE | flags;
    284 	wf->f_type = DTYPE_PIPE;
    285 	wf->f_pipe = wpipe;
    286 	wf->f_ops = &pipeops;
    287 	fd_set_exclose(l, (int)retval[1], (flags & O_CLOEXEC) != 0);
    288 
    289 	rpipe->pipe_peer = wpipe;
    290 	wpipe->pipe_peer = rpipe;
    291 
    292 	fd_affix(p, rf, (int)retval[0]);
    293 	fd_affix(p, wf, (int)retval[1]);
    294 	return (0);
    295 free3:
    296 	fd_abort(p, rf, (int)retval[0]);
    297 free2:
    298 	pipeclose(wpipe);
    299 	pipeclose(rpipe);
    300 
    301 	return (error);
    302 }
    303 
    304 /*
    305  * Allocate kva for pipe circular buffer, the space is pageable
    306  * This routine will 'realloc' the size of a pipe safely, if it fails
    307  * it will retain the old buffer.
    308  * If it fails it will return ENOMEM.
    309  */
    310 static int
    311 pipespace(struct pipe *pipe, int size)
    312 {
    313 	void *buffer;
    314 
    315 	/*
    316 	 * Allocate pageable virtual address space.  Physical memory is
    317 	 * allocated on demand.
    318 	 */
    319 	if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
    320 		buffer = (void *)pipe->pipe_kmem;
    321 	} else {
    322 		buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
    323 		    0, UVM_KMF_PAGEABLE);
    324 		if (buffer == NULL)
    325 			return (ENOMEM);
    326 		atomic_add_int(&amountpipekva, size);
    327 	}
    328 
    329 	/* free old resources if we're resizing */
    330 	pipe_free_kmem(pipe);
    331 	pipe->pipe_buffer.buffer = buffer;
    332 	pipe->pipe_buffer.size = size;
    333 	pipe->pipe_buffer.in = 0;
    334 	pipe->pipe_buffer.out = 0;
    335 	pipe->pipe_buffer.cnt = 0;
    336 	return (0);
    337 }
    338 
    339 /*
    340  * Initialize and allocate VM and memory for pipe.
    341  */
    342 static int
    343 pipe_create(struct pipe **pipep, pool_cache_t cache)
    344 {
    345 	struct pipe *pipe;
    346 	int error;
    347 
    348 	pipe = pool_cache_get(cache, PR_WAITOK);
    349 	KASSERT(pipe != NULL);
    350 	*pipep = pipe;
    351 	error = 0;
    352 	getnanotime(&pipe->pipe_btime);
    353 	pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
    354 	pipe->pipe_lock = NULL;
    355 	if (cache == pipe_rd_cache) {
    356 		error = pipespace(pipe, PIPE_SIZE);
    357 	} else {
    358 		pipe->pipe_buffer.buffer = NULL;
    359 		pipe->pipe_buffer.size = 0;
    360 		pipe->pipe_buffer.in = 0;
    361 		pipe->pipe_buffer.out = 0;
    362 		pipe->pipe_buffer.cnt = 0;
    363 	}
    364 	return error;
    365 }
    366 
    367 /*
    368  * Lock a pipe for I/O, blocking other access
    369  * Called with pipe spin lock held.
    370  */
    371 static int
    372 pipelock(struct pipe *pipe, bool catch_p)
    373 {
    374 	int error;
    375 
    376 	KASSERT(mutex_owned(pipe->pipe_lock));
    377 
    378 	while (pipe->pipe_state & PIPE_LOCKFL) {
    379 		pipe->pipe_state |= PIPE_LWANT;
    380 		if (catch_p) {
    381 			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
    382 			if (error != 0)
    383 				return error;
    384 		} else
    385 			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
    386 	}
    387 
    388 	pipe->pipe_state |= PIPE_LOCKFL;
    389 
    390 	return 0;
    391 }
    392 
    393 /*
    394  * unlock a pipe I/O lock
    395  */
    396 static inline void
    397 pipeunlock(struct pipe *pipe)
    398 {
    399 
    400 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
    401 
    402 	pipe->pipe_state &= ~PIPE_LOCKFL;
    403 	if (pipe->pipe_state & PIPE_LWANT) {
    404 		pipe->pipe_state &= ~PIPE_LWANT;
    405 		cv_broadcast(&pipe->pipe_lkcv);
    406 	}
    407 }
    408 
    409 /*
    410  * Select/poll wakup. This also sends SIGIO to peer connected to
    411  * 'sigpipe' side of pipe.
    412  */
    413 static void
    414 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
    415 {
    416 	int band;
    417 
    418 	switch (code) {
    419 	case POLL_IN:
    420 		band = POLLIN|POLLRDNORM;
    421 		break;
    422 	case POLL_OUT:
    423 		band = POLLOUT|POLLWRNORM;
    424 		break;
    425 	case POLL_HUP:
    426 		band = POLLHUP;
    427 		break;
    428 	case POLL_ERR:
    429 		band = POLLERR;
    430 		break;
    431 	default:
    432 		band = 0;
    433 #ifdef DIAGNOSTIC
    434 		printf("bad siginfo code %d in pipe notification.\n", code);
    435 #endif
    436 		break;
    437 	}
    438 
    439 	selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
    440 
    441 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    442 		return;
    443 
    444 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    445 }
    446 
    447 static int
    448 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    449     int flags)
    450 {
    451 	struct pipe *rpipe = fp->f_pipe;
    452 	struct pipebuf *bp = &rpipe->pipe_buffer;
    453 	kmutex_t *lock = rpipe->pipe_lock;
    454 	int error;
    455 	size_t nread = 0;
    456 	size_t size;
    457 	size_t ocnt;
    458 	unsigned int wakeup_state = 0;
    459 
    460 	mutex_enter(lock);
    461 	++rpipe->pipe_busy;
    462 	ocnt = bp->cnt;
    463 
    464 again:
    465 	error = pipelock(rpipe, true);
    466 	if (error)
    467 		goto unlocked_error;
    468 
    469 	while (uio->uio_resid) {
    470 		/*
    471 		 * Normal pipe buffer receive.
    472 		 */
    473 		if (bp->cnt > 0) {
    474 			size = bp->size - bp->out;
    475 			if (size > bp->cnt)
    476 				size = bp->cnt;
    477 			if (size > uio->uio_resid)
    478 				size = uio->uio_resid;
    479 
    480 			mutex_exit(lock);
    481 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
    482 			mutex_enter(lock);
    483 			if (error)
    484 				break;
    485 
    486 			bp->out += size;
    487 			if (bp->out >= bp->size)
    488 				bp->out = 0;
    489 
    490 			bp->cnt -= size;
    491 
    492 			/*
    493 			 * If there is no more to read in the pipe, reset
    494 			 * its pointers to the beginning.  This improves
    495 			 * cache hit stats.
    496 			 */
    497 			if (bp->cnt == 0) {
    498 				bp->in = 0;
    499 				bp->out = 0;
    500 			}
    501 			nread += size;
    502 			continue;
    503 		}
    504 
    505 #ifndef PIPE_NODIRECT
    506 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
    507 			struct pipemapping * const rmap = &rpipe->pipe_map;
    508 			/*
    509 			 * Direct copy, bypassing a kernel buffer.
    510 			 */
    511 			void *va;
    512 			u_int gen;
    513 
    514 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
    515 
    516 			size = rmap->cnt;
    517 			if (size > uio->uio_resid)
    518 				size = uio->uio_resid;
    519 
    520 			va = (char *)rmap->kva + rmap->pos;
    521 			gen = rmap->egen;
    522 			mutex_exit(lock);
    523 
    524 			/*
    525 			 * Consume emap and read the data from loaned pages.
    526 			 */
    527 			uvm_emap_consume(gen);
    528 			error = uiomove(va, size, uio);
    529 
    530 			mutex_enter(lock);
    531 			if (error)
    532 				break;
    533 			nread += size;
    534 			rmap->pos += size;
    535 			rmap->cnt -= size;
    536 			if (rmap->cnt == 0) {
    537 				rpipe->pipe_state &= ~PIPE_DIRECTR;
    538 				cv_broadcast(&rpipe->pipe_wcv);
    539 			}
    540 			continue;
    541 		}
    542 #endif
    543 		/*
    544 		 * Break if some data was read.
    545 		 */
    546 		if (nread > 0)
    547 			break;
    548 
    549 		/*
    550 		 * Detect EOF condition.
    551 		 * Read returns 0 on EOF, no need to set error.
    552 		 */
    553 		if (rpipe->pipe_state & PIPE_EOF)
    554 			break;
    555 
    556 		/*
    557 		 * Don't block on non-blocking I/O.
    558 		 */
    559 		if (fp->f_flag & FNONBLOCK) {
    560 			error = EAGAIN;
    561 			break;
    562 		}
    563 
    564 		/*
    565 		 * Unlock the pipe buffer for our remaining processing.
    566 		 * We will either break out with an error or we will
    567 		 * sleep and relock to loop.
    568 		 */
    569 		pipeunlock(rpipe);
    570 
    571 		/*
    572 		 * Re-check to see if more direct writes are pending.
    573 		 */
    574 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
    575 			goto again;
    576 
    577 #if 1   /* XXX (dsl) I'm sure these aren't needed here ... */
    578 		/*
    579 		 * We want to read more, wake up select/poll.
    580 		 */
    581 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    582 
    583 		/*
    584 		 * If the "write-side" is blocked, wake it up now.
    585 		 */
    586 		cv_broadcast(&rpipe->pipe_wcv);
    587 #endif
    588 
    589 		if (wakeup_state & PIPE_RESTART) {
    590 			error = ERESTART;
    591 			goto unlocked_error;
    592 		}
    593 
    594 		/* Now wait until the pipe is filled */
    595 		error = cv_wait_sig(&rpipe->pipe_rcv, lock);
    596 		if (error != 0)
    597 			goto unlocked_error;
    598 		wakeup_state = rpipe->pipe_state;
    599 		goto again;
    600 	}
    601 
    602 	if (error == 0)
    603 		getnanotime(&rpipe->pipe_atime);
    604 	pipeunlock(rpipe);
    605 
    606 unlocked_error:
    607 	--rpipe->pipe_busy;
    608 	if (rpipe->pipe_busy == 0) {
    609 		rpipe->pipe_state &= ~PIPE_RESTART;
    610 		cv_broadcast(&rpipe->pipe_draincv);
    611 	}
    612 	if (bp->cnt < MINPIPESIZE) {
    613 		cv_broadcast(&rpipe->pipe_wcv);
    614 	}
    615 
    616 	/*
    617 	 * If anything was read off the buffer, signal to the writer it's
    618 	 * possible to write more data. Also send signal if we are here for the
    619 	 * first time after last write.
    620 	 */
    621 	if ((bp->size - bp->cnt) >= PIPE_BUF
    622 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    623 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    624 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    625 	}
    626 
    627 	mutex_exit(lock);
    628 	return (error);
    629 }
    630 
    631 #ifndef PIPE_NODIRECT
    632 /*
    633  * Allocate structure for loan transfer.
    634  */
    635 static int
    636 pipe_loan_alloc(struct pipe *wpipe, int npages)
    637 {
    638 	struct pipemapping * const wmap = &wpipe->pipe_map;
    639 	const vsize_t len = ptoa(npages);
    640 
    641 	atomic_add_int(&amountpipekva, len);
    642 	wmap->kva = uvm_km_alloc(kernel_map, len, 0,
    643 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    644 	if (wmap->kva == 0) {
    645 		atomic_add_int(&amountpipekva, -len);
    646 		return (ENOMEM);
    647 	}
    648 
    649 	wmap->npages = npages;
    650 	wmap->pgs = kmem_alloc(npages * sizeof(struct vm_page *), KM_SLEEP);
    651 	return (0);
    652 }
    653 
    654 /*
    655  * Free resources allocated for loan transfer.
    656  */
    657 static void
    658 pipe_loan_free(struct pipe *wpipe)
    659 {
    660 	struct pipemapping * const wmap = &wpipe->pipe_map;
    661 	const vsize_t len = ptoa(wmap->npages);
    662 
    663 	uvm_emap_remove(wmap->kva, len);	/* XXX */
    664 	uvm_km_free(kernel_map, wmap->kva, len, UVM_KMF_VAONLY);
    665 	wmap->kva = 0;
    666 	atomic_add_int(&amountpipekva, -len);
    667 	kmem_free(wmap->pgs, wmap->npages * sizeof(struct vm_page *));
    668 	wmap->pgs = NULL;
    669 #if 0
    670 	wmap->npages = 0;
    671 	wmap->pos = 0;
    672 	wmap->cnt = 0;
    673 #endif
    674 }
    675 
    676 /*
    677  * NetBSD direct write, using uvm_loan() mechanism.
    678  * This implements the pipe buffer write mechanism.  Note that only
    679  * a direct write OR a normal pipe write can be pending at any given time.
    680  * If there are any characters in the pipe buffer, the direct write will
    681  * be deferred until the receiving process grabs all of the bytes from
    682  * the pipe buffer.  Then the direct mapping write is set-up.
    683  *
    684  * Called with the long-term pipe lock held.
    685  */
    686 static int
    687 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
    688 {
    689 	struct pipemapping * const wmap = &wpipe->pipe_map;
    690 	kmutex_t * const lock = wpipe->pipe_lock;
    691 	struct vm_page **pgs;
    692 	vaddr_t bbase, base, bend;
    693 	vsize_t blen, bcnt;
    694 	int error, npages;
    695 	voff_t bpos;
    696 	u_int starting_color;
    697 
    698 	KASSERT(mutex_owned(wpipe->pipe_lock));
    699 	KASSERT(wmap->cnt == 0);
    700 
    701 	mutex_exit(lock);
    702 
    703 	/*
    704 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
    705 	 * not aligned to PAGE_SIZE.
    706 	 */
    707 	bbase = (vaddr_t)uio->uio_iov->iov_base;
    708 	base = trunc_page(bbase);
    709 	bend = round_page(bbase + uio->uio_iov->iov_len);
    710 	blen = bend - base;
    711 	bpos = bbase - base;
    712 
    713 	if (blen > PIPE_DIRECT_CHUNK) {
    714 		blen = PIPE_DIRECT_CHUNK;
    715 		bend = base + blen;
    716 		bcnt = PIPE_DIRECT_CHUNK - bpos;
    717 	} else {
    718 		bcnt = uio->uio_iov->iov_len;
    719 	}
    720 	npages = atop(blen);
    721 	starting_color = atop(base) & uvmexp.colormask;
    722 
    723 	/*
    724 	 * Free the old kva if we need more pages than we have
    725 	 * allocated.
    726 	 */
    727 	if (wmap->kva != 0 && starting_color + npages > wmap->npages)
    728 		pipe_loan_free(wpipe);
    729 
    730 	/* Allocate new kva. */
    731 	if (wmap->kva == 0) {
    732 		error = pipe_loan_alloc(wpipe, starting_color + npages);
    733 		if (error) {
    734 			mutex_enter(lock);
    735 			return (error);
    736 		}
    737 	}
    738 
    739 	/* Loan the write buffer memory from writer process */
    740 	pgs = wmap->pgs + starting_color;
    741 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
    742 			 pgs, UVM_LOAN_TOPAGE);
    743 	if (error) {
    744 		pipe_loan_free(wpipe);
    745 		mutex_enter(lock);
    746 		return (ENOMEM); /* so that caller fallback to ordinary write */
    747 	}
    748 
    749 	/* Enter the loaned pages to KVA, produce new emap generation number. */
    750 	uvm_emap_enter(wmap->kva + ptoa(starting_color), pgs, npages);
    751 	wmap->egen = uvm_emap_produce();
    752 
    753 	/* Now we can put the pipe in direct write mode */
    754 	wmap->pos = bpos + ptoa(starting_color);
    755 	wmap->cnt = bcnt;
    756 
    757 	/*
    758 	 * But before we can let someone do a direct read, we
    759 	 * have to wait until the pipe is drained.  Release the
    760 	 * pipe lock while we wait.
    761 	 */
    762 	mutex_enter(lock);
    763 	wpipe->pipe_state |= PIPE_DIRECTW;
    764 	pipeunlock(wpipe);
    765 
    766 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
    767 		cv_broadcast(&wpipe->pipe_rcv);
    768 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    769 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    770 			error = EPIPE;
    771 	}
    772 
    773 	/* Pipe is drained; next read will off the direct buffer */
    774 	wpipe->pipe_state |= PIPE_DIRECTR;
    775 
    776 	/* Wait until the reader is done */
    777 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
    778 		cv_broadcast(&wpipe->pipe_rcv);
    779 		pipeselwakeup(wpipe, wpipe, POLL_IN);
    780 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    781 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    782 			error = EPIPE;
    783 	}
    784 
    785 	/* Take pipe out of direct write mode */
    786 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
    787 
    788 	/* Acquire the pipe lock and cleanup */
    789 	(void)pipelock(wpipe, false);
    790 	mutex_exit(lock);
    791 
    792 	if (pgs != NULL) {
    793 		/* XXX: uvm_emap_remove */
    794 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
    795 	}
    796 	if (error || amountpipekva > maxpipekva)
    797 		pipe_loan_free(wpipe);
    798 
    799 	mutex_enter(lock);
    800 	if (error) {
    801 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
    802 
    803 		/*
    804 		 * If nothing was read from what we offered, return error
    805 		 * straight on. Otherwise update uio resid first. Caller
    806 		 * will deal with the error condition, returning short
    807 		 * write, error, or restarting the write(2) as appropriate.
    808 		 */
    809 		if (wmap->cnt == bcnt) {
    810 			wmap->cnt = 0;
    811 			cv_broadcast(&wpipe->pipe_wcv);
    812 			return (error);
    813 		}
    814 
    815 		bcnt -= wpipe->cnt;
    816 	}
    817 
    818 	uio->uio_resid -= bcnt;
    819 	/* uio_offset not updated, not set/used for write(2) */
    820 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
    821 	uio->uio_iov->iov_len -= bcnt;
    822 	if (uio->uio_iov->iov_len == 0) {
    823 		uio->uio_iov++;
    824 		uio->uio_iovcnt--;
    825 	}
    826 
    827 	wmap->cnt = 0;
    828 	return (error);
    829 }
    830 #endif /* !PIPE_NODIRECT */
    831 
    832 static int
    833 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    834     int flags)
    835 {
    836 	struct pipe *wpipe, *rpipe;
    837 	struct pipebuf *bp;
    838 	kmutex_t *lock;
    839 	int error;
    840 	unsigned int wakeup_state = 0;
    841 
    842 	/* We want to write to our peer */
    843 	rpipe = fp->f_pipe;
    844 	lock = rpipe->pipe_lock;
    845 	error = 0;
    846 
    847 	mutex_enter(lock);
    848 	wpipe = rpipe->pipe_peer;
    849 
    850 	/*
    851 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    852 	 */
    853 	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
    854 		mutex_exit(lock);
    855 		return EPIPE;
    856 	}
    857 	++wpipe->pipe_busy;
    858 
    859 	/* Aquire the long-term pipe lock */
    860 	if ((error = pipelock(wpipe, true)) != 0) {
    861 		--wpipe->pipe_busy;
    862 		if (wpipe->pipe_busy == 0) {
    863 			wpipe->pipe_state &= ~PIPE_RESTART;
    864 			cv_broadcast(&wpipe->pipe_draincv);
    865 		}
    866 		mutex_exit(lock);
    867 		return (error);
    868 	}
    869 
    870 	bp = &wpipe->pipe_buffer;
    871 
    872 	/*
    873 	 * If it is advantageous to resize the pipe buffer, do so.
    874 	 */
    875 	if ((uio->uio_resid > PIPE_SIZE) &&
    876 	    (nbigpipe < maxbigpipes) &&
    877 #ifndef PIPE_NODIRECT
    878 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    879 #endif
    880 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    881 
    882 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    883 			atomic_inc_uint(&nbigpipe);
    884 	}
    885 
    886 	while (uio->uio_resid) {
    887 		size_t space;
    888 
    889 #ifndef PIPE_NODIRECT
    890 		/*
    891 		 * Pipe buffered writes cannot be coincidental with
    892 		 * direct writes.  Also, only one direct write can be
    893 		 * in progress at any one time.  We wait until the currently
    894 		 * executing direct write is completed before continuing.
    895 		 *
    896 		 * We break out if a signal occurs or the reader goes away.
    897 		 */
    898 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
    899 			cv_broadcast(&wpipe->pipe_rcv);
    900 			pipeunlock(wpipe);
    901 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    902 			(void)pipelock(wpipe, false);
    903 			if (wpipe->pipe_state & PIPE_EOF)
    904 				error = EPIPE;
    905 		}
    906 		if (error)
    907 			break;
    908 
    909 		/*
    910 		 * If the transfer is large, we can gain performance if
    911 		 * we do process-to-process copies directly.
    912 		 * If the write is non-blocking, we don't use the
    913 		 * direct write mechanism.
    914 		 *
    915 		 * The direct write mechanism will detect the reader going
    916 		 * away on us.
    917 		 */
    918 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    919 		    (fp->f_flag & FNONBLOCK) == 0 &&
    920 		    (wmap->kva || (amountpipekva < limitpipekva))) {
    921 			error = pipe_direct_write(fp, wpipe, uio);
    922 
    923 			/*
    924 			 * Break out if error occurred, unless it's ENOMEM.
    925 			 * ENOMEM means we failed to allocate some resources
    926 			 * for direct write, so we just fallback to ordinary
    927 			 * write. If the direct write was successful,
    928 			 * process rest of data via ordinary write.
    929 			 */
    930 			if (error == 0)
    931 				continue;
    932 
    933 			if (error != ENOMEM)
    934 				break;
    935 		}
    936 #endif /* PIPE_NODIRECT */
    937 
    938 		space = bp->size - bp->cnt;
    939 
    940 		/* Writes of size <= PIPE_BUF must be atomic. */
    941 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    942 			space = 0;
    943 
    944 		if (space > 0) {
    945 			int size;	/* Transfer size */
    946 			int segsize;	/* first segment to transfer */
    947 
    948 			/*
    949 			 * Transfer size is minimum of uio transfer
    950 			 * and free space in pipe buffer.
    951 			 */
    952 			if (space > uio->uio_resid)
    953 				size = uio->uio_resid;
    954 			else
    955 				size = space;
    956 			/*
    957 			 * First segment to transfer is minimum of
    958 			 * transfer size and contiguous space in
    959 			 * pipe buffer.  If first segment to transfer
    960 			 * is less than the transfer size, we've got
    961 			 * a wraparound in the buffer.
    962 			 */
    963 			segsize = bp->size - bp->in;
    964 			if (segsize > size)
    965 				segsize = size;
    966 
    967 			/* Transfer first segment */
    968 			mutex_exit(lock);
    969 			error = uiomove((char *)bp->buffer + bp->in, segsize,
    970 			    uio);
    971 
    972 			if (error == 0 && segsize < size) {
    973 				/*
    974 				 * Transfer remaining part now, to
    975 				 * support atomic writes.  Wraparound
    976 				 * happened.
    977 				 */
    978 				KASSERT(bp->in + segsize == bp->size);
    979 				error = uiomove(bp->buffer,
    980 				    size - segsize, uio);
    981 			}
    982 			mutex_enter(lock);
    983 			if (error)
    984 				break;
    985 
    986 			bp->in += size;
    987 			if (bp->in >= bp->size) {
    988 				KASSERT(bp->in == size - segsize + bp->size);
    989 				bp->in = size - segsize;
    990 			}
    991 
    992 			bp->cnt += size;
    993 			KASSERT(bp->cnt <= bp->size);
    994 			wakeup_state = 0;
    995 		} else {
    996 			/*
    997 			 * If the "read-side" has been blocked, wake it up now.
    998 			 */
    999 			cv_broadcast(&wpipe->pipe_rcv);
   1000 
   1001 			/*
   1002 			 * Don't block on non-blocking I/O.
   1003 			 */
   1004 			if (fp->f_flag & FNONBLOCK) {
   1005 				error = EAGAIN;
   1006 				break;
   1007 			}
   1008 
   1009 			/*
   1010 			 * We have no more space and have something to offer,
   1011 			 * wake up select/poll.
   1012 			 */
   1013 			if (bp->cnt)
   1014 				pipeselwakeup(wpipe, wpipe, POLL_IN);
   1015 
   1016 			if (wakeup_state & PIPE_RESTART) {
   1017 				error = ERESTART;
   1018 				break;
   1019 			}
   1020 
   1021 			pipeunlock(wpipe);
   1022 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
   1023 			(void)pipelock(wpipe, false);
   1024 			if (error != 0)
   1025 				break;
   1026 			/*
   1027 			 * If read side wants to go away, we just issue a signal
   1028 			 * to ourselves.
   1029 			 */
   1030 			if (wpipe->pipe_state & PIPE_EOF) {
   1031 				error = EPIPE;
   1032 				break;
   1033 			}
   1034 			wakeup_state = wpipe->pipe_state;
   1035 		}
   1036 	}
   1037 
   1038 	--wpipe->pipe_busy;
   1039 	if (wpipe->pipe_busy == 0) {
   1040 		wpipe->pipe_state &= ~PIPE_RESTART;
   1041 		cv_broadcast(&wpipe->pipe_draincv);
   1042 	}
   1043 	if (bp->cnt > 0) {
   1044 		cv_broadcast(&wpipe->pipe_rcv);
   1045 	}
   1046 
   1047 	/*
   1048 	 * Don't return EPIPE if I/O was successful
   1049 	 */
   1050 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
   1051 		error = 0;
   1052 
   1053 	if (error == 0)
   1054 		getnanotime(&wpipe->pipe_mtime);
   1055 
   1056 	/*
   1057 	 * We have something to offer, wake up select/poll.
   1058 	 * wmap->cnt is always 0 in this point (direct write
   1059 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1060 	 */
   1061 	if (bp->cnt)
   1062 		pipeselwakeup(wpipe, wpipe, POLL_IN);
   1063 
   1064 	/*
   1065 	 * Arrange for next read(2) to do a signal.
   1066 	 */
   1067 	wpipe->pipe_state |= PIPE_SIGNALR;
   1068 
   1069 	pipeunlock(wpipe);
   1070 	mutex_exit(lock);
   1071 	return (error);
   1072 }
   1073 
   1074 /*
   1075  * We implement a very minimal set of ioctls for compatibility with sockets.
   1076  */
   1077 int
   1078 pipe_ioctl(file_t *fp, u_long cmd, void *data)
   1079 {
   1080 	struct pipe *pipe = fp->f_pipe;
   1081 	kmutex_t *lock = pipe->pipe_lock;
   1082 
   1083 	switch (cmd) {
   1084 
   1085 	case FIONBIO:
   1086 		return (0);
   1087 
   1088 	case FIOASYNC:
   1089 		mutex_enter(lock);
   1090 		if (*(int *)data) {
   1091 			pipe->pipe_state |= PIPE_ASYNC;
   1092 		} else {
   1093 			pipe->pipe_state &= ~PIPE_ASYNC;
   1094 		}
   1095 		mutex_exit(lock);
   1096 		return (0);
   1097 
   1098 	case FIONREAD:
   1099 		mutex_enter(lock);
   1100 #ifndef PIPE_NODIRECT
   1101 		if (pipe->pipe_state & PIPE_DIRECTW)
   1102 			*(int *)data = pipe->pipe_map.cnt;
   1103 		else
   1104 #endif
   1105 			*(int *)data = pipe->pipe_buffer.cnt;
   1106 		mutex_exit(lock);
   1107 		return (0);
   1108 
   1109 	case FIONWRITE:
   1110 		/* Look at other side */
   1111 		pipe = pipe->pipe_peer;
   1112 		mutex_enter(lock);
   1113 #ifndef PIPE_NODIRECT
   1114 		if (pipe->pipe_state & PIPE_DIRECTW)
   1115 			*(int *)data = pipe->pipe_map.cnt;
   1116 		else
   1117 #endif
   1118 			*(int *)data = pipe->pipe_buffer.cnt;
   1119 		mutex_exit(lock);
   1120 		return (0);
   1121 
   1122 	case FIONSPACE:
   1123 		/* Look at other side */
   1124 		pipe = pipe->pipe_peer;
   1125 		mutex_enter(lock);
   1126 #ifndef PIPE_NODIRECT
   1127 		/*
   1128 		 * If we're in direct-mode, we don't really have a
   1129 		 * send queue, and any other write will block. Thus
   1130 		 * zero seems like the best answer.
   1131 		 */
   1132 		if (pipe->pipe_state & PIPE_DIRECTW)
   1133 			*(int *)data = 0;
   1134 		else
   1135 #endif
   1136 			*(int *)data = pipe->pipe_buffer.size -
   1137 			    pipe->pipe_buffer.cnt;
   1138 		mutex_exit(lock);
   1139 		return (0);
   1140 
   1141 	case TIOCSPGRP:
   1142 	case FIOSETOWN:
   1143 		return fsetown(&pipe->pipe_pgid, cmd, data);
   1144 
   1145 	case TIOCGPGRP:
   1146 	case FIOGETOWN:
   1147 		return fgetown(pipe->pipe_pgid, cmd, data);
   1148 
   1149 	}
   1150 	return (EPASSTHROUGH);
   1151 }
   1152 
   1153 int
   1154 pipe_poll(file_t *fp, int events)
   1155 {
   1156 	struct pipe *rpipe = fp->f_pipe;
   1157 	struct pipe *wpipe;
   1158 	int eof = 0;
   1159 	int revents = 0;
   1160 
   1161 	mutex_enter(rpipe->pipe_lock);
   1162 	wpipe = rpipe->pipe_peer;
   1163 
   1164 	if (events & (POLLIN | POLLRDNORM))
   1165 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1166 #ifndef PIPE_NODIRECT
   1167 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
   1168 #endif
   1169 		    (rpipe->pipe_state & PIPE_EOF))
   1170 			revents |= events & (POLLIN | POLLRDNORM);
   1171 
   1172 	eof |= (rpipe->pipe_state & PIPE_EOF);
   1173 
   1174 	if (wpipe == NULL)
   1175 		revents |= events & (POLLOUT | POLLWRNORM);
   1176 	else {
   1177 		if (events & (POLLOUT | POLLWRNORM))
   1178 			if ((wpipe->pipe_state & PIPE_EOF) || (
   1179 #ifndef PIPE_NODIRECT
   1180 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1181 #endif
   1182 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1183 				revents |= events & (POLLOUT | POLLWRNORM);
   1184 
   1185 		eof |= (wpipe->pipe_state & PIPE_EOF);
   1186 	}
   1187 
   1188 	if (wpipe == NULL || eof)
   1189 		revents |= POLLHUP;
   1190 
   1191 	if (revents == 0) {
   1192 		if (events & (POLLIN | POLLRDNORM))
   1193 			selrecord(curlwp, &rpipe->pipe_sel);
   1194 
   1195 		if (events & (POLLOUT | POLLWRNORM))
   1196 			selrecord(curlwp, &wpipe->pipe_sel);
   1197 	}
   1198 	mutex_exit(rpipe->pipe_lock);
   1199 
   1200 	return (revents);
   1201 }
   1202 
   1203 static int
   1204 pipe_stat(file_t *fp, struct stat *ub)
   1205 {
   1206 	struct pipe *pipe = fp->f_pipe;
   1207 
   1208 	mutex_enter(pipe->pipe_lock);
   1209 	memset(ub, 0, sizeof(*ub));
   1210 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1211 	ub->st_blksize = pipe->pipe_buffer.size;
   1212 	if (ub->st_blksize == 0 && pipe->pipe_peer)
   1213 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
   1214 	ub->st_size = pipe->pipe_buffer.cnt;
   1215 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1216 	ub->st_atimespec = pipe->pipe_atime;
   1217 	ub->st_mtimespec = pipe->pipe_mtime;
   1218 	ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
   1219 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
   1220 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
   1221 
   1222 	/*
   1223 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1224 	 * XXX (st_dev, st_ino) should be unique.
   1225 	 */
   1226 	mutex_exit(pipe->pipe_lock);
   1227 	return 0;
   1228 }
   1229 
   1230 static int
   1231 pipe_close(file_t *fp)
   1232 {
   1233 	struct pipe *pipe = fp->f_pipe;
   1234 
   1235 	fp->f_pipe = NULL;
   1236 	pipeclose(pipe);
   1237 	return (0);
   1238 }
   1239 
   1240 static void
   1241 pipe_restart(file_t *fp)
   1242 {
   1243 	struct pipe *pipe = fp->f_pipe;
   1244 
   1245 	/*
   1246 	 * Unblock blocked reads/writes in order to allow close() to complete.
   1247 	 * System calls return ERESTART so that the fd is revalidated.
   1248 	 * (Partial writes return the transfer length.)
   1249 	 */
   1250 	mutex_enter(pipe->pipe_lock);
   1251 	pipe->pipe_state |= PIPE_RESTART;
   1252 	/* Wakeup both cvs, maybe we only need one, but maybe there are some
   1253 	 * other paths where wakeup is needed, and it saves deciding which! */
   1254 	cv_broadcast(&pipe->pipe_rcv);
   1255 	cv_broadcast(&pipe->pipe_wcv);
   1256 	mutex_exit(pipe->pipe_lock);
   1257 }
   1258 
   1259 static void
   1260 pipe_free_kmem(struct pipe *pipe)
   1261 {
   1262 
   1263 	if (pipe->pipe_buffer.buffer != NULL) {
   1264 		if (pipe->pipe_buffer.size > PIPE_SIZE) {
   1265 			atomic_dec_uint(&nbigpipe);
   1266 		}
   1267 		if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
   1268 			uvm_km_free(kernel_map,
   1269 			    (vaddr_t)pipe->pipe_buffer.buffer,
   1270 			    pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
   1271 			atomic_add_int(&amountpipekva,
   1272 			    -pipe->pipe_buffer.size);
   1273 		}
   1274 		pipe->pipe_buffer.buffer = NULL;
   1275 	}
   1276 #ifndef PIPE_NODIRECT
   1277 	if (pipe->pipe_map.kva != 0) {
   1278 		pipe_loan_free(pipe);
   1279 		pipe->pipe_map.cnt = 0;
   1280 		pipe->pipe_map.pos = 0;
   1281 		pipe->pipe_map.npages = 0;
   1282 	}
   1283 #endif /* !PIPE_NODIRECT */
   1284 }
   1285 
   1286 /*
   1287  * Shutdown the pipe.
   1288  */
   1289 static void
   1290 pipeclose(struct pipe *pipe)
   1291 {
   1292 	kmutex_t *lock;
   1293 	struct pipe *ppipe;
   1294 
   1295 	if (pipe == NULL)
   1296 		return;
   1297 
   1298 	KASSERT(cv_is_valid(&pipe->pipe_rcv));
   1299 	KASSERT(cv_is_valid(&pipe->pipe_wcv));
   1300 	KASSERT(cv_is_valid(&pipe->pipe_draincv));
   1301 	KASSERT(cv_is_valid(&pipe->pipe_lkcv));
   1302 
   1303 	lock = pipe->pipe_lock;
   1304 	if (lock == NULL)
   1305 		/* Must have failed during create */
   1306 		goto free_resources;
   1307 
   1308 	mutex_enter(lock);
   1309 	pipeselwakeup(pipe, pipe, POLL_HUP);
   1310 
   1311 	/*
   1312 	 * If the other side is blocked, wake it up saying that
   1313 	 * we want to close it down.
   1314 	 */
   1315 	pipe->pipe_state |= PIPE_EOF;
   1316 	if (pipe->pipe_busy) {
   1317 		while (pipe->pipe_busy) {
   1318 			cv_broadcast(&pipe->pipe_wcv);
   1319 			cv_wait_sig(&pipe->pipe_draincv, lock);
   1320 		}
   1321 	}
   1322 
   1323 	/*
   1324 	 * Disconnect from peer.
   1325 	 */
   1326 	if ((ppipe = pipe->pipe_peer) != NULL) {
   1327 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
   1328 		ppipe->pipe_state |= PIPE_EOF;
   1329 		cv_broadcast(&ppipe->pipe_rcv);
   1330 		ppipe->pipe_peer = NULL;
   1331 	}
   1332 
   1333 	/*
   1334 	 * Any knote objects still left in the list are
   1335 	 * the one attached by peer.  Since no one will
   1336 	 * traverse this list, we just clear it.
   1337 	 */
   1338 	SLIST_INIT(&pipe->pipe_sel.sel_klist);
   1339 
   1340 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
   1341 	mutex_exit(lock);
   1342 	mutex_obj_free(lock);
   1343 
   1344 	/*
   1345 	 * Free resources.
   1346 	 */
   1347     free_resources:
   1348 	pipe->pipe_pgid = 0;
   1349 	pipe->pipe_state = PIPE_SIGNALR;
   1350 	pipe_free_kmem(pipe);
   1351 	if (pipe->pipe_kmem != 0) {
   1352 		pool_cache_put(pipe_rd_cache, pipe);
   1353 	} else {
   1354 		pool_cache_put(pipe_wr_cache, pipe);
   1355 	}
   1356 }
   1357 
   1358 static void
   1359 filt_pipedetach(struct knote *kn)
   1360 {
   1361 	struct pipe *pipe;
   1362 	kmutex_t *lock;
   1363 
   1364 	pipe = ((file_t *)kn->kn_obj)->f_pipe;
   1365 	lock = pipe->pipe_lock;
   1366 
   1367 	mutex_enter(lock);
   1368 
   1369 	switch(kn->kn_filter) {
   1370 	case EVFILT_WRITE:
   1371 		/* Need the peer structure, not our own. */
   1372 		pipe = pipe->pipe_peer;
   1373 
   1374 		/* If reader end already closed, just return. */
   1375 		if (pipe == NULL) {
   1376 			mutex_exit(lock);
   1377 			return;
   1378 		}
   1379 
   1380 		break;
   1381 	default:
   1382 		/* Nothing to do. */
   1383 		break;
   1384 	}
   1385 
   1386 	KASSERT(kn->kn_hook == pipe);
   1387 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
   1388 	mutex_exit(lock);
   1389 }
   1390 
   1391 static int
   1392 filt_piperead(struct knote *kn, long hint)
   1393 {
   1394 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
   1395 	struct pipe *wpipe;
   1396 
   1397 	if ((hint & NOTE_SUBMIT) == 0) {
   1398 		mutex_enter(rpipe->pipe_lock);
   1399 	}
   1400 	wpipe = rpipe->pipe_peer;
   1401 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1402 
   1403 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1404 		kn->kn_data = rpipe->pipe_map.cnt;
   1405 
   1406 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1407 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1408 		kn->kn_flags |= EV_EOF;
   1409 		if ((hint & NOTE_SUBMIT) == 0) {
   1410 			mutex_exit(rpipe->pipe_lock);
   1411 		}
   1412 		return (1);
   1413 	}
   1414 
   1415 	if ((hint & NOTE_SUBMIT) == 0) {
   1416 		mutex_exit(rpipe->pipe_lock);
   1417 	}
   1418 	return (kn->kn_data > 0);
   1419 }
   1420 
   1421 static int
   1422 filt_pipewrite(struct knote *kn, long hint)
   1423 {
   1424 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
   1425 	struct pipe *wpipe;
   1426 
   1427 	if ((hint & NOTE_SUBMIT) == 0) {
   1428 		mutex_enter(rpipe->pipe_lock);
   1429 	}
   1430 	wpipe = rpipe->pipe_peer;
   1431 
   1432 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1433 		kn->kn_data = 0;
   1434 		kn->kn_flags |= EV_EOF;
   1435 		if ((hint & NOTE_SUBMIT) == 0) {
   1436 			mutex_exit(rpipe->pipe_lock);
   1437 		}
   1438 		return (1);
   1439 	}
   1440 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1441 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1442 		kn->kn_data = 0;
   1443 
   1444 	if ((hint & NOTE_SUBMIT) == 0) {
   1445 		mutex_exit(rpipe->pipe_lock);
   1446 	}
   1447 	return (kn->kn_data >= PIPE_BUF);
   1448 }
   1449 
   1450 static const struct filterops pipe_rfiltops = {
   1451 	.f_isfd = 1,
   1452 	.f_attach = NULL,
   1453 	.f_detach = filt_pipedetach,
   1454 	.f_event = filt_piperead,
   1455 };
   1456 
   1457 static const struct filterops pipe_wfiltops = {
   1458 	.f_isfd = 1,
   1459 	.f_attach = NULL,
   1460 	.f_detach = filt_pipedetach,
   1461 	.f_event = filt_pipewrite,
   1462 };
   1463 
   1464 static int
   1465 pipe_kqfilter(file_t *fp, struct knote *kn)
   1466 {
   1467 	struct pipe *pipe;
   1468 	kmutex_t *lock;
   1469 
   1470 	pipe = ((file_t *)kn->kn_obj)->f_pipe;
   1471 	lock = pipe->pipe_lock;
   1472 
   1473 	mutex_enter(lock);
   1474 
   1475 	switch (kn->kn_filter) {
   1476 	case EVFILT_READ:
   1477 		kn->kn_fop = &pipe_rfiltops;
   1478 		break;
   1479 	case EVFILT_WRITE:
   1480 		kn->kn_fop = &pipe_wfiltops;
   1481 		pipe = pipe->pipe_peer;
   1482 		if (pipe == NULL) {
   1483 			/* Other end of pipe has been closed. */
   1484 			mutex_exit(lock);
   1485 			return (EBADF);
   1486 		}
   1487 		break;
   1488 	default:
   1489 		mutex_exit(lock);
   1490 		return (EINVAL);
   1491 	}
   1492 
   1493 	kn->kn_hook = pipe;
   1494 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
   1495 	mutex_exit(lock);
   1496 
   1497 	return (0);
   1498 }
   1499 
   1500 /*
   1501  * Handle pipe sysctls.
   1502  */
   1503 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1504 {
   1505 
   1506 	sysctl_createv(clog, 0, NULL, NULL,
   1507 		       CTLFLAG_PERMANENT,
   1508 		       CTLTYPE_NODE, "pipe",
   1509 		       SYSCTL_DESCR("Pipe settings"),
   1510 		       NULL, 0, NULL, 0,
   1511 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1512 
   1513 	sysctl_createv(clog, 0, NULL, NULL,
   1514 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1515 		       CTLTYPE_INT, "maxkvasz",
   1516 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1517 				    "used for pipes"),
   1518 		       NULL, 0, &maxpipekva, 0,
   1519 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
   1520 	sysctl_createv(clog, 0, NULL, NULL,
   1521 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1522 		       CTLTYPE_INT, "maxloankvasz",
   1523 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
   1524 		       NULL, 0, &limitpipekva, 0,
   1525 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
   1526 	sysctl_createv(clog, 0, NULL, NULL,
   1527 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1528 		       CTLTYPE_INT, "maxbigpipes",
   1529 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
   1530 		       NULL, 0, &maxbigpipes, 0,
   1531 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1532 	sysctl_createv(clog, 0, NULL, NULL,
   1533 		       CTLFLAG_PERMANENT,
   1534 		       CTLTYPE_INT, "nbigpipes",
   1535 		       SYSCTL_DESCR("Number of \"big\" pipes"),
   1536 		       NULL, 0, &nbigpipe, 0,
   1537 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1538 	sysctl_createv(clog, 0, NULL, NULL,
   1539 		       CTLFLAG_PERMANENT,
   1540 		       CTLTYPE_INT, "kvasize",
   1541 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
   1542 				    "buffers"),
   1543 		       NULL, 0, &amountpipekva, 0,
   1544 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1545 }
   1546