sys_pipe.c revision 1.143.2.2 1 /* $NetBSD: sys_pipe.c,v 1.143.2.2 2018/05/21 04:36:15 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.143.2.2 2018/05/21 04:36:15 pgoyette Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 /*
96 * Use this to disable direct I/O and decrease the code size:
97 * #define PIPE_NODIRECT
98 */
99
100 /* XXX Disabled for now; rare hangs switching between direct/buffered */
101 #define PIPE_NODIRECT
102
103 #ifndef PIPE_NODIRECT
104 #include <uvm/uvm.h>
105 #endif
106
107 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
108 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
109 static int pipe_close(file_t *);
110 static int pipe_poll(file_t *, int);
111 static int pipe_kqfilter(file_t *, struct knote *);
112 static int pipe_stat(file_t *, struct stat *);
113 static int pipe_ioctl(file_t *, u_long, void *);
114 static void pipe_restart(file_t *);
115
116 static const struct fileops pipeops = {
117 .fo_name = "pipe",
118 .fo_read = pipe_read,
119 .fo_write = pipe_write,
120 .fo_ioctl = pipe_ioctl,
121 .fo_fcntl = fnullop_fcntl,
122 .fo_poll = pipe_poll,
123 .fo_stat = pipe_stat,
124 .fo_close = pipe_close,
125 .fo_kqfilter = pipe_kqfilter,
126 .fo_restart = pipe_restart,
127 };
128
129 /*
130 * Default pipe buffer size(s), this can be kind-of large now because pipe
131 * space is pageable. The pipe code will try to maintain locality of
132 * reference for performance reasons, so small amounts of outstanding I/O
133 * will not wipe the cache.
134 */
135 #define MINPIPESIZE (PIPE_SIZE / 3)
136 #define MAXPIPESIZE (2 * PIPE_SIZE / 3)
137
138 /*
139 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
140 * is there so that on large systems, we don't exhaust it.
141 */
142 #define MAXPIPEKVA (8 * 1024 * 1024)
143 static u_int maxpipekva = MAXPIPEKVA;
144
145 /*
146 * Limit for direct transfers, we cannot, of course limit
147 * the amount of kva for pipes in general though.
148 */
149 #define LIMITPIPEKVA (16 * 1024 * 1024)
150 static u_int limitpipekva = LIMITPIPEKVA;
151
152 /*
153 * Limit the number of "big" pipes
154 */
155 #define LIMITBIGPIPES 32
156 static u_int maxbigpipes = LIMITBIGPIPES;
157 static u_int nbigpipe = 0;
158
159 /*
160 * Amount of KVA consumed by pipe buffers.
161 */
162 static u_int amountpipekva = 0;
163
164 static void pipeclose(struct pipe *);
165 static void pipe_free_kmem(struct pipe *);
166 static int pipe_create(struct pipe **, pool_cache_t);
167 static int pipelock(struct pipe *, bool);
168 static inline void pipeunlock(struct pipe *);
169 static void pipeselwakeup(struct pipe *, struct pipe *, int);
170 #ifndef PIPE_NODIRECT
171 static int pipe_direct_write(file_t *, struct pipe *, struct uio *);
172 #endif
173 static int pipespace(struct pipe *, int);
174 static int pipe_ctor(void *, void *, int);
175 static void pipe_dtor(void *, void *);
176
177 #ifndef PIPE_NODIRECT
178 static int pipe_loan_alloc(struct pipe *, int);
179 static void pipe_loan_free(struct pipe *);
180 #endif /* PIPE_NODIRECT */
181
182 static pool_cache_t pipe_wr_cache;
183 static pool_cache_t pipe_rd_cache;
184
185 void
186 pipe_init(void)
187 {
188
189 /* Writer side is not automatically allocated KVA. */
190 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
191 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
192 KASSERT(pipe_wr_cache != NULL);
193
194 /* Reader side gets preallocated KVA. */
195 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
196 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
197 KASSERT(pipe_rd_cache != NULL);
198 }
199
200 static int
201 pipe_ctor(void *arg, void *obj, int flags)
202 {
203 struct pipe *pipe;
204 vaddr_t va;
205
206 pipe = obj;
207
208 memset(pipe, 0, sizeof(struct pipe));
209 if (arg != NULL) {
210 /* Preallocate space. */
211 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
212 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
213 KASSERT(va != 0);
214 pipe->pipe_kmem = va;
215 atomic_add_int(&amountpipekva, PIPE_SIZE);
216 }
217 cv_init(&pipe->pipe_rcv, "pipe_rd");
218 cv_init(&pipe->pipe_wcv, "pipe_wr");
219 cv_init(&pipe->pipe_draincv, "pipe_drn");
220 cv_init(&pipe->pipe_lkcv, "pipe_lk");
221 selinit(&pipe->pipe_sel);
222 pipe->pipe_state = PIPE_SIGNALR;
223
224 return 0;
225 }
226
227 static void
228 pipe_dtor(void *arg, void *obj)
229 {
230 struct pipe *pipe;
231
232 pipe = obj;
233
234 cv_destroy(&pipe->pipe_rcv);
235 cv_destroy(&pipe->pipe_wcv);
236 cv_destroy(&pipe->pipe_draincv);
237 cv_destroy(&pipe->pipe_lkcv);
238 seldestroy(&pipe->pipe_sel);
239 if (pipe->pipe_kmem != 0) {
240 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
241 UVM_KMF_PAGEABLE);
242 atomic_add_int(&amountpipekva, -PIPE_SIZE);
243 }
244 }
245
246 /*
247 * The pipe system call for the DTYPE_PIPE type of pipes
248 */
249 int
250 pipe1(struct lwp *l, int *fildes, int flags)
251 {
252 struct pipe *rpipe, *wpipe;
253 file_t *rf, *wf;
254 int fd, error;
255 proc_t *p;
256
257 if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
258 return EINVAL;
259 p = curproc;
260 rpipe = wpipe = NULL;
261 if ((error = pipe_create(&rpipe, pipe_rd_cache)) ||
262 (error = pipe_create(&wpipe, pipe_wr_cache))) {
263 goto free2;
264 }
265 rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
266 wpipe->pipe_lock = rpipe->pipe_lock;
267 mutex_obj_hold(wpipe->pipe_lock);
268
269 error = fd_allocfile(&rf, &fd);
270 if (error)
271 goto free2;
272 fildes[0] = fd;
273
274 error = fd_allocfile(&wf, &fd);
275 if (error)
276 goto free3;
277 fildes[1] = fd;
278
279 rf->f_flag = FREAD | flags;
280 rf->f_type = DTYPE_PIPE;
281 rf->f_pipe = rpipe;
282 rf->f_ops = &pipeops;
283 fd_set_exclose(l, fildes[0], (flags & O_CLOEXEC) != 0);
284
285 wf->f_flag = FWRITE | flags;
286 wf->f_type = DTYPE_PIPE;
287 wf->f_pipe = wpipe;
288 wf->f_ops = &pipeops;
289 fd_set_exclose(l, fildes[1], (flags & O_CLOEXEC) != 0);
290
291 rpipe->pipe_peer = wpipe;
292 wpipe->pipe_peer = rpipe;
293
294 fd_affix(p, rf, fildes[0]);
295 fd_affix(p, wf, fildes[1]);
296 return (0);
297 free3:
298 fd_abort(p, rf, fildes[0]);
299 free2:
300 pipeclose(wpipe);
301 pipeclose(rpipe);
302
303 return (error);
304 }
305
306 /*
307 * Allocate kva for pipe circular buffer, the space is pageable
308 * This routine will 'realloc' the size of a pipe safely, if it fails
309 * it will retain the old buffer.
310 * If it fails it will return ENOMEM.
311 */
312 static int
313 pipespace(struct pipe *pipe, int size)
314 {
315 void *buffer;
316
317 /*
318 * Allocate pageable virtual address space. Physical memory is
319 * allocated on demand.
320 */
321 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
322 buffer = (void *)pipe->pipe_kmem;
323 } else {
324 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
325 0, UVM_KMF_PAGEABLE);
326 if (buffer == NULL)
327 return (ENOMEM);
328 atomic_add_int(&amountpipekva, size);
329 }
330
331 /* free old resources if we're resizing */
332 pipe_free_kmem(pipe);
333 pipe->pipe_buffer.buffer = buffer;
334 pipe->pipe_buffer.size = size;
335 pipe->pipe_buffer.in = 0;
336 pipe->pipe_buffer.out = 0;
337 pipe->pipe_buffer.cnt = 0;
338 return (0);
339 }
340
341 /*
342 * Initialize and allocate VM and memory for pipe.
343 */
344 static int
345 pipe_create(struct pipe **pipep, pool_cache_t cache)
346 {
347 struct pipe *pipe;
348 int error;
349
350 pipe = pool_cache_get(cache, PR_WAITOK);
351 KASSERT(pipe != NULL);
352 *pipep = pipe;
353 error = 0;
354 getnanotime(&pipe->pipe_btime);
355 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
356 pipe->pipe_lock = NULL;
357 if (cache == pipe_rd_cache) {
358 error = pipespace(pipe, PIPE_SIZE);
359 } else {
360 pipe->pipe_buffer.buffer = NULL;
361 pipe->pipe_buffer.size = 0;
362 pipe->pipe_buffer.in = 0;
363 pipe->pipe_buffer.out = 0;
364 pipe->pipe_buffer.cnt = 0;
365 }
366 return error;
367 }
368
369 /*
370 * Lock a pipe for I/O, blocking other access
371 * Called with pipe spin lock held.
372 */
373 static int
374 pipelock(struct pipe *pipe, bool catch_p)
375 {
376 int error;
377
378 KASSERT(mutex_owned(pipe->pipe_lock));
379
380 while (pipe->pipe_state & PIPE_LOCKFL) {
381 pipe->pipe_state |= PIPE_LWANT;
382 if (catch_p) {
383 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
384 if (error != 0)
385 return error;
386 } else
387 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
388 }
389
390 pipe->pipe_state |= PIPE_LOCKFL;
391
392 return 0;
393 }
394
395 /*
396 * unlock a pipe I/O lock
397 */
398 static inline void
399 pipeunlock(struct pipe *pipe)
400 {
401
402 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
403
404 pipe->pipe_state &= ~PIPE_LOCKFL;
405 if (pipe->pipe_state & PIPE_LWANT) {
406 pipe->pipe_state &= ~PIPE_LWANT;
407 cv_broadcast(&pipe->pipe_lkcv);
408 }
409 }
410
411 /*
412 * Select/poll wakup. This also sends SIGIO to peer connected to
413 * 'sigpipe' side of pipe.
414 */
415 static void
416 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
417 {
418 int band;
419
420 switch (code) {
421 case POLL_IN:
422 band = POLLIN|POLLRDNORM;
423 break;
424 case POLL_OUT:
425 band = POLLOUT|POLLWRNORM;
426 break;
427 case POLL_HUP:
428 band = POLLHUP;
429 break;
430 case POLL_ERR:
431 band = POLLERR;
432 break;
433 default:
434 band = 0;
435 #ifdef DIAGNOSTIC
436 printf("bad siginfo code %d in pipe notification.\n", code);
437 #endif
438 break;
439 }
440
441 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
442
443 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
444 return;
445
446 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
447 }
448
449 static int
450 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
451 int flags)
452 {
453 struct pipe *rpipe = fp->f_pipe;
454 struct pipebuf *bp = &rpipe->pipe_buffer;
455 kmutex_t *lock = rpipe->pipe_lock;
456 int error;
457 size_t nread = 0;
458 size_t size;
459 size_t ocnt;
460 unsigned int wakeup_state = 0;
461
462 mutex_enter(lock);
463 ++rpipe->pipe_busy;
464 ocnt = bp->cnt;
465
466 again:
467 error = pipelock(rpipe, true);
468 if (error)
469 goto unlocked_error;
470
471 while (uio->uio_resid) {
472 /*
473 * Normal pipe buffer receive.
474 */
475 if (bp->cnt > 0) {
476 size = bp->size - bp->out;
477 if (size > bp->cnt)
478 size = bp->cnt;
479 if (size > uio->uio_resid)
480 size = uio->uio_resid;
481
482 mutex_exit(lock);
483 error = uiomove((char *)bp->buffer + bp->out, size, uio);
484 mutex_enter(lock);
485 if (error)
486 break;
487
488 bp->out += size;
489 if (bp->out >= bp->size)
490 bp->out = 0;
491
492 bp->cnt -= size;
493
494 /*
495 * If there is no more to read in the pipe, reset
496 * its pointers to the beginning. This improves
497 * cache hit stats.
498 */
499 if (bp->cnt == 0) {
500 bp->in = 0;
501 bp->out = 0;
502 }
503 nread += size;
504 continue;
505 }
506
507 #ifndef PIPE_NODIRECT
508 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
509 struct pipemapping * const rmap = &rpipe->pipe_map;
510 /*
511 * Direct copy, bypassing a kernel buffer.
512 */
513 void *va;
514
515 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
516
517 size = rmap->cnt;
518 if (size > uio->uio_resid)
519 size = uio->uio_resid;
520
521 va = (char *)rmap->kva + rmap->pos;
522 mutex_exit(lock);
523 error = uiomove(va, size, uio);
524 mutex_enter(lock);
525 if (error)
526 break;
527 nread += size;
528 rmap->pos += size;
529 rmap->cnt -= size;
530 if (rmap->cnt == 0) {
531 rpipe->pipe_state &= ~PIPE_DIRECTR;
532 cv_broadcast(&rpipe->pipe_wcv);
533 }
534 continue;
535 }
536 #endif
537 /*
538 * Break if some data was read.
539 */
540 if (nread > 0)
541 break;
542
543 /*
544 * Detect EOF condition.
545 * Read returns 0 on EOF, no need to set error.
546 */
547 if (rpipe->pipe_state & PIPE_EOF)
548 break;
549
550 /*
551 * Don't block on non-blocking I/O.
552 */
553 if (fp->f_flag & FNONBLOCK) {
554 error = EAGAIN;
555 break;
556 }
557
558 /*
559 * Unlock the pipe buffer for our remaining processing.
560 * We will either break out with an error or we will
561 * sleep and relock to loop.
562 */
563 pipeunlock(rpipe);
564
565 /*
566 * Re-check to see if more direct writes are pending.
567 */
568 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
569 goto again;
570
571 #if 1 /* XXX (dsl) I'm sure these aren't needed here ... */
572 /*
573 * We want to read more, wake up select/poll.
574 */
575 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
576
577 /*
578 * If the "write-side" is blocked, wake it up now.
579 */
580 cv_broadcast(&rpipe->pipe_wcv);
581 #endif
582
583 if (wakeup_state & PIPE_RESTART) {
584 error = ERESTART;
585 goto unlocked_error;
586 }
587
588 /* Now wait until the pipe is filled */
589 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
590 if (error != 0)
591 goto unlocked_error;
592 wakeup_state = rpipe->pipe_state;
593 goto again;
594 }
595
596 if (error == 0)
597 getnanotime(&rpipe->pipe_atime);
598 pipeunlock(rpipe);
599
600 unlocked_error:
601 --rpipe->pipe_busy;
602 if (rpipe->pipe_busy == 0) {
603 rpipe->pipe_state &= ~PIPE_RESTART;
604 cv_broadcast(&rpipe->pipe_draincv);
605 }
606 if (bp->cnt < MINPIPESIZE) {
607 cv_broadcast(&rpipe->pipe_wcv);
608 }
609
610 /*
611 * If anything was read off the buffer, signal to the writer it's
612 * possible to write more data. Also send signal if we are here for the
613 * first time after last write.
614 */
615 if ((bp->size - bp->cnt) >= PIPE_BUF
616 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
617 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
618 rpipe->pipe_state &= ~PIPE_SIGNALR;
619 }
620
621 mutex_exit(lock);
622 return (error);
623 }
624
625 #ifndef PIPE_NODIRECT
626 /*
627 * Allocate structure for loan transfer.
628 */
629 static int
630 pipe_loan_alloc(struct pipe *wpipe, int npages)
631 {
632 struct pipemapping * const wmap = &wpipe->pipe_map;
633 const vsize_t len = ptoa(npages);
634
635 atomic_add_int(&amountpipekva, len);
636 wmap->kva = uvm_km_alloc(kernel_map, len, 0,
637 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
638 if (wmap->kva == 0) {
639 atomic_add_int(&amountpipekva, -len);
640 return (ENOMEM);
641 }
642
643 wmap->npages = npages;
644 wmap->pgs = kmem_alloc(npages * sizeof(struct vm_page *), KM_SLEEP);
645 return (0);
646 }
647
648 /*
649 * Free resources allocated for loan transfer.
650 */
651 static void
652 pipe_loan_free(struct pipe *wpipe)
653 {
654 struct pipemapping * const wmap = &wpipe->pipe_map;
655 const vsize_t len = ptoa(wmap->npages);
656
657 uvm_km_free(kernel_map, wmap->kva, len, UVM_KMF_VAONLY);
658 wmap->kva = 0;
659 atomic_add_int(&amountpipekva, -len);
660 kmem_free(wmap->pgs, wmap->npages * sizeof(struct vm_page *));
661 wmap->pgs = NULL;
662 #if 0
663 wmap->npages = 0;
664 wmap->pos = 0;
665 wmap->cnt = 0;
666 #endif
667 }
668
669 /*
670 * NetBSD direct write, using uvm_loan() mechanism.
671 * This implements the pipe buffer write mechanism. Note that only
672 * a direct write OR a normal pipe write can be pending at any given time.
673 * If there are any characters in the pipe buffer, the direct write will
674 * be deferred until the receiving process grabs all of the bytes from
675 * the pipe buffer. Then the direct mapping write is set-up.
676 *
677 * Called with the long-term pipe lock held.
678 */
679 static int
680 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
681 {
682 struct pipemapping * const wmap = &wpipe->pipe_map;
683 kmutex_t * const lock = wpipe->pipe_lock;
684 struct vm_page **pgs;
685 vaddr_t bbase, base, bend;
686 vsize_t blen, bcnt;
687 int error, npages;
688 voff_t bpos;
689 u_int starting_color;
690
691 KASSERT(mutex_owned(wpipe->pipe_lock));
692 KASSERT(wmap->cnt == 0);
693
694 mutex_exit(lock);
695
696 /*
697 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
698 * not aligned to PAGE_SIZE.
699 */
700 bbase = (vaddr_t)uio->uio_iov->iov_base;
701 base = trunc_page(bbase);
702 bend = round_page(bbase + uio->uio_iov->iov_len);
703 blen = bend - base;
704 bpos = bbase - base;
705
706 if (blen > PIPE_DIRECT_CHUNK) {
707 blen = PIPE_DIRECT_CHUNK;
708 bend = base + blen;
709 bcnt = PIPE_DIRECT_CHUNK - bpos;
710 } else {
711 bcnt = uio->uio_iov->iov_len;
712 }
713 npages = atop(blen);
714 starting_color = atop(base) & uvmexp.colormask;
715
716 /*
717 * Free the old kva if we need more pages than we have
718 * allocated.
719 */
720 if (wmap->kva != 0 && starting_color + npages > wmap->npages)
721 pipe_loan_free(wpipe);
722
723 /* Allocate new kva. */
724 if (wmap->kva == 0) {
725 error = pipe_loan_alloc(wpipe, starting_color + npages);
726 if (error) {
727 mutex_enter(lock);
728 return (error);
729 }
730 }
731
732 /* Loan the write buffer memory from writer process */
733 pgs = wmap->pgs + starting_color;
734 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
735 pgs, UVM_LOAN_TOPAGE);
736 if (error) {
737 pipe_loan_free(wpipe);
738 mutex_enter(lock);
739 return (ENOMEM); /* so that caller fallback to ordinary write */
740 }
741
742 /* Enter the loaned pages to kva */
743 vaddr_t kva = wpipe->pipe_map.kva;
744 for (int j = 0; j < npages; j++, kva += PAGE_SIZE) {
745 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ, 0);
746 }
747 pmap_update(pmap_kernel());
748
749 /* Now we can put the pipe in direct write mode */
750 wmap->pos = bpos + ptoa(starting_color);
751 wmap->cnt = bcnt;
752
753 /*
754 * But before we can let someone do a direct read, we
755 * have to wait until the pipe is drained. Release the
756 * pipe lock while we wait.
757 */
758 mutex_enter(lock);
759 wpipe->pipe_state |= PIPE_DIRECTW;
760 pipeunlock(wpipe);
761
762 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
763 cv_broadcast(&wpipe->pipe_rcv);
764 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
765 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
766 error = EPIPE;
767 }
768
769 /* Pipe is drained; next read will off the direct buffer */
770 wpipe->pipe_state |= PIPE_DIRECTR;
771
772 /* Wait until the reader is done */
773 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
774 cv_broadcast(&wpipe->pipe_rcv);
775 pipeselwakeup(wpipe, wpipe, POLL_IN);
776 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
777 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
778 error = EPIPE;
779 }
780
781 /* Take pipe out of direct write mode */
782 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
783
784 /* Acquire the pipe lock and cleanup */
785 (void)pipelock(wpipe, false);
786 mutex_exit(lock);
787
788 if (pgs != NULL) {
789 pmap_kremove(wpipe->pipe_map.kva, blen);
790 pmap_update(pmap_kernel());
791 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
792 }
793 if (error || amountpipekva > maxpipekva)
794 pipe_loan_free(wpipe);
795
796 mutex_enter(lock);
797 if (error) {
798 pipeselwakeup(wpipe, wpipe, POLL_ERR);
799
800 /*
801 * If nothing was read from what we offered, return error
802 * straight on. Otherwise update uio resid first. Caller
803 * will deal with the error condition, returning short
804 * write, error, or restarting the write(2) as appropriate.
805 */
806 if (wmap->cnt == bcnt) {
807 wmap->cnt = 0;
808 cv_broadcast(&wpipe->pipe_wcv);
809 return (error);
810 }
811
812 bcnt -= wmap->cnt;
813 }
814
815 uio->uio_resid -= bcnt;
816 /* uio_offset not updated, not set/used for write(2) */
817 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
818 uio->uio_iov->iov_len -= bcnt;
819 if (uio->uio_iov->iov_len == 0) {
820 uio->uio_iov++;
821 uio->uio_iovcnt--;
822 }
823
824 wmap->cnt = 0;
825 return (error);
826 }
827 #endif /* !PIPE_NODIRECT */
828
829 static int
830 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
831 int flags)
832 {
833 struct pipe *wpipe, *rpipe;
834 struct pipebuf *bp;
835 kmutex_t *lock;
836 int error;
837 unsigned int wakeup_state = 0;
838
839 /* We want to write to our peer */
840 rpipe = fp->f_pipe;
841 lock = rpipe->pipe_lock;
842 error = 0;
843
844 mutex_enter(lock);
845 wpipe = rpipe->pipe_peer;
846
847 /*
848 * Detect loss of pipe read side, issue SIGPIPE if lost.
849 */
850 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
851 mutex_exit(lock);
852 return EPIPE;
853 }
854 ++wpipe->pipe_busy;
855
856 /* Aquire the long-term pipe lock */
857 if ((error = pipelock(wpipe, true)) != 0) {
858 --wpipe->pipe_busy;
859 if (wpipe->pipe_busy == 0) {
860 wpipe->pipe_state &= ~PIPE_RESTART;
861 cv_broadcast(&wpipe->pipe_draincv);
862 }
863 mutex_exit(lock);
864 return (error);
865 }
866
867 bp = &wpipe->pipe_buffer;
868
869 /*
870 * If it is advantageous to resize the pipe buffer, do so.
871 */
872 if ((uio->uio_resid > PIPE_SIZE) &&
873 (nbigpipe < maxbigpipes) &&
874 #ifndef PIPE_NODIRECT
875 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
876 #endif
877 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
878
879 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
880 atomic_inc_uint(&nbigpipe);
881 }
882
883 while (uio->uio_resid) {
884 size_t space;
885
886 #ifndef PIPE_NODIRECT
887 /*
888 * Pipe buffered writes cannot be coincidental with
889 * direct writes. Also, only one direct write can be
890 * in progress at any one time. We wait until the currently
891 * executing direct write is completed before continuing.
892 *
893 * We break out if a signal occurs or the reader goes away.
894 */
895 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
896 cv_broadcast(&wpipe->pipe_rcv);
897 pipeunlock(wpipe);
898 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
899 (void)pipelock(wpipe, false);
900 if (wpipe->pipe_state & PIPE_EOF)
901 error = EPIPE;
902 }
903 if (error)
904 break;
905
906 /*
907 * If the transfer is large, we can gain performance if
908 * we do process-to-process copies directly.
909 * If the write is non-blocking, we don't use the
910 * direct write mechanism.
911 *
912 * The direct write mechanism will detect the reader going
913 * away on us.
914 */
915 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
916 (fp->f_flag & FNONBLOCK) == 0 &&
917 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
918 error = pipe_direct_write(fp, wpipe, uio);
919
920 /*
921 * Break out if error occurred, unless it's ENOMEM.
922 * ENOMEM means we failed to allocate some resources
923 * for direct write, so we just fallback to ordinary
924 * write. If the direct write was successful,
925 * process rest of data via ordinary write.
926 */
927 if (error == 0)
928 continue;
929
930 if (error != ENOMEM)
931 break;
932 }
933 #endif /* PIPE_NODIRECT */
934
935 space = bp->size - bp->cnt;
936
937 /* Writes of size <= PIPE_BUF must be atomic. */
938 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
939 space = 0;
940
941 if (space > 0) {
942 int size; /* Transfer size */
943 int segsize; /* first segment to transfer */
944
945 /*
946 * Transfer size is minimum of uio transfer
947 * and free space in pipe buffer.
948 */
949 if (space > uio->uio_resid)
950 size = uio->uio_resid;
951 else
952 size = space;
953 /*
954 * First segment to transfer is minimum of
955 * transfer size and contiguous space in
956 * pipe buffer. If first segment to transfer
957 * is less than the transfer size, we've got
958 * a wraparound in the buffer.
959 */
960 segsize = bp->size - bp->in;
961 if (segsize > size)
962 segsize = size;
963
964 /* Transfer first segment */
965 mutex_exit(lock);
966 error = uiomove((char *)bp->buffer + bp->in, segsize,
967 uio);
968
969 if (error == 0 && segsize < size) {
970 /*
971 * Transfer remaining part now, to
972 * support atomic writes. Wraparound
973 * happened.
974 */
975 KASSERT(bp->in + segsize == bp->size);
976 error = uiomove(bp->buffer,
977 size - segsize, uio);
978 }
979 mutex_enter(lock);
980 if (error)
981 break;
982
983 bp->in += size;
984 if (bp->in >= bp->size) {
985 KASSERT(bp->in == size - segsize + bp->size);
986 bp->in = size - segsize;
987 }
988
989 bp->cnt += size;
990 KASSERT(bp->cnt <= bp->size);
991 wakeup_state = 0;
992 } else {
993 /*
994 * If the "read-side" has been blocked, wake it up now.
995 */
996 cv_broadcast(&wpipe->pipe_rcv);
997
998 /*
999 * Don't block on non-blocking I/O.
1000 */
1001 if (fp->f_flag & FNONBLOCK) {
1002 error = EAGAIN;
1003 break;
1004 }
1005
1006 /*
1007 * We have no more space and have something to offer,
1008 * wake up select/poll.
1009 */
1010 if (bp->cnt)
1011 pipeselwakeup(wpipe, wpipe, POLL_IN);
1012
1013 if (wakeup_state & PIPE_RESTART) {
1014 error = ERESTART;
1015 break;
1016 }
1017
1018 pipeunlock(wpipe);
1019 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1020 (void)pipelock(wpipe, false);
1021 if (error != 0)
1022 break;
1023 /*
1024 * If read side wants to go away, we just issue a signal
1025 * to ourselves.
1026 */
1027 if (wpipe->pipe_state & PIPE_EOF) {
1028 error = EPIPE;
1029 break;
1030 }
1031 wakeup_state = wpipe->pipe_state;
1032 }
1033 }
1034
1035 --wpipe->pipe_busy;
1036 if (wpipe->pipe_busy == 0) {
1037 wpipe->pipe_state &= ~PIPE_RESTART;
1038 cv_broadcast(&wpipe->pipe_draincv);
1039 }
1040 if (bp->cnt > 0) {
1041 cv_broadcast(&wpipe->pipe_rcv);
1042 }
1043
1044 /*
1045 * Don't return EPIPE if I/O was successful
1046 */
1047 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1048 error = 0;
1049
1050 if (error == 0)
1051 getnanotime(&wpipe->pipe_mtime);
1052
1053 /*
1054 * We have something to offer, wake up select/poll.
1055 * wmap->cnt is always 0 in this point (direct write
1056 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1057 */
1058 if (bp->cnt)
1059 pipeselwakeup(wpipe, wpipe, POLL_IN);
1060
1061 /*
1062 * Arrange for next read(2) to do a signal.
1063 */
1064 wpipe->pipe_state |= PIPE_SIGNALR;
1065
1066 pipeunlock(wpipe);
1067 mutex_exit(lock);
1068 return (error);
1069 }
1070
1071 /*
1072 * We implement a very minimal set of ioctls for compatibility with sockets.
1073 */
1074 int
1075 pipe_ioctl(file_t *fp, u_long cmd, void *data)
1076 {
1077 struct pipe *pipe = fp->f_pipe;
1078 kmutex_t *lock = pipe->pipe_lock;
1079
1080 switch (cmd) {
1081
1082 case FIONBIO:
1083 return (0);
1084
1085 case FIOASYNC:
1086 mutex_enter(lock);
1087 if (*(int *)data) {
1088 pipe->pipe_state |= PIPE_ASYNC;
1089 } else {
1090 pipe->pipe_state &= ~PIPE_ASYNC;
1091 }
1092 mutex_exit(lock);
1093 return (0);
1094
1095 case FIONREAD:
1096 mutex_enter(lock);
1097 #ifndef PIPE_NODIRECT
1098 if (pipe->pipe_state & PIPE_DIRECTW)
1099 *(int *)data = pipe->pipe_map.cnt;
1100 else
1101 #endif
1102 *(int *)data = pipe->pipe_buffer.cnt;
1103 mutex_exit(lock);
1104 return (0);
1105
1106 case FIONWRITE:
1107 /* Look at other side */
1108 pipe = pipe->pipe_peer;
1109 mutex_enter(lock);
1110 #ifndef PIPE_NODIRECT
1111 if (pipe->pipe_state & PIPE_DIRECTW)
1112 *(int *)data = pipe->pipe_map.cnt;
1113 else
1114 #endif
1115 *(int *)data = pipe->pipe_buffer.cnt;
1116 mutex_exit(lock);
1117 return (0);
1118
1119 case FIONSPACE:
1120 /* Look at other side */
1121 pipe = pipe->pipe_peer;
1122 mutex_enter(lock);
1123 #ifndef PIPE_NODIRECT
1124 /*
1125 * If we're in direct-mode, we don't really have a
1126 * send queue, and any other write will block. Thus
1127 * zero seems like the best answer.
1128 */
1129 if (pipe->pipe_state & PIPE_DIRECTW)
1130 *(int *)data = 0;
1131 else
1132 #endif
1133 *(int *)data = pipe->pipe_buffer.size -
1134 pipe->pipe_buffer.cnt;
1135 mutex_exit(lock);
1136 return (0);
1137
1138 case TIOCSPGRP:
1139 case FIOSETOWN:
1140 return fsetown(&pipe->pipe_pgid, cmd, data);
1141
1142 case TIOCGPGRP:
1143 case FIOGETOWN:
1144 return fgetown(pipe->pipe_pgid, cmd, data);
1145
1146 }
1147 return (EPASSTHROUGH);
1148 }
1149
1150 int
1151 pipe_poll(file_t *fp, int events)
1152 {
1153 struct pipe *rpipe = fp->f_pipe;
1154 struct pipe *wpipe;
1155 int eof = 0;
1156 int revents = 0;
1157
1158 mutex_enter(rpipe->pipe_lock);
1159 wpipe = rpipe->pipe_peer;
1160
1161 if (events & (POLLIN | POLLRDNORM))
1162 if ((rpipe->pipe_buffer.cnt > 0) ||
1163 #ifndef PIPE_NODIRECT
1164 (rpipe->pipe_state & PIPE_DIRECTR) ||
1165 #endif
1166 (rpipe->pipe_state & PIPE_EOF))
1167 revents |= events & (POLLIN | POLLRDNORM);
1168
1169 eof |= (rpipe->pipe_state & PIPE_EOF);
1170
1171 if (wpipe == NULL)
1172 revents |= events & (POLLOUT | POLLWRNORM);
1173 else {
1174 if (events & (POLLOUT | POLLWRNORM))
1175 if ((wpipe->pipe_state & PIPE_EOF) || (
1176 #ifndef PIPE_NODIRECT
1177 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1178 #endif
1179 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1180 revents |= events & (POLLOUT | POLLWRNORM);
1181
1182 eof |= (wpipe->pipe_state & PIPE_EOF);
1183 }
1184
1185 if (wpipe == NULL || eof)
1186 revents |= POLLHUP;
1187
1188 if (revents == 0) {
1189 if (events & (POLLIN | POLLRDNORM))
1190 selrecord(curlwp, &rpipe->pipe_sel);
1191
1192 if (events & (POLLOUT | POLLWRNORM))
1193 selrecord(curlwp, &wpipe->pipe_sel);
1194 }
1195 mutex_exit(rpipe->pipe_lock);
1196
1197 return (revents);
1198 }
1199
1200 static int
1201 pipe_stat(file_t *fp, struct stat *ub)
1202 {
1203 struct pipe *pipe = fp->f_pipe;
1204
1205 mutex_enter(pipe->pipe_lock);
1206 memset(ub, 0, sizeof(*ub));
1207 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1208 ub->st_blksize = pipe->pipe_buffer.size;
1209 if (ub->st_blksize == 0 && pipe->pipe_peer)
1210 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1211 ub->st_size = pipe->pipe_buffer.cnt;
1212 ub->st_blocks = (ub->st_size) ? 1 : 0;
1213 ub->st_atimespec = pipe->pipe_atime;
1214 ub->st_mtimespec = pipe->pipe_mtime;
1215 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1216 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1217 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1218
1219 /*
1220 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1221 * XXX (st_dev, st_ino) should be unique.
1222 */
1223 mutex_exit(pipe->pipe_lock);
1224 return 0;
1225 }
1226
1227 static int
1228 pipe_close(file_t *fp)
1229 {
1230 struct pipe *pipe = fp->f_pipe;
1231
1232 fp->f_pipe = NULL;
1233 pipeclose(pipe);
1234 return (0);
1235 }
1236
1237 static void
1238 pipe_restart(file_t *fp)
1239 {
1240 struct pipe *pipe = fp->f_pipe;
1241
1242 /*
1243 * Unblock blocked reads/writes in order to allow close() to complete.
1244 * System calls return ERESTART so that the fd is revalidated.
1245 * (Partial writes return the transfer length.)
1246 */
1247 mutex_enter(pipe->pipe_lock);
1248 pipe->pipe_state |= PIPE_RESTART;
1249 /* Wakeup both cvs, maybe we only need one, but maybe there are some
1250 * other paths where wakeup is needed, and it saves deciding which! */
1251 cv_broadcast(&pipe->pipe_rcv);
1252 cv_broadcast(&pipe->pipe_wcv);
1253 mutex_exit(pipe->pipe_lock);
1254 }
1255
1256 static void
1257 pipe_free_kmem(struct pipe *pipe)
1258 {
1259
1260 if (pipe->pipe_buffer.buffer != NULL) {
1261 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1262 atomic_dec_uint(&nbigpipe);
1263 }
1264 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1265 uvm_km_free(kernel_map,
1266 (vaddr_t)pipe->pipe_buffer.buffer,
1267 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1268 atomic_add_int(&amountpipekva,
1269 -pipe->pipe_buffer.size);
1270 }
1271 pipe->pipe_buffer.buffer = NULL;
1272 }
1273 #ifndef PIPE_NODIRECT
1274 if (pipe->pipe_map.kva != 0) {
1275 pipe_loan_free(pipe);
1276 pipe->pipe_map.cnt = 0;
1277 pipe->pipe_map.pos = 0;
1278 pipe->pipe_map.npages = 0;
1279 }
1280 #endif /* !PIPE_NODIRECT */
1281 }
1282
1283 /*
1284 * Shutdown the pipe.
1285 */
1286 static void
1287 pipeclose(struct pipe *pipe)
1288 {
1289 kmutex_t *lock;
1290 struct pipe *ppipe;
1291
1292 if (pipe == NULL)
1293 return;
1294
1295 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1296 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1297 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1298 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1299
1300 lock = pipe->pipe_lock;
1301 if (lock == NULL)
1302 /* Must have failed during create */
1303 goto free_resources;
1304
1305 mutex_enter(lock);
1306 pipeselwakeup(pipe, pipe, POLL_HUP);
1307
1308 /*
1309 * If the other side is blocked, wake it up saying that
1310 * we want to close it down.
1311 */
1312 pipe->pipe_state |= PIPE_EOF;
1313 if (pipe->pipe_busy) {
1314 while (pipe->pipe_busy) {
1315 cv_broadcast(&pipe->pipe_wcv);
1316 cv_wait_sig(&pipe->pipe_draincv, lock);
1317 }
1318 }
1319
1320 /*
1321 * Disconnect from peer.
1322 */
1323 if ((ppipe = pipe->pipe_peer) != NULL) {
1324 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1325 ppipe->pipe_state |= PIPE_EOF;
1326 cv_broadcast(&ppipe->pipe_rcv);
1327 ppipe->pipe_peer = NULL;
1328 }
1329
1330 /*
1331 * Any knote objects still left in the list are
1332 * the one attached by peer. Since no one will
1333 * traverse this list, we just clear it.
1334 */
1335 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1336
1337 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1338 mutex_exit(lock);
1339 mutex_obj_free(lock);
1340
1341 /*
1342 * Free resources.
1343 */
1344 free_resources:
1345 pipe->pipe_pgid = 0;
1346 pipe->pipe_state = PIPE_SIGNALR;
1347 pipe_free_kmem(pipe);
1348 if (pipe->pipe_kmem != 0) {
1349 pool_cache_put(pipe_rd_cache, pipe);
1350 } else {
1351 pool_cache_put(pipe_wr_cache, pipe);
1352 }
1353 }
1354
1355 static void
1356 filt_pipedetach(struct knote *kn)
1357 {
1358 struct pipe *pipe;
1359 kmutex_t *lock;
1360
1361 pipe = ((file_t *)kn->kn_obj)->f_pipe;
1362 lock = pipe->pipe_lock;
1363
1364 mutex_enter(lock);
1365
1366 switch(kn->kn_filter) {
1367 case EVFILT_WRITE:
1368 /* Need the peer structure, not our own. */
1369 pipe = pipe->pipe_peer;
1370
1371 /* If reader end already closed, just return. */
1372 if (pipe == NULL) {
1373 mutex_exit(lock);
1374 return;
1375 }
1376
1377 break;
1378 default:
1379 /* Nothing to do. */
1380 break;
1381 }
1382
1383 KASSERT(kn->kn_hook == pipe);
1384 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1385 mutex_exit(lock);
1386 }
1387
1388 static int
1389 filt_piperead(struct knote *kn, long hint)
1390 {
1391 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1392 struct pipe *wpipe;
1393
1394 if ((hint & NOTE_SUBMIT) == 0) {
1395 mutex_enter(rpipe->pipe_lock);
1396 }
1397 wpipe = rpipe->pipe_peer;
1398 kn->kn_data = rpipe->pipe_buffer.cnt;
1399
1400 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1401 kn->kn_data = rpipe->pipe_map.cnt;
1402
1403 if ((rpipe->pipe_state & PIPE_EOF) ||
1404 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1405 kn->kn_flags |= EV_EOF;
1406 if ((hint & NOTE_SUBMIT) == 0) {
1407 mutex_exit(rpipe->pipe_lock);
1408 }
1409 return (1);
1410 }
1411
1412 if ((hint & NOTE_SUBMIT) == 0) {
1413 mutex_exit(rpipe->pipe_lock);
1414 }
1415 return (kn->kn_data > 0);
1416 }
1417
1418 static int
1419 filt_pipewrite(struct knote *kn, long hint)
1420 {
1421 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1422 struct pipe *wpipe;
1423
1424 if ((hint & NOTE_SUBMIT) == 0) {
1425 mutex_enter(rpipe->pipe_lock);
1426 }
1427 wpipe = rpipe->pipe_peer;
1428
1429 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1430 kn->kn_data = 0;
1431 kn->kn_flags |= EV_EOF;
1432 if ((hint & NOTE_SUBMIT) == 0) {
1433 mutex_exit(rpipe->pipe_lock);
1434 }
1435 return (1);
1436 }
1437 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1438 if (wpipe->pipe_state & PIPE_DIRECTW)
1439 kn->kn_data = 0;
1440
1441 if ((hint & NOTE_SUBMIT) == 0) {
1442 mutex_exit(rpipe->pipe_lock);
1443 }
1444 return (kn->kn_data >= PIPE_BUF);
1445 }
1446
1447 static const struct filterops pipe_rfiltops = {
1448 .f_isfd = 1,
1449 .f_attach = NULL,
1450 .f_detach = filt_pipedetach,
1451 .f_event = filt_piperead,
1452 };
1453
1454 static const struct filterops pipe_wfiltops = {
1455 .f_isfd = 1,
1456 .f_attach = NULL,
1457 .f_detach = filt_pipedetach,
1458 .f_event = filt_pipewrite,
1459 };
1460
1461 static int
1462 pipe_kqfilter(file_t *fp, struct knote *kn)
1463 {
1464 struct pipe *pipe;
1465 kmutex_t *lock;
1466
1467 pipe = ((file_t *)kn->kn_obj)->f_pipe;
1468 lock = pipe->pipe_lock;
1469
1470 mutex_enter(lock);
1471
1472 switch (kn->kn_filter) {
1473 case EVFILT_READ:
1474 kn->kn_fop = &pipe_rfiltops;
1475 break;
1476 case EVFILT_WRITE:
1477 kn->kn_fop = &pipe_wfiltops;
1478 pipe = pipe->pipe_peer;
1479 if (pipe == NULL) {
1480 /* Other end of pipe has been closed. */
1481 mutex_exit(lock);
1482 return (EBADF);
1483 }
1484 break;
1485 default:
1486 mutex_exit(lock);
1487 return (EINVAL);
1488 }
1489
1490 kn->kn_hook = pipe;
1491 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1492 mutex_exit(lock);
1493
1494 return (0);
1495 }
1496
1497 /*
1498 * Handle pipe sysctls.
1499 */
1500 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1501 {
1502
1503 sysctl_createv(clog, 0, NULL, NULL,
1504 CTLFLAG_PERMANENT,
1505 CTLTYPE_NODE, "pipe",
1506 SYSCTL_DESCR("Pipe settings"),
1507 NULL, 0, NULL, 0,
1508 CTL_KERN, KERN_PIPE, CTL_EOL);
1509
1510 sysctl_createv(clog, 0, NULL, NULL,
1511 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1512 CTLTYPE_INT, "maxkvasz",
1513 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1514 "used for pipes"),
1515 NULL, 0, &maxpipekva, 0,
1516 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1517 sysctl_createv(clog, 0, NULL, NULL,
1518 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1519 CTLTYPE_INT, "maxloankvasz",
1520 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1521 NULL, 0, &limitpipekva, 0,
1522 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1523 sysctl_createv(clog, 0, NULL, NULL,
1524 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1525 CTLTYPE_INT, "maxbigpipes",
1526 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1527 NULL, 0, &maxbigpipes, 0,
1528 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1529 sysctl_createv(clog, 0, NULL, NULL,
1530 CTLFLAG_PERMANENT,
1531 CTLTYPE_INT, "nbigpipes",
1532 SYSCTL_DESCR("Number of \"big\" pipes"),
1533 NULL, 0, &nbigpipe, 0,
1534 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1535 sysctl_createv(clog, 0, NULL, NULL,
1536 CTLFLAG_PERMANENT,
1537 CTLTYPE_INT, "kvasize",
1538 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1539 "buffers"),
1540 NULL, 0, &amountpipekva, 0,
1541 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1542 }
1543