sys_pipe.c revision 1.144 1 /* $NetBSD: sys_pipe.c,v 1.144 2018/04/20 19:02:18 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.144 2018/04/20 19:02:18 jdolecek Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 #include <uvm/uvm_extern.h>
96
97 /*
98 * Use this to disable direct I/O and decrease the code size:
99 * #define PIPE_NODIRECT
100 */
101
102 /* XXX Disabled for now; rare hangs switching between direct/buffered */
103 #define PIPE_NODIRECT
104
105 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
106 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
107 static int pipe_close(file_t *);
108 static int pipe_poll(file_t *, int);
109 static int pipe_kqfilter(file_t *, struct knote *);
110 static int pipe_stat(file_t *, struct stat *);
111 static int pipe_ioctl(file_t *, u_long, void *);
112 static void pipe_restart(file_t *);
113
114 static const struct fileops pipeops = {
115 .fo_name = "pipe",
116 .fo_read = pipe_read,
117 .fo_write = pipe_write,
118 .fo_ioctl = pipe_ioctl,
119 .fo_fcntl = fnullop_fcntl,
120 .fo_poll = pipe_poll,
121 .fo_stat = pipe_stat,
122 .fo_close = pipe_close,
123 .fo_kqfilter = pipe_kqfilter,
124 .fo_restart = pipe_restart,
125 };
126
127 /*
128 * Default pipe buffer size(s), this can be kind-of large now because pipe
129 * space is pageable. The pipe code will try to maintain locality of
130 * reference for performance reasons, so small amounts of outstanding I/O
131 * will not wipe the cache.
132 */
133 #define MINPIPESIZE (PIPE_SIZE / 3)
134 #define MAXPIPESIZE (2 * PIPE_SIZE / 3)
135
136 /*
137 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
138 * is there so that on large systems, we don't exhaust it.
139 */
140 #define MAXPIPEKVA (8 * 1024 * 1024)
141 static u_int maxpipekva = MAXPIPEKVA;
142
143 /*
144 * Limit for direct transfers, we cannot, of course limit
145 * the amount of kva for pipes in general though.
146 */
147 #define LIMITPIPEKVA (16 * 1024 * 1024)
148 static u_int limitpipekva = LIMITPIPEKVA;
149
150 /*
151 * Limit the number of "big" pipes
152 */
153 #define LIMITBIGPIPES 32
154 static u_int maxbigpipes = LIMITBIGPIPES;
155 static u_int nbigpipe = 0;
156
157 /*
158 * Amount of KVA consumed by pipe buffers.
159 */
160 static u_int amountpipekva = 0;
161
162 static void pipeclose(struct pipe *);
163 static void pipe_free_kmem(struct pipe *);
164 static int pipe_create(struct pipe **, pool_cache_t);
165 static int pipelock(struct pipe *, bool);
166 static inline void pipeunlock(struct pipe *);
167 static void pipeselwakeup(struct pipe *, struct pipe *, int);
168 #ifndef PIPE_NODIRECT
169 static int pipe_direct_write(file_t *, struct pipe *, struct uio *);
170 #endif
171 static int pipespace(struct pipe *, int);
172 static int pipe_ctor(void *, void *, int);
173 static void pipe_dtor(void *, void *);
174
175 #ifndef PIPE_NODIRECT
176 static int pipe_loan_alloc(struct pipe *, int);
177 static void pipe_loan_free(struct pipe *);
178 #endif /* PIPE_NODIRECT */
179
180 static pool_cache_t pipe_wr_cache;
181 static pool_cache_t pipe_rd_cache;
182
183 void
184 pipe_init(void)
185 {
186
187 /* Writer side is not automatically allocated KVA. */
188 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
189 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
190 KASSERT(pipe_wr_cache != NULL);
191
192 /* Reader side gets preallocated KVA. */
193 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
194 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
195 KASSERT(pipe_rd_cache != NULL);
196 }
197
198 static int
199 pipe_ctor(void *arg, void *obj, int flags)
200 {
201 struct pipe *pipe;
202 vaddr_t va;
203
204 pipe = obj;
205
206 memset(pipe, 0, sizeof(struct pipe));
207 if (arg != NULL) {
208 /* Preallocate space. */
209 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
210 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
211 KASSERT(va != 0);
212 pipe->pipe_kmem = va;
213 atomic_add_int(&amountpipekva, PIPE_SIZE);
214 }
215 cv_init(&pipe->pipe_rcv, "pipe_rd");
216 cv_init(&pipe->pipe_wcv, "pipe_wr");
217 cv_init(&pipe->pipe_draincv, "pipe_drn");
218 cv_init(&pipe->pipe_lkcv, "pipe_lk");
219 selinit(&pipe->pipe_sel);
220 pipe->pipe_state = PIPE_SIGNALR;
221
222 return 0;
223 }
224
225 static void
226 pipe_dtor(void *arg, void *obj)
227 {
228 struct pipe *pipe;
229
230 pipe = obj;
231
232 cv_destroy(&pipe->pipe_rcv);
233 cv_destroy(&pipe->pipe_wcv);
234 cv_destroy(&pipe->pipe_draincv);
235 cv_destroy(&pipe->pipe_lkcv);
236 seldestroy(&pipe->pipe_sel);
237 if (pipe->pipe_kmem != 0) {
238 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
239 UVM_KMF_PAGEABLE);
240 atomic_add_int(&amountpipekva, -PIPE_SIZE);
241 }
242 }
243
244 /*
245 * The pipe system call for the DTYPE_PIPE type of pipes
246 */
247 int
248 pipe1(struct lwp *l, int *fildes, int flags)
249 {
250 struct pipe *rpipe, *wpipe;
251 file_t *rf, *wf;
252 int fd, error;
253 proc_t *p;
254
255 if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
256 return EINVAL;
257 p = curproc;
258 rpipe = wpipe = NULL;
259 if ((error = pipe_create(&rpipe, pipe_rd_cache)) ||
260 (error = pipe_create(&wpipe, pipe_wr_cache))) {
261 goto free2;
262 }
263 rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
264 wpipe->pipe_lock = rpipe->pipe_lock;
265 mutex_obj_hold(wpipe->pipe_lock);
266
267 error = fd_allocfile(&rf, &fd);
268 if (error)
269 goto free2;
270 fildes[0] = fd;
271
272 error = fd_allocfile(&wf, &fd);
273 if (error)
274 goto free3;
275 fildes[1] = fd;
276
277 rf->f_flag = FREAD | flags;
278 rf->f_type = DTYPE_PIPE;
279 rf->f_pipe = rpipe;
280 rf->f_ops = &pipeops;
281 fd_set_exclose(l, fildes[0], (flags & O_CLOEXEC) != 0);
282
283 wf->f_flag = FWRITE | flags;
284 wf->f_type = DTYPE_PIPE;
285 wf->f_pipe = wpipe;
286 wf->f_ops = &pipeops;
287 fd_set_exclose(l, fildes[1], (flags & O_CLOEXEC) != 0);
288
289 rpipe->pipe_peer = wpipe;
290 wpipe->pipe_peer = rpipe;
291
292 fd_affix(p, rf, fildes[0]);
293 fd_affix(p, wf, fildes[1]);
294 return (0);
295 free3:
296 fd_abort(p, rf, fildes[0]);
297 free2:
298 pipeclose(wpipe);
299 pipeclose(rpipe);
300
301 return (error);
302 }
303
304 /*
305 * Allocate kva for pipe circular buffer, the space is pageable
306 * This routine will 'realloc' the size of a pipe safely, if it fails
307 * it will retain the old buffer.
308 * If it fails it will return ENOMEM.
309 */
310 static int
311 pipespace(struct pipe *pipe, int size)
312 {
313 void *buffer;
314
315 /*
316 * Allocate pageable virtual address space. Physical memory is
317 * allocated on demand.
318 */
319 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
320 buffer = (void *)pipe->pipe_kmem;
321 } else {
322 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
323 0, UVM_KMF_PAGEABLE);
324 if (buffer == NULL)
325 return (ENOMEM);
326 atomic_add_int(&amountpipekva, size);
327 }
328
329 /* free old resources if we're resizing */
330 pipe_free_kmem(pipe);
331 pipe->pipe_buffer.buffer = buffer;
332 pipe->pipe_buffer.size = size;
333 pipe->pipe_buffer.in = 0;
334 pipe->pipe_buffer.out = 0;
335 pipe->pipe_buffer.cnt = 0;
336 return (0);
337 }
338
339 /*
340 * Initialize and allocate VM and memory for pipe.
341 */
342 static int
343 pipe_create(struct pipe **pipep, pool_cache_t cache)
344 {
345 struct pipe *pipe;
346 int error;
347
348 pipe = pool_cache_get(cache, PR_WAITOK);
349 KASSERT(pipe != NULL);
350 *pipep = pipe;
351 error = 0;
352 getnanotime(&pipe->pipe_btime);
353 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
354 pipe->pipe_lock = NULL;
355 if (cache == pipe_rd_cache) {
356 error = pipespace(pipe, PIPE_SIZE);
357 } else {
358 pipe->pipe_buffer.buffer = NULL;
359 pipe->pipe_buffer.size = 0;
360 pipe->pipe_buffer.in = 0;
361 pipe->pipe_buffer.out = 0;
362 pipe->pipe_buffer.cnt = 0;
363 }
364 return error;
365 }
366
367 /*
368 * Lock a pipe for I/O, blocking other access
369 * Called with pipe spin lock held.
370 */
371 static int
372 pipelock(struct pipe *pipe, bool catch_p)
373 {
374 int error;
375
376 KASSERT(mutex_owned(pipe->pipe_lock));
377
378 while (pipe->pipe_state & PIPE_LOCKFL) {
379 pipe->pipe_state |= PIPE_LWANT;
380 if (catch_p) {
381 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
382 if (error != 0)
383 return error;
384 } else
385 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
386 }
387
388 pipe->pipe_state |= PIPE_LOCKFL;
389
390 return 0;
391 }
392
393 /*
394 * unlock a pipe I/O lock
395 */
396 static inline void
397 pipeunlock(struct pipe *pipe)
398 {
399
400 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
401
402 pipe->pipe_state &= ~PIPE_LOCKFL;
403 if (pipe->pipe_state & PIPE_LWANT) {
404 pipe->pipe_state &= ~PIPE_LWANT;
405 cv_broadcast(&pipe->pipe_lkcv);
406 }
407 }
408
409 /*
410 * Select/poll wakup. This also sends SIGIO to peer connected to
411 * 'sigpipe' side of pipe.
412 */
413 static void
414 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
415 {
416 int band;
417
418 switch (code) {
419 case POLL_IN:
420 band = POLLIN|POLLRDNORM;
421 break;
422 case POLL_OUT:
423 band = POLLOUT|POLLWRNORM;
424 break;
425 case POLL_HUP:
426 band = POLLHUP;
427 break;
428 case POLL_ERR:
429 band = POLLERR;
430 break;
431 default:
432 band = 0;
433 #ifdef DIAGNOSTIC
434 printf("bad siginfo code %d in pipe notification.\n", code);
435 #endif
436 break;
437 }
438
439 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
440
441 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
442 return;
443
444 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
445 }
446
447 static int
448 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
449 int flags)
450 {
451 struct pipe *rpipe = fp->f_pipe;
452 struct pipebuf *bp = &rpipe->pipe_buffer;
453 kmutex_t *lock = rpipe->pipe_lock;
454 int error;
455 size_t nread = 0;
456 size_t size;
457 size_t ocnt;
458 unsigned int wakeup_state = 0;
459
460 mutex_enter(lock);
461 ++rpipe->pipe_busy;
462 ocnt = bp->cnt;
463
464 again:
465 error = pipelock(rpipe, true);
466 if (error)
467 goto unlocked_error;
468
469 while (uio->uio_resid) {
470 /*
471 * Normal pipe buffer receive.
472 */
473 if (bp->cnt > 0) {
474 size = bp->size - bp->out;
475 if (size > bp->cnt)
476 size = bp->cnt;
477 if (size > uio->uio_resid)
478 size = uio->uio_resid;
479
480 mutex_exit(lock);
481 error = uiomove((char *)bp->buffer + bp->out, size, uio);
482 mutex_enter(lock);
483 if (error)
484 break;
485
486 bp->out += size;
487 if (bp->out >= bp->size)
488 bp->out = 0;
489
490 bp->cnt -= size;
491
492 /*
493 * If there is no more to read in the pipe, reset
494 * its pointers to the beginning. This improves
495 * cache hit stats.
496 */
497 if (bp->cnt == 0) {
498 bp->in = 0;
499 bp->out = 0;
500 }
501 nread += size;
502 continue;
503 }
504
505 #ifndef PIPE_NODIRECT
506 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
507 struct pipemapping * const rmap = &rpipe->pipe_map;
508 /*
509 * Direct copy, bypassing a kernel buffer.
510 */
511 void *va;
512 u_int gen;
513
514 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
515
516 size = rmap->cnt;
517 if (size > uio->uio_resid)
518 size = uio->uio_resid;
519
520 va = (char *)rmap->kva + rmap->pos;
521 gen = rmap->egen;
522 mutex_exit(lock);
523
524 /*
525 * Consume emap and read the data from loaned pages.
526 */
527 uvm_emap_consume(gen);
528 error = uiomove(va, size, uio);
529
530 mutex_enter(lock);
531 if (error)
532 break;
533 nread += size;
534 rmap->pos += size;
535 rmap->cnt -= size;
536 if (rmap->cnt == 0) {
537 rpipe->pipe_state &= ~PIPE_DIRECTR;
538 cv_broadcast(&rpipe->pipe_wcv);
539 }
540 continue;
541 }
542 #endif
543 /*
544 * Break if some data was read.
545 */
546 if (nread > 0)
547 break;
548
549 /*
550 * Detect EOF condition.
551 * Read returns 0 on EOF, no need to set error.
552 */
553 if (rpipe->pipe_state & PIPE_EOF)
554 break;
555
556 /*
557 * Don't block on non-blocking I/O.
558 */
559 if (fp->f_flag & FNONBLOCK) {
560 error = EAGAIN;
561 break;
562 }
563
564 /*
565 * Unlock the pipe buffer for our remaining processing.
566 * We will either break out with an error or we will
567 * sleep and relock to loop.
568 */
569 pipeunlock(rpipe);
570
571 /*
572 * Re-check to see if more direct writes are pending.
573 */
574 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
575 goto again;
576
577 #if 1 /* XXX (dsl) I'm sure these aren't needed here ... */
578 /*
579 * We want to read more, wake up select/poll.
580 */
581 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
582
583 /*
584 * If the "write-side" is blocked, wake it up now.
585 */
586 cv_broadcast(&rpipe->pipe_wcv);
587 #endif
588
589 if (wakeup_state & PIPE_RESTART) {
590 error = ERESTART;
591 goto unlocked_error;
592 }
593
594 /* Now wait until the pipe is filled */
595 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
596 if (error != 0)
597 goto unlocked_error;
598 wakeup_state = rpipe->pipe_state;
599 goto again;
600 }
601
602 if (error == 0)
603 getnanotime(&rpipe->pipe_atime);
604 pipeunlock(rpipe);
605
606 unlocked_error:
607 --rpipe->pipe_busy;
608 if (rpipe->pipe_busy == 0) {
609 rpipe->pipe_state &= ~PIPE_RESTART;
610 cv_broadcast(&rpipe->pipe_draincv);
611 }
612 if (bp->cnt < MINPIPESIZE) {
613 cv_broadcast(&rpipe->pipe_wcv);
614 }
615
616 /*
617 * If anything was read off the buffer, signal to the writer it's
618 * possible to write more data. Also send signal if we are here for the
619 * first time after last write.
620 */
621 if ((bp->size - bp->cnt) >= PIPE_BUF
622 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
623 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
624 rpipe->pipe_state &= ~PIPE_SIGNALR;
625 }
626
627 mutex_exit(lock);
628 return (error);
629 }
630
631 #ifndef PIPE_NODIRECT
632 /*
633 * Allocate structure for loan transfer.
634 */
635 static int
636 pipe_loan_alloc(struct pipe *wpipe, int npages)
637 {
638 struct pipemapping * const wmap = &wpipe->pipe_map;
639 const vsize_t len = ptoa(npages);
640
641 atomic_add_int(&amountpipekva, len);
642 wmap->kva = uvm_km_alloc(kernel_map, len, 0,
643 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
644 if (wmap->kva == 0) {
645 atomic_add_int(&amountpipekva, -len);
646 return (ENOMEM);
647 }
648
649 wmap->npages = npages;
650 wmap->pgs = kmem_alloc(npages * sizeof(struct vm_page *), KM_SLEEP);
651 return (0);
652 }
653
654 /*
655 * Free resources allocated for loan transfer.
656 */
657 static void
658 pipe_loan_free(struct pipe *wpipe)
659 {
660 struct pipemapping * const wmap = &wpipe->pipe_map;
661 const vsize_t len = ptoa(wmap->npages);
662
663 uvm_emap_remove(wmap->kva, len); /* XXX */
664 uvm_km_free(kernel_map, wmap->kva, len, UVM_KMF_VAONLY);
665 wmap->kva = 0;
666 atomic_add_int(&amountpipekva, -len);
667 kmem_free(wmap->pgs, wmap->npages * sizeof(struct vm_page *));
668 wmap->pgs = NULL;
669 #if 0
670 wmap->npages = 0;
671 wmap->pos = 0;
672 wmap->cnt = 0;
673 #endif
674 }
675
676 /*
677 * NetBSD direct write, using uvm_loan() mechanism.
678 * This implements the pipe buffer write mechanism. Note that only
679 * a direct write OR a normal pipe write can be pending at any given time.
680 * If there are any characters in the pipe buffer, the direct write will
681 * be deferred until the receiving process grabs all of the bytes from
682 * the pipe buffer. Then the direct mapping write is set-up.
683 *
684 * Called with the long-term pipe lock held.
685 */
686 static int
687 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
688 {
689 struct pipemapping * const wmap = &wpipe->pipe_map;
690 kmutex_t * const lock = wpipe->pipe_lock;
691 struct vm_page **pgs;
692 vaddr_t bbase, base, bend;
693 vsize_t blen, bcnt;
694 int error, npages;
695 voff_t bpos;
696 u_int starting_color;
697
698 KASSERT(mutex_owned(wpipe->pipe_lock));
699 KASSERT(wmap->cnt == 0);
700
701 mutex_exit(lock);
702
703 /*
704 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
705 * not aligned to PAGE_SIZE.
706 */
707 bbase = (vaddr_t)uio->uio_iov->iov_base;
708 base = trunc_page(bbase);
709 bend = round_page(bbase + uio->uio_iov->iov_len);
710 blen = bend - base;
711 bpos = bbase - base;
712
713 if (blen > PIPE_DIRECT_CHUNK) {
714 blen = PIPE_DIRECT_CHUNK;
715 bend = base + blen;
716 bcnt = PIPE_DIRECT_CHUNK - bpos;
717 } else {
718 bcnt = uio->uio_iov->iov_len;
719 }
720 npages = atop(blen);
721 starting_color = atop(base) & uvmexp.colormask;
722
723 /*
724 * Free the old kva if we need more pages than we have
725 * allocated.
726 */
727 if (wmap->kva != 0 && starting_color + npages > wmap->npages)
728 pipe_loan_free(wpipe);
729
730 /* Allocate new kva. */
731 if (wmap->kva == 0) {
732 error = pipe_loan_alloc(wpipe, starting_color + npages);
733 if (error) {
734 mutex_enter(lock);
735 return (error);
736 }
737 }
738
739 /* Loan the write buffer memory from writer process */
740 pgs = wmap->pgs + starting_color;
741 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
742 pgs, UVM_LOAN_TOPAGE);
743 if (error) {
744 pipe_loan_free(wpipe);
745 mutex_enter(lock);
746 return (ENOMEM); /* so that caller fallback to ordinary write */
747 }
748
749 /* Enter the loaned pages to KVA, produce new emap generation number. */
750 uvm_emap_enter(wmap->kva + ptoa(starting_color), pgs, npages,
751 VM_PROT_READ);
752 wmap->egen = uvm_emap_produce();
753
754 /* Now we can put the pipe in direct write mode */
755 wmap->pos = bpos + ptoa(starting_color);
756 wmap->cnt = bcnt;
757
758 /*
759 * But before we can let someone do a direct read, we
760 * have to wait until the pipe is drained. Release the
761 * pipe lock while we wait.
762 */
763 mutex_enter(lock);
764 wpipe->pipe_state |= PIPE_DIRECTW;
765 pipeunlock(wpipe);
766
767 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
768 cv_broadcast(&wpipe->pipe_rcv);
769 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
770 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
771 error = EPIPE;
772 }
773
774 /* Pipe is drained; next read will off the direct buffer */
775 wpipe->pipe_state |= PIPE_DIRECTR;
776
777 /* Wait until the reader is done */
778 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
779 cv_broadcast(&wpipe->pipe_rcv);
780 pipeselwakeup(wpipe, wpipe, POLL_IN);
781 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
782 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
783 error = EPIPE;
784 }
785
786 /* Take pipe out of direct write mode */
787 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
788
789 /* Acquire the pipe lock and cleanup */
790 (void)pipelock(wpipe, false);
791 mutex_exit(lock);
792
793 if (pgs != NULL) {
794 /* XXX: uvm_emap_remove */
795 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
796 }
797 if (error || amountpipekva > maxpipekva)
798 pipe_loan_free(wpipe);
799
800 mutex_enter(lock);
801 if (error) {
802 pipeselwakeup(wpipe, wpipe, POLL_ERR);
803
804 /*
805 * If nothing was read from what we offered, return error
806 * straight on. Otherwise update uio resid first. Caller
807 * will deal with the error condition, returning short
808 * write, error, or restarting the write(2) as appropriate.
809 */
810 if (wmap->cnt == bcnt) {
811 wmap->cnt = 0;
812 cv_broadcast(&wpipe->pipe_wcv);
813 return (error);
814 }
815
816 bcnt -= wpipe->cnt;
817 }
818
819 uio->uio_resid -= bcnt;
820 /* uio_offset not updated, not set/used for write(2) */
821 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
822 uio->uio_iov->iov_len -= bcnt;
823 if (uio->uio_iov->iov_len == 0) {
824 uio->uio_iov++;
825 uio->uio_iovcnt--;
826 }
827
828 wmap->cnt = 0;
829 return (error);
830 }
831 #endif /* !PIPE_NODIRECT */
832
833 static int
834 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
835 int flags)
836 {
837 struct pipe *wpipe, *rpipe;
838 struct pipebuf *bp;
839 kmutex_t *lock;
840 int error;
841 unsigned int wakeup_state = 0;
842
843 /* We want to write to our peer */
844 rpipe = fp->f_pipe;
845 lock = rpipe->pipe_lock;
846 error = 0;
847
848 mutex_enter(lock);
849 wpipe = rpipe->pipe_peer;
850
851 /*
852 * Detect loss of pipe read side, issue SIGPIPE if lost.
853 */
854 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
855 mutex_exit(lock);
856 return EPIPE;
857 }
858 ++wpipe->pipe_busy;
859
860 /* Aquire the long-term pipe lock */
861 if ((error = pipelock(wpipe, true)) != 0) {
862 --wpipe->pipe_busy;
863 if (wpipe->pipe_busy == 0) {
864 wpipe->pipe_state &= ~PIPE_RESTART;
865 cv_broadcast(&wpipe->pipe_draincv);
866 }
867 mutex_exit(lock);
868 return (error);
869 }
870
871 bp = &wpipe->pipe_buffer;
872
873 /*
874 * If it is advantageous to resize the pipe buffer, do so.
875 */
876 if ((uio->uio_resid > PIPE_SIZE) &&
877 (nbigpipe < maxbigpipes) &&
878 #ifndef PIPE_NODIRECT
879 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
880 #endif
881 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
882
883 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
884 atomic_inc_uint(&nbigpipe);
885 }
886
887 while (uio->uio_resid) {
888 size_t space;
889
890 #ifndef PIPE_NODIRECT
891 /*
892 * Pipe buffered writes cannot be coincidental with
893 * direct writes. Also, only one direct write can be
894 * in progress at any one time. We wait until the currently
895 * executing direct write is completed before continuing.
896 *
897 * We break out if a signal occurs or the reader goes away.
898 */
899 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
900 cv_broadcast(&wpipe->pipe_rcv);
901 pipeunlock(wpipe);
902 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
903 (void)pipelock(wpipe, false);
904 if (wpipe->pipe_state & PIPE_EOF)
905 error = EPIPE;
906 }
907 if (error)
908 break;
909
910 /*
911 * If the transfer is large, we can gain performance if
912 * we do process-to-process copies directly.
913 * If the write is non-blocking, we don't use the
914 * direct write mechanism.
915 *
916 * The direct write mechanism will detect the reader going
917 * away on us.
918 */
919 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
920 (fp->f_flag & FNONBLOCK) == 0 &&
921 (wmap->kva || (amountpipekva < limitpipekva))) {
922 error = pipe_direct_write(fp, wpipe, uio);
923
924 /*
925 * Break out if error occurred, unless it's ENOMEM.
926 * ENOMEM means we failed to allocate some resources
927 * for direct write, so we just fallback to ordinary
928 * write. If the direct write was successful,
929 * process rest of data via ordinary write.
930 */
931 if (error == 0)
932 continue;
933
934 if (error != ENOMEM)
935 break;
936 }
937 #endif /* PIPE_NODIRECT */
938
939 space = bp->size - bp->cnt;
940
941 /* Writes of size <= PIPE_BUF must be atomic. */
942 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
943 space = 0;
944
945 if (space > 0) {
946 int size; /* Transfer size */
947 int segsize; /* first segment to transfer */
948
949 /*
950 * Transfer size is minimum of uio transfer
951 * and free space in pipe buffer.
952 */
953 if (space > uio->uio_resid)
954 size = uio->uio_resid;
955 else
956 size = space;
957 /*
958 * First segment to transfer is minimum of
959 * transfer size and contiguous space in
960 * pipe buffer. If first segment to transfer
961 * is less than the transfer size, we've got
962 * a wraparound in the buffer.
963 */
964 segsize = bp->size - bp->in;
965 if (segsize > size)
966 segsize = size;
967
968 /* Transfer first segment */
969 mutex_exit(lock);
970 error = uiomove((char *)bp->buffer + bp->in, segsize,
971 uio);
972
973 if (error == 0 && segsize < size) {
974 /*
975 * Transfer remaining part now, to
976 * support atomic writes. Wraparound
977 * happened.
978 */
979 KASSERT(bp->in + segsize == bp->size);
980 error = uiomove(bp->buffer,
981 size - segsize, uio);
982 }
983 mutex_enter(lock);
984 if (error)
985 break;
986
987 bp->in += size;
988 if (bp->in >= bp->size) {
989 KASSERT(bp->in == size - segsize + bp->size);
990 bp->in = size - segsize;
991 }
992
993 bp->cnt += size;
994 KASSERT(bp->cnt <= bp->size);
995 wakeup_state = 0;
996 } else {
997 /*
998 * If the "read-side" has been blocked, wake it up now.
999 */
1000 cv_broadcast(&wpipe->pipe_rcv);
1001
1002 /*
1003 * Don't block on non-blocking I/O.
1004 */
1005 if (fp->f_flag & FNONBLOCK) {
1006 error = EAGAIN;
1007 break;
1008 }
1009
1010 /*
1011 * We have no more space and have something to offer,
1012 * wake up select/poll.
1013 */
1014 if (bp->cnt)
1015 pipeselwakeup(wpipe, wpipe, POLL_IN);
1016
1017 if (wakeup_state & PIPE_RESTART) {
1018 error = ERESTART;
1019 break;
1020 }
1021
1022 pipeunlock(wpipe);
1023 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1024 (void)pipelock(wpipe, false);
1025 if (error != 0)
1026 break;
1027 /*
1028 * If read side wants to go away, we just issue a signal
1029 * to ourselves.
1030 */
1031 if (wpipe->pipe_state & PIPE_EOF) {
1032 error = EPIPE;
1033 break;
1034 }
1035 wakeup_state = wpipe->pipe_state;
1036 }
1037 }
1038
1039 --wpipe->pipe_busy;
1040 if (wpipe->pipe_busy == 0) {
1041 wpipe->pipe_state &= ~PIPE_RESTART;
1042 cv_broadcast(&wpipe->pipe_draincv);
1043 }
1044 if (bp->cnt > 0) {
1045 cv_broadcast(&wpipe->pipe_rcv);
1046 }
1047
1048 /*
1049 * Don't return EPIPE if I/O was successful
1050 */
1051 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1052 error = 0;
1053
1054 if (error == 0)
1055 getnanotime(&wpipe->pipe_mtime);
1056
1057 /*
1058 * We have something to offer, wake up select/poll.
1059 * wmap->cnt is always 0 in this point (direct write
1060 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1061 */
1062 if (bp->cnt)
1063 pipeselwakeup(wpipe, wpipe, POLL_IN);
1064
1065 /*
1066 * Arrange for next read(2) to do a signal.
1067 */
1068 wpipe->pipe_state |= PIPE_SIGNALR;
1069
1070 pipeunlock(wpipe);
1071 mutex_exit(lock);
1072 return (error);
1073 }
1074
1075 /*
1076 * We implement a very minimal set of ioctls for compatibility with sockets.
1077 */
1078 int
1079 pipe_ioctl(file_t *fp, u_long cmd, void *data)
1080 {
1081 struct pipe *pipe = fp->f_pipe;
1082 kmutex_t *lock = pipe->pipe_lock;
1083
1084 switch (cmd) {
1085
1086 case FIONBIO:
1087 return (0);
1088
1089 case FIOASYNC:
1090 mutex_enter(lock);
1091 if (*(int *)data) {
1092 pipe->pipe_state |= PIPE_ASYNC;
1093 } else {
1094 pipe->pipe_state &= ~PIPE_ASYNC;
1095 }
1096 mutex_exit(lock);
1097 return (0);
1098
1099 case FIONREAD:
1100 mutex_enter(lock);
1101 #ifndef PIPE_NODIRECT
1102 if (pipe->pipe_state & PIPE_DIRECTW)
1103 *(int *)data = pipe->pipe_map.cnt;
1104 else
1105 #endif
1106 *(int *)data = pipe->pipe_buffer.cnt;
1107 mutex_exit(lock);
1108 return (0);
1109
1110 case FIONWRITE:
1111 /* Look at other side */
1112 pipe = pipe->pipe_peer;
1113 mutex_enter(lock);
1114 #ifndef PIPE_NODIRECT
1115 if (pipe->pipe_state & PIPE_DIRECTW)
1116 *(int *)data = pipe->pipe_map.cnt;
1117 else
1118 #endif
1119 *(int *)data = pipe->pipe_buffer.cnt;
1120 mutex_exit(lock);
1121 return (0);
1122
1123 case FIONSPACE:
1124 /* Look at other side */
1125 pipe = pipe->pipe_peer;
1126 mutex_enter(lock);
1127 #ifndef PIPE_NODIRECT
1128 /*
1129 * If we're in direct-mode, we don't really have a
1130 * send queue, and any other write will block. Thus
1131 * zero seems like the best answer.
1132 */
1133 if (pipe->pipe_state & PIPE_DIRECTW)
1134 *(int *)data = 0;
1135 else
1136 #endif
1137 *(int *)data = pipe->pipe_buffer.size -
1138 pipe->pipe_buffer.cnt;
1139 mutex_exit(lock);
1140 return (0);
1141
1142 case TIOCSPGRP:
1143 case FIOSETOWN:
1144 return fsetown(&pipe->pipe_pgid, cmd, data);
1145
1146 case TIOCGPGRP:
1147 case FIOGETOWN:
1148 return fgetown(pipe->pipe_pgid, cmd, data);
1149
1150 }
1151 return (EPASSTHROUGH);
1152 }
1153
1154 int
1155 pipe_poll(file_t *fp, int events)
1156 {
1157 struct pipe *rpipe = fp->f_pipe;
1158 struct pipe *wpipe;
1159 int eof = 0;
1160 int revents = 0;
1161
1162 mutex_enter(rpipe->pipe_lock);
1163 wpipe = rpipe->pipe_peer;
1164
1165 if (events & (POLLIN | POLLRDNORM))
1166 if ((rpipe->pipe_buffer.cnt > 0) ||
1167 #ifndef PIPE_NODIRECT
1168 (rpipe->pipe_state & PIPE_DIRECTR) ||
1169 #endif
1170 (rpipe->pipe_state & PIPE_EOF))
1171 revents |= events & (POLLIN | POLLRDNORM);
1172
1173 eof |= (rpipe->pipe_state & PIPE_EOF);
1174
1175 if (wpipe == NULL)
1176 revents |= events & (POLLOUT | POLLWRNORM);
1177 else {
1178 if (events & (POLLOUT | POLLWRNORM))
1179 if ((wpipe->pipe_state & PIPE_EOF) || (
1180 #ifndef PIPE_NODIRECT
1181 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1182 #endif
1183 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1184 revents |= events & (POLLOUT | POLLWRNORM);
1185
1186 eof |= (wpipe->pipe_state & PIPE_EOF);
1187 }
1188
1189 if (wpipe == NULL || eof)
1190 revents |= POLLHUP;
1191
1192 if (revents == 0) {
1193 if (events & (POLLIN | POLLRDNORM))
1194 selrecord(curlwp, &rpipe->pipe_sel);
1195
1196 if (events & (POLLOUT | POLLWRNORM))
1197 selrecord(curlwp, &wpipe->pipe_sel);
1198 }
1199 mutex_exit(rpipe->pipe_lock);
1200
1201 return (revents);
1202 }
1203
1204 static int
1205 pipe_stat(file_t *fp, struct stat *ub)
1206 {
1207 struct pipe *pipe = fp->f_pipe;
1208
1209 mutex_enter(pipe->pipe_lock);
1210 memset(ub, 0, sizeof(*ub));
1211 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1212 ub->st_blksize = pipe->pipe_buffer.size;
1213 if (ub->st_blksize == 0 && pipe->pipe_peer)
1214 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1215 ub->st_size = pipe->pipe_buffer.cnt;
1216 ub->st_blocks = (ub->st_size) ? 1 : 0;
1217 ub->st_atimespec = pipe->pipe_atime;
1218 ub->st_mtimespec = pipe->pipe_mtime;
1219 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1220 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1221 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1222
1223 /*
1224 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1225 * XXX (st_dev, st_ino) should be unique.
1226 */
1227 mutex_exit(pipe->pipe_lock);
1228 return 0;
1229 }
1230
1231 static int
1232 pipe_close(file_t *fp)
1233 {
1234 struct pipe *pipe = fp->f_pipe;
1235
1236 fp->f_pipe = NULL;
1237 pipeclose(pipe);
1238 return (0);
1239 }
1240
1241 static void
1242 pipe_restart(file_t *fp)
1243 {
1244 struct pipe *pipe = fp->f_pipe;
1245
1246 /*
1247 * Unblock blocked reads/writes in order to allow close() to complete.
1248 * System calls return ERESTART so that the fd is revalidated.
1249 * (Partial writes return the transfer length.)
1250 */
1251 mutex_enter(pipe->pipe_lock);
1252 pipe->pipe_state |= PIPE_RESTART;
1253 /* Wakeup both cvs, maybe we only need one, but maybe there are some
1254 * other paths where wakeup is needed, and it saves deciding which! */
1255 cv_broadcast(&pipe->pipe_rcv);
1256 cv_broadcast(&pipe->pipe_wcv);
1257 mutex_exit(pipe->pipe_lock);
1258 }
1259
1260 static void
1261 pipe_free_kmem(struct pipe *pipe)
1262 {
1263
1264 if (pipe->pipe_buffer.buffer != NULL) {
1265 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1266 atomic_dec_uint(&nbigpipe);
1267 }
1268 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1269 uvm_km_free(kernel_map,
1270 (vaddr_t)pipe->pipe_buffer.buffer,
1271 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1272 atomic_add_int(&amountpipekva,
1273 -pipe->pipe_buffer.size);
1274 }
1275 pipe->pipe_buffer.buffer = NULL;
1276 }
1277 #ifndef PIPE_NODIRECT
1278 if (pipe->pipe_map.kva != 0) {
1279 pipe_loan_free(pipe);
1280 pipe->pipe_map.cnt = 0;
1281 pipe->pipe_map.pos = 0;
1282 pipe->pipe_map.npages = 0;
1283 }
1284 #endif /* !PIPE_NODIRECT */
1285 }
1286
1287 /*
1288 * Shutdown the pipe.
1289 */
1290 static void
1291 pipeclose(struct pipe *pipe)
1292 {
1293 kmutex_t *lock;
1294 struct pipe *ppipe;
1295
1296 if (pipe == NULL)
1297 return;
1298
1299 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1300 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1301 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1302 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1303
1304 lock = pipe->pipe_lock;
1305 if (lock == NULL)
1306 /* Must have failed during create */
1307 goto free_resources;
1308
1309 mutex_enter(lock);
1310 pipeselwakeup(pipe, pipe, POLL_HUP);
1311
1312 /*
1313 * If the other side is blocked, wake it up saying that
1314 * we want to close it down.
1315 */
1316 pipe->pipe_state |= PIPE_EOF;
1317 if (pipe->pipe_busy) {
1318 while (pipe->pipe_busy) {
1319 cv_broadcast(&pipe->pipe_wcv);
1320 cv_wait_sig(&pipe->pipe_draincv, lock);
1321 }
1322 }
1323
1324 /*
1325 * Disconnect from peer.
1326 */
1327 if ((ppipe = pipe->pipe_peer) != NULL) {
1328 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1329 ppipe->pipe_state |= PIPE_EOF;
1330 cv_broadcast(&ppipe->pipe_rcv);
1331 ppipe->pipe_peer = NULL;
1332 }
1333
1334 /*
1335 * Any knote objects still left in the list are
1336 * the one attached by peer. Since no one will
1337 * traverse this list, we just clear it.
1338 */
1339 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1340
1341 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1342 mutex_exit(lock);
1343 mutex_obj_free(lock);
1344
1345 /*
1346 * Free resources.
1347 */
1348 free_resources:
1349 pipe->pipe_pgid = 0;
1350 pipe->pipe_state = PIPE_SIGNALR;
1351 pipe_free_kmem(pipe);
1352 if (pipe->pipe_kmem != 0) {
1353 pool_cache_put(pipe_rd_cache, pipe);
1354 } else {
1355 pool_cache_put(pipe_wr_cache, pipe);
1356 }
1357 }
1358
1359 static void
1360 filt_pipedetach(struct knote *kn)
1361 {
1362 struct pipe *pipe;
1363 kmutex_t *lock;
1364
1365 pipe = ((file_t *)kn->kn_obj)->f_pipe;
1366 lock = pipe->pipe_lock;
1367
1368 mutex_enter(lock);
1369
1370 switch(kn->kn_filter) {
1371 case EVFILT_WRITE:
1372 /* Need the peer structure, not our own. */
1373 pipe = pipe->pipe_peer;
1374
1375 /* If reader end already closed, just return. */
1376 if (pipe == NULL) {
1377 mutex_exit(lock);
1378 return;
1379 }
1380
1381 break;
1382 default:
1383 /* Nothing to do. */
1384 break;
1385 }
1386
1387 KASSERT(kn->kn_hook == pipe);
1388 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1389 mutex_exit(lock);
1390 }
1391
1392 static int
1393 filt_piperead(struct knote *kn, long hint)
1394 {
1395 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1396 struct pipe *wpipe;
1397
1398 if ((hint & NOTE_SUBMIT) == 0) {
1399 mutex_enter(rpipe->pipe_lock);
1400 }
1401 wpipe = rpipe->pipe_peer;
1402 kn->kn_data = rpipe->pipe_buffer.cnt;
1403
1404 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1405 kn->kn_data = rpipe->pipe_map.cnt;
1406
1407 if ((rpipe->pipe_state & PIPE_EOF) ||
1408 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1409 kn->kn_flags |= EV_EOF;
1410 if ((hint & NOTE_SUBMIT) == 0) {
1411 mutex_exit(rpipe->pipe_lock);
1412 }
1413 return (1);
1414 }
1415
1416 if ((hint & NOTE_SUBMIT) == 0) {
1417 mutex_exit(rpipe->pipe_lock);
1418 }
1419 return (kn->kn_data > 0);
1420 }
1421
1422 static int
1423 filt_pipewrite(struct knote *kn, long hint)
1424 {
1425 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1426 struct pipe *wpipe;
1427
1428 if ((hint & NOTE_SUBMIT) == 0) {
1429 mutex_enter(rpipe->pipe_lock);
1430 }
1431 wpipe = rpipe->pipe_peer;
1432
1433 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1434 kn->kn_data = 0;
1435 kn->kn_flags |= EV_EOF;
1436 if ((hint & NOTE_SUBMIT) == 0) {
1437 mutex_exit(rpipe->pipe_lock);
1438 }
1439 return (1);
1440 }
1441 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1442 if (wpipe->pipe_state & PIPE_DIRECTW)
1443 kn->kn_data = 0;
1444
1445 if ((hint & NOTE_SUBMIT) == 0) {
1446 mutex_exit(rpipe->pipe_lock);
1447 }
1448 return (kn->kn_data >= PIPE_BUF);
1449 }
1450
1451 static const struct filterops pipe_rfiltops = {
1452 .f_isfd = 1,
1453 .f_attach = NULL,
1454 .f_detach = filt_pipedetach,
1455 .f_event = filt_piperead,
1456 };
1457
1458 static const struct filterops pipe_wfiltops = {
1459 .f_isfd = 1,
1460 .f_attach = NULL,
1461 .f_detach = filt_pipedetach,
1462 .f_event = filt_pipewrite,
1463 };
1464
1465 static int
1466 pipe_kqfilter(file_t *fp, struct knote *kn)
1467 {
1468 struct pipe *pipe;
1469 kmutex_t *lock;
1470
1471 pipe = ((file_t *)kn->kn_obj)->f_pipe;
1472 lock = pipe->pipe_lock;
1473
1474 mutex_enter(lock);
1475
1476 switch (kn->kn_filter) {
1477 case EVFILT_READ:
1478 kn->kn_fop = &pipe_rfiltops;
1479 break;
1480 case EVFILT_WRITE:
1481 kn->kn_fop = &pipe_wfiltops;
1482 pipe = pipe->pipe_peer;
1483 if (pipe == NULL) {
1484 /* Other end of pipe has been closed. */
1485 mutex_exit(lock);
1486 return (EBADF);
1487 }
1488 break;
1489 default:
1490 mutex_exit(lock);
1491 return (EINVAL);
1492 }
1493
1494 kn->kn_hook = pipe;
1495 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1496 mutex_exit(lock);
1497
1498 return (0);
1499 }
1500
1501 /*
1502 * Handle pipe sysctls.
1503 */
1504 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1505 {
1506
1507 sysctl_createv(clog, 0, NULL, NULL,
1508 CTLFLAG_PERMANENT,
1509 CTLTYPE_NODE, "pipe",
1510 SYSCTL_DESCR("Pipe settings"),
1511 NULL, 0, NULL, 0,
1512 CTL_KERN, KERN_PIPE, CTL_EOL);
1513
1514 sysctl_createv(clog, 0, NULL, NULL,
1515 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1516 CTLTYPE_INT, "maxkvasz",
1517 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1518 "used for pipes"),
1519 NULL, 0, &maxpipekva, 0,
1520 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1521 sysctl_createv(clog, 0, NULL, NULL,
1522 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1523 CTLTYPE_INT, "maxloankvasz",
1524 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1525 NULL, 0, &limitpipekva, 0,
1526 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1527 sysctl_createv(clog, 0, NULL, NULL,
1528 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1529 CTLTYPE_INT, "maxbigpipes",
1530 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1531 NULL, 0, &maxbigpipes, 0,
1532 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1533 sysctl_createv(clog, 0, NULL, NULL,
1534 CTLFLAG_PERMANENT,
1535 CTLTYPE_INT, "nbigpipes",
1536 SYSCTL_DESCR("Number of \"big\" pipes"),
1537 NULL, 0, &nbigpipe, 0,
1538 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1539 sysctl_createv(clog, 0, NULL, NULL,
1540 CTLFLAG_PERMANENT,
1541 CTLTYPE_INT, "kvasize",
1542 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1543 "buffers"),
1544 NULL, 0, &amountpipekva, 0,
1545 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1546 }
1547