sys_pipe.c revision 1.147 1 /* $NetBSD: sys_pipe.c,v 1.147 2019/04/26 17:20:49 mlelstv Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.147 2019/04/26 17:20:49 mlelstv Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 /*
96 * Use this to disable direct I/O and decrease the code size:
97 * #define PIPE_NODIRECT
98 */
99
100 /* XXX Disabled for now; rare hangs switching between direct/buffered */
101 #define PIPE_NODIRECT
102
103 #ifndef PIPE_NODIRECT
104 #include <uvm/uvm.h>
105
106 #if !defined(PMAP_DIRECT)
107 # define PIPE_NODIRECT /* Direct map interface not available */
108 #endif
109
110 bool pipe_direct = true;
111 #endif
112
113 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
114 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
115 static int pipe_close(file_t *);
116 static int pipe_poll(file_t *, int);
117 static int pipe_kqfilter(file_t *, struct knote *);
118 static int pipe_stat(file_t *, struct stat *);
119 static int pipe_ioctl(file_t *, u_long, void *);
120 static void pipe_restart(file_t *);
121
122 static const struct fileops pipeops = {
123 .fo_name = "pipe",
124 .fo_read = pipe_read,
125 .fo_write = pipe_write,
126 .fo_ioctl = pipe_ioctl,
127 .fo_fcntl = fnullop_fcntl,
128 .fo_poll = pipe_poll,
129 .fo_stat = pipe_stat,
130 .fo_close = pipe_close,
131 .fo_kqfilter = pipe_kqfilter,
132 .fo_restart = pipe_restart,
133 };
134
135 /*
136 * Default pipe buffer size(s), this can be kind-of large now because pipe
137 * space is pageable. The pipe code will try to maintain locality of
138 * reference for performance reasons, so small amounts of outstanding I/O
139 * will not wipe the cache.
140 */
141 #define MINPIPESIZE (PIPE_SIZE / 3)
142 #define MAXPIPESIZE (2 * PIPE_SIZE / 3)
143
144 /*
145 * Limit the number of "big" pipes
146 */
147 #define LIMITBIGPIPES 32
148 static u_int maxbigpipes = LIMITBIGPIPES;
149 static u_int nbigpipe = 0;
150
151 /*
152 * Amount of KVA consumed by pipe buffers.
153 */
154 static u_int amountpipekva = 0;
155
156 static void pipeclose(struct pipe *);
157 static void pipe_free_kmem(struct pipe *);
158 static int pipe_create(struct pipe **, pool_cache_t);
159 static int pipelock(struct pipe *, bool);
160 static inline void pipeunlock(struct pipe *);
161 static void pipeselwakeup(struct pipe *, struct pipe *, int);
162 #ifndef PIPE_NODIRECT
163 static int pipe_direct_write(file_t *, struct pipe *, struct uio *);
164 #endif
165 static int pipespace(struct pipe *, int);
166 static int pipe_ctor(void *, void *, int);
167 static void pipe_dtor(void *, void *);
168
169 #ifndef PIPE_NODIRECT
170 static int pipe_loan_alloc(struct pipe *, int);
171 static void pipe_loan_free(struct pipe *);
172 static int pipe_direct_process_read(void *, size_t, void *);
173 #endif /* PIPE_NODIRECT */
174
175 static pool_cache_t pipe_wr_cache;
176 static pool_cache_t pipe_rd_cache;
177
178 void
179 pipe_init(void)
180 {
181
182 /* Writer side is not automatically allocated KVA. */
183 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
184 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
185 KASSERT(pipe_wr_cache != NULL);
186
187 /* Reader side gets preallocated KVA. */
188 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
189 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
190 KASSERT(pipe_rd_cache != NULL);
191 }
192
193 static int
194 pipe_ctor(void *arg, void *obj, int flags)
195 {
196 struct pipe *pipe;
197 vaddr_t va;
198
199 pipe = obj;
200
201 memset(pipe, 0, sizeof(struct pipe));
202 if (arg != NULL) {
203 /* Preallocate space. */
204 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
205 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
206 KASSERT(va != 0);
207 pipe->pipe_kmem = va;
208 atomic_add_int(&amountpipekva, PIPE_SIZE);
209 }
210 cv_init(&pipe->pipe_rcv, "pipe_rd");
211 cv_init(&pipe->pipe_wcv, "pipe_wr");
212 cv_init(&pipe->pipe_draincv, "pipe_drn");
213 cv_init(&pipe->pipe_lkcv, "pipe_lk");
214 selinit(&pipe->pipe_sel);
215 pipe->pipe_state = PIPE_SIGNALR;
216
217 return 0;
218 }
219
220 static void
221 pipe_dtor(void *arg, void *obj)
222 {
223 struct pipe *pipe;
224
225 pipe = obj;
226
227 cv_destroy(&pipe->pipe_rcv);
228 cv_destroy(&pipe->pipe_wcv);
229 cv_destroy(&pipe->pipe_draincv);
230 cv_destroy(&pipe->pipe_lkcv);
231 seldestroy(&pipe->pipe_sel);
232 if (pipe->pipe_kmem != 0) {
233 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
234 UVM_KMF_PAGEABLE);
235 atomic_add_int(&amountpipekva, -PIPE_SIZE);
236 }
237 }
238
239 /*
240 * The pipe system call for the DTYPE_PIPE type of pipes
241 */
242 int
243 pipe1(struct lwp *l, int *fildes, int flags)
244 {
245 struct pipe *rpipe, *wpipe;
246 file_t *rf, *wf;
247 int fd, error;
248 proc_t *p;
249
250 if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
251 return EINVAL;
252 p = curproc;
253 rpipe = wpipe = NULL;
254 if ((error = pipe_create(&rpipe, pipe_rd_cache)) ||
255 (error = pipe_create(&wpipe, pipe_wr_cache))) {
256 goto free2;
257 }
258 rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
259 wpipe->pipe_lock = rpipe->pipe_lock;
260 mutex_obj_hold(wpipe->pipe_lock);
261
262 error = fd_allocfile(&rf, &fd);
263 if (error)
264 goto free2;
265 fildes[0] = fd;
266
267 error = fd_allocfile(&wf, &fd);
268 if (error)
269 goto free3;
270 fildes[1] = fd;
271
272 rf->f_flag = FREAD | flags;
273 rf->f_type = DTYPE_PIPE;
274 rf->f_pipe = rpipe;
275 rf->f_ops = &pipeops;
276 fd_set_exclose(l, fildes[0], (flags & O_CLOEXEC) != 0);
277
278 wf->f_flag = FWRITE | flags;
279 wf->f_type = DTYPE_PIPE;
280 wf->f_pipe = wpipe;
281 wf->f_ops = &pipeops;
282 fd_set_exclose(l, fildes[1], (flags & O_CLOEXEC) != 0);
283
284 rpipe->pipe_peer = wpipe;
285 wpipe->pipe_peer = rpipe;
286
287 fd_affix(p, rf, fildes[0]);
288 fd_affix(p, wf, fildes[1]);
289 return (0);
290 free3:
291 fd_abort(p, rf, fildes[0]);
292 free2:
293 pipeclose(wpipe);
294 pipeclose(rpipe);
295
296 return (error);
297 }
298
299 /*
300 * Allocate kva for pipe circular buffer, the space is pageable
301 * This routine will 'realloc' the size of a pipe safely, if it fails
302 * it will retain the old buffer.
303 * If it fails it will return ENOMEM.
304 */
305 static int
306 pipespace(struct pipe *pipe, int size)
307 {
308 void *buffer;
309
310 /*
311 * Allocate pageable virtual address space. Physical memory is
312 * allocated on demand.
313 */
314 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
315 buffer = (void *)pipe->pipe_kmem;
316 } else {
317 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
318 0, UVM_KMF_PAGEABLE);
319 if (buffer == NULL)
320 return (ENOMEM);
321 atomic_add_int(&amountpipekva, size);
322 }
323
324 /* free old resources if we're resizing */
325 pipe_free_kmem(pipe);
326 pipe->pipe_buffer.buffer = buffer;
327 pipe->pipe_buffer.size = size;
328 pipe->pipe_buffer.in = 0;
329 pipe->pipe_buffer.out = 0;
330 pipe->pipe_buffer.cnt = 0;
331 return (0);
332 }
333
334 /*
335 * Initialize and allocate VM and memory for pipe.
336 */
337 static int
338 pipe_create(struct pipe **pipep, pool_cache_t cache)
339 {
340 struct pipe *pipe;
341 int error;
342
343 pipe = pool_cache_get(cache, PR_WAITOK);
344 KASSERT(pipe != NULL);
345 *pipep = pipe;
346 error = 0;
347 getnanotime(&pipe->pipe_btime);
348 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
349 pipe->pipe_lock = NULL;
350 if (cache == pipe_rd_cache) {
351 error = pipespace(pipe, PIPE_SIZE);
352 } else {
353 pipe->pipe_buffer.buffer = NULL;
354 pipe->pipe_buffer.size = 0;
355 pipe->pipe_buffer.in = 0;
356 pipe->pipe_buffer.out = 0;
357 pipe->pipe_buffer.cnt = 0;
358 }
359 return error;
360 }
361
362 /*
363 * Lock a pipe for I/O, blocking other access
364 * Called with pipe spin lock held.
365 */
366 static int
367 pipelock(struct pipe *pipe, bool catch_p)
368 {
369 int error;
370
371 KASSERT(mutex_owned(pipe->pipe_lock));
372
373 while (pipe->pipe_state & PIPE_LOCKFL) {
374 pipe->pipe_state |= PIPE_LWANT;
375 if (catch_p) {
376 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
377 if (error != 0)
378 return error;
379 } else
380 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
381 }
382
383 pipe->pipe_state |= PIPE_LOCKFL;
384
385 return 0;
386 }
387
388 /*
389 * unlock a pipe I/O lock
390 */
391 static inline void
392 pipeunlock(struct pipe *pipe)
393 {
394
395 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
396
397 pipe->pipe_state &= ~PIPE_LOCKFL;
398 if (pipe->pipe_state & PIPE_LWANT) {
399 pipe->pipe_state &= ~PIPE_LWANT;
400 cv_broadcast(&pipe->pipe_lkcv);
401 }
402 }
403
404 /*
405 * Select/poll wakup. This also sends SIGIO to peer connected to
406 * 'sigpipe' side of pipe.
407 */
408 static void
409 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
410 {
411 int band;
412
413 switch (code) {
414 case POLL_IN:
415 band = POLLIN|POLLRDNORM;
416 break;
417 case POLL_OUT:
418 band = POLLOUT|POLLWRNORM;
419 break;
420 case POLL_HUP:
421 band = POLLHUP;
422 break;
423 case POLL_ERR:
424 band = POLLERR;
425 break;
426 default:
427 band = 0;
428 #ifdef DIAGNOSTIC
429 printf("bad siginfo code %d in pipe notification.\n", code);
430 #endif
431 break;
432 }
433
434 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
435
436 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
437 return;
438
439 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
440 }
441
442 #ifndef PIPE_NODIRECT
443 static int
444 pipe_direct_process_read(void *va, size_t len, void *arg)
445 {
446 struct uio *uio = (struct uio *)arg;
447
448 return uiomove(va, len, uio);
449 }
450 #endif
451
452 static int
453 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
454 int flags)
455 {
456 struct pipe *rpipe = fp->f_pipe;
457 struct pipebuf *bp = &rpipe->pipe_buffer;
458 kmutex_t *lock = rpipe->pipe_lock;
459 int error;
460 size_t nread = 0;
461 size_t size;
462 size_t ocnt;
463 unsigned int wakeup_state = 0;
464
465 mutex_enter(lock);
466 ++rpipe->pipe_busy;
467 ocnt = bp->cnt;
468
469 again:
470 error = pipelock(rpipe, true);
471 if (error)
472 goto unlocked_error;
473
474 while (uio->uio_resid) {
475 /*
476 * Normal pipe buffer receive.
477 */
478 if (bp->cnt > 0) {
479 size = bp->size - bp->out;
480 if (size > bp->cnt)
481 size = bp->cnt;
482 if (size > uio->uio_resid)
483 size = uio->uio_resid;
484
485 mutex_exit(lock);
486 error = uiomove((char *)bp->buffer + bp->out, size, uio);
487 mutex_enter(lock);
488 if (error)
489 break;
490
491 bp->out += size;
492 if (bp->out >= bp->size)
493 bp->out = 0;
494
495 bp->cnt -= size;
496
497 /*
498 * If there is no more to read in the pipe, reset
499 * its pointers to the beginning. This improves
500 * cache hit stats.
501 */
502 if (bp->cnt == 0) {
503 bp->in = 0;
504 bp->out = 0;
505 }
506 nread += size;
507 continue;
508 }
509
510 #ifndef PIPE_NODIRECT
511 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
512 struct pipemapping * const rmap = &rpipe->pipe_map;
513 voff_t pgoff;
514 u_int pgst, npages;
515
516 /*
517 * Direct copy, bypassing a kernel buffer.
518 */
519 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
520
521 size = MIN(rmap->cnt, uio->uio_resid);
522
523 if (size > 0) {
524 KASSERT(size > 0);
525 mutex_exit(lock);
526
527 pgst = rmap->pos >> PAGE_SHIFT;
528 pgoff = rmap->pos & PAGE_MASK;
529 npages = (size + pgoff + PAGE_SIZE - 1) >> PAGE_SHIFT;
530 KASSERTMSG(npages > 0 && (pgst + npages) <= rmap->npages, "npages %u pgst %u rmap->npages %u", npages, pgst, rmap->npages);
531
532 error = uvm_direct_process(&rmap->pgs[pgst], npages,
533 pgoff, size, pipe_direct_process_read, uio);
534 mutex_enter(lock);
535
536 nread += size;
537 rmap->pos += size;
538 rmap->cnt -= size;
539 }
540
541 if (rmap->cnt == 0) {
542 rpipe->pipe_state &= ~PIPE_DIRECTR;
543 cv_broadcast(&rpipe->pipe_wcv);
544 }
545
546 continue;
547 }
548 #endif
549 /*
550 * Break if some data was read.
551 */
552 if (nread > 0)
553 break;
554
555 /*
556 * Detect EOF condition.
557 * Read returns 0 on EOF, no need to set error.
558 */
559 if (rpipe->pipe_state & PIPE_EOF)
560 break;
561
562 /*
563 * Don't block on non-blocking I/O.
564 */
565 if (fp->f_flag & FNONBLOCK) {
566 error = EAGAIN;
567 break;
568 }
569
570 /*
571 * Unlock the pipe buffer for our remaining processing.
572 * We will either break out with an error or we will
573 * sleep and relock to loop.
574 */
575 pipeunlock(rpipe);
576
577 /*
578 * Re-check to see if more direct writes are pending.
579 */
580 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
581 goto again;
582
583 #if 1 /* XXX (dsl) I'm sure these aren't needed here ... */
584 /*
585 * We want to read more, wake up select/poll.
586 */
587 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
588
589 /*
590 * If the "write-side" is blocked, wake it up now.
591 */
592 cv_broadcast(&rpipe->pipe_wcv);
593 #endif
594
595 if (wakeup_state & PIPE_RESTART) {
596 error = ERESTART;
597 goto unlocked_error;
598 }
599
600 /* Now wait until the pipe is filled */
601 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
602 if (error != 0)
603 goto unlocked_error;
604 wakeup_state = rpipe->pipe_state;
605 goto again;
606 }
607
608 if (error == 0)
609 getnanotime(&rpipe->pipe_atime);
610 pipeunlock(rpipe);
611
612 unlocked_error:
613 --rpipe->pipe_busy;
614 if (rpipe->pipe_busy == 0) {
615 rpipe->pipe_state &= ~PIPE_RESTART;
616 cv_broadcast(&rpipe->pipe_draincv);
617 }
618 if (bp->cnt < MINPIPESIZE) {
619 cv_broadcast(&rpipe->pipe_wcv);
620 }
621
622 /*
623 * If anything was read off the buffer, signal to the writer it's
624 * possible to write more data. Also send signal if we are here for the
625 * first time after last write.
626 */
627 if ((bp->size - bp->cnt) >= PIPE_BUF
628 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
629 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
630 rpipe->pipe_state &= ~PIPE_SIGNALR;
631 }
632
633 mutex_exit(lock);
634 return (error);
635 }
636
637 #ifndef PIPE_NODIRECT
638 /*
639 * Allocate structure for loan transfer.
640 */
641 static int
642 pipe_loan_alloc(struct pipe *wpipe, int npages)
643 {
644 struct pipemapping * const wmap = &wpipe->pipe_map;
645
646 KASSERT(wmap->npages == 0);
647
648 if (npages > wmap->maxpages) {
649 pipe_loan_free(wpipe);
650
651 wmap->pgs = kmem_alloc(npages * sizeof(struct vm_page *), KM_NOSLEEP);
652 if (wmap->pgs == NULL)
653 return ENOMEM;
654 wmap->maxpages = npages;
655 }
656
657 wmap->npages = npages;
658
659 return (0);
660 }
661
662 /*
663 * Free resources allocated for loan transfer.
664 */
665 static void
666 pipe_loan_free(struct pipe *wpipe)
667 {
668 struct pipemapping * const wmap = &wpipe->pipe_map;
669
670 if (wmap->maxpages > 0) {
671 kmem_free(wmap->pgs, wmap->maxpages * sizeof(struct vm_page *));
672 wmap->pgs = NULL;
673 wmap->maxpages = 0;
674 }
675
676 wmap->npages = 0;
677 wmap->pos = 0;
678 wmap->cnt = 0;
679 }
680
681 /*
682 * NetBSD direct write, using uvm_loan() mechanism.
683 * This implements the pipe buffer write mechanism. Note that only
684 * a direct write OR a normal pipe write can be pending at any given time.
685 * If there are any characters in the pipe buffer, the direct write will
686 * be deferred until the receiving process grabs all of the bytes from
687 * the pipe buffer. Then the direct mapping write is set-up.
688 *
689 * Called with the long-term pipe lock held.
690 */
691 static int
692 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
693 {
694 struct pipemapping * const wmap = &wpipe->pipe_map;
695 kmutex_t * const lock = wpipe->pipe_lock;
696 vaddr_t bbase, base, bend;
697 vsize_t blen, bcnt;
698 int error, npages;
699 voff_t bpos;
700
701 KASSERT(mutex_owned(lock));
702 KASSERT(wmap->cnt == 0);
703
704 mutex_exit(lock);
705
706 /*
707 * Handle first PIPE_DIRECT_CHUNK bytes of buffer. Deal with buffers
708 * not aligned to PAGE_SIZE.
709 */
710 bbase = (vaddr_t)uio->uio_iov->iov_base;
711 base = trunc_page(bbase);
712 bend = round_page(bbase + uio->uio_iov->iov_len);
713 blen = bend - base;
714 bpos = bbase - base;
715
716 if (blen > PIPE_DIRECT_CHUNK) {
717 blen = PIPE_DIRECT_CHUNK;
718 bend = base + blen;
719 bcnt = PIPE_DIRECT_CHUNK - bpos;
720 } else {
721 bcnt = uio->uio_iov->iov_len;
722 }
723 npages = atop(blen);
724
725 KASSERT((wpipe->pipe_state & (PIPE_DIRECTW | PIPE_DIRECTR)) == 0);
726 KASSERT(wmap->npages == 0);
727
728 /* Make sure page array is big enough */
729 error = pipe_loan_alloc(wpipe, npages);
730 if (error) {
731 mutex_enter(lock);
732 return (error);
733 }
734
735 /* Loan the write buffer memory from writer process */
736 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
737 wmap->pgs, UVM_LOAN_TOPAGE);
738 if (error) {
739 pipe_loan_free(wpipe);
740 mutex_enter(lock);
741 return (ENOMEM); /* so that caller fallback to ordinary write */
742 }
743
744 /* Now we can put the pipe in direct write mode */
745 wmap->pos = bpos;
746 wmap->cnt = bcnt;
747
748 /*
749 * But before we can let someone do a direct read, we
750 * have to wait until the pipe is drained. Release the
751 * pipe lock while we wait.
752 */
753 mutex_enter(lock);
754 wpipe->pipe_state |= PIPE_DIRECTW;
755 pipeunlock(wpipe);
756
757 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
758 cv_broadcast(&wpipe->pipe_rcv);
759 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
760 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
761 error = EPIPE;
762 }
763
764 /* Pipe is drained; next read will off the direct buffer */
765 wpipe->pipe_state |= PIPE_DIRECTR;
766
767 /* Wait until the reader is done */
768 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
769 cv_broadcast(&wpipe->pipe_rcv);
770 pipeselwakeup(wpipe, wpipe, POLL_IN);
771 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
772 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
773 error = EPIPE;
774 }
775
776 /* Take pipe out of direct write mode */
777 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
778
779 /* Acquire the pipe lock and cleanup */
780 (void)pipelock(wpipe, false);
781
782 mutex_exit(lock);
783 /* XXX what happens if the writer process exits without waiting for reader?
784 * XXX FreeBSD does a clone in this case */
785 uvm_unloan(wmap->pgs, npages, UVM_LOAN_TOPAGE);
786 mutex_enter(lock);
787
788 if (error) {
789 pipeselwakeup(wpipe, wpipe, POLL_ERR);
790
791 /*
792 * If nothing was read from what we offered, return error
793 * straight on. Otherwise update uio resid first. Caller
794 * will deal with the error condition, returning short
795 * write, error, or restarting the write(2) as appropriate.
796 */
797 if (wmap->cnt == bcnt) {
798 wmap->cnt = 0;
799 cv_broadcast(&wpipe->pipe_wcv);
800 return (error);
801 }
802
803 bcnt -= wmap->cnt;
804 }
805
806 uio->uio_resid -= bcnt;
807 /* uio_offset not updated, not set/used for write(2) */
808 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
809 uio->uio_iov->iov_len -= bcnt;
810 if (uio->uio_iov->iov_len == 0) {
811 uio->uio_iov++;
812 uio->uio_iovcnt--;
813 }
814
815 wmap->cnt = 0;
816 return (error);
817 }
818 #endif /* !PIPE_NODIRECT */
819
820 static int
821 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
822 int flags)
823 {
824 struct pipe *wpipe, *rpipe;
825 struct pipebuf *bp;
826 kmutex_t *lock;
827 int error;
828 unsigned int wakeup_state = 0;
829
830 /* We want to write to our peer */
831 rpipe = fp->f_pipe;
832 lock = rpipe->pipe_lock;
833 error = 0;
834
835 mutex_enter(lock);
836 wpipe = rpipe->pipe_peer;
837
838 /*
839 * Detect loss of pipe read side, issue SIGPIPE if lost.
840 */
841 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
842 mutex_exit(lock);
843 return EPIPE;
844 }
845 ++wpipe->pipe_busy;
846
847 /* Aquire the long-term pipe lock */
848 if ((error = pipelock(wpipe, true)) != 0) {
849 --wpipe->pipe_busy;
850 if (wpipe->pipe_busy == 0) {
851 wpipe->pipe_state &= ~PIPE_RESTART;
852 cv_broadcast(&wpipe->pipe_draincv);
853 }
854 mutex_exit(lock);
855 return (error);
856 }
857
858 bp = &wpipe->pipe_buffer;
859
860 /*
861 * If it is advantageous to resize the pipe buffer, do so.
862 */
863 if ((uio->uio_resid > PIPE_SIZE) &&
864 (nbigpipe < maxbigpipes) &&
865 #ifndef PIPE_NODIRECT
866 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
867 #endif
868 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
869
870 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
871 atomic_inc_uint(&nbigpipe);
872 }
873
874 while (uio->uio_resid) {
875 size_t space;
876
877 #ifndef PIPE_NODIRECT
878 /*
879 * Pipe buffered writes cannot be coincidental with
880 * direct writes. Also, only one direct write can be
881 * in progress at any one time. We wait until the currently
882 * executing direct write is completed before continuing.
883 *
884 * We break out if a signal occurs or the reader goes away.
885 */
886 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
887 cv_broadcast(&wpipe->pipe_rcv);
888 pipeunlock(wpipe);
889 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
890 (void)pipelock(wpipe, false);
891 if (wpipe->pipe_state & PIPE_EOF)
892 error = EPIPE;
893 }
894 if (error)
895 break;
896
897 /*
898 * If the transfer is large, we can gain performance if
899 * we do process-to-process copies directly.
900 * If the write is non-blocking, we don't use the
901 * direct write mechanism.
902 *
903 * The direct write mechanism will detect the reader going
904 * away on us.
905 */
906 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
907 (fp->f_flag & FNONBLOCK) == 0 &&
908 pipe_direct) {
909 error = pipe_direct_write(fp, wpipe, uio);
910
911 /*
912 * Break out if error occurred, unless it's ENOMEM.
913 * ENOMEM means we failed to allocate some resources
914 * for direct write, so we just fallback to ordinary
915 * write. If the direct write was successful,
916 * process rest of data via ordinary write.
917 */
918 if (error == 0)
919 continue;
920
921 if (error != ENOMEM)
922 break;
923 }
924 #endif /* PIPE_NODIRECT */
925
926 space = bp->size - bp->cnt;
927
928 /* Writes of size <= PIPE_BUF must be atomic. */
929 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
930 space = 0;
931
932 if (space > 0) {
933 int size; /* Transfer size */
934 int segsize; /* first segment to transfer */
935
936 /*
937 * Transfer size is minimum of uio transfer
938 * and free space in pipe buffer.
939 */
940 if (space > uio->uio_resid)
941 size = uio->uio_resid;
942 else
943 size = space;
944 /*
945 * First segment to transfer is minimum of
946 * transfer size and contiguous space in
947 * pipe buffer. If first segment to transfer
948 * is less than the transfer size, we've got
949 * a wraparound in the buffer.
950 */
951 segsize = bp->size - bp->in;
952 if (segsize > size)
953 segsize = size;
954
955 /* Transfer first segment */
956 mutex_exit(lock);
957 error = uiomove((char *)bp->buffer + bp->in, segsize,
958 uio);
959
960 if (error == 0 && segsize < size) {
961 /*
962 * Transfer remaining part now, to
963 * support atomic writes. Wraparound
964 * happened.
965 */
966 KASSERT(bp->in + segsize == bp->size);
967 error = uiomove(bp->buffer,
968 size - segsize, uio);
969 }
970 mutex_enter(lock);
971 if (error)
972 break;
973
974 bp->in += size;
975 if (bp->in >= bp->size) {
976 KASSERT(bp->in == size - segsize + bp->size);
977 bp->in = size - segsize;
978 }
979
980 bp->cnt += size;
981 KASSERT(bp->cnt <= bp->size);
982 wakeup_state = 0;
983 } else {
984 /*
985 * If the "read-side" has been blocked, wake it up now.
986 */
987 cv_broadcast(&wpipe->pipe_rcv);
988
989 /*
990 * Don't block on non-blocking I/O.
991 */
992 if (fp->f_flag & FNONBLOCK) {
993 error = EAGAIN;
994 break;
995 }
996
997 /*
998 * We have no more space and have something to offer,
999 * wake up select/poll.
1000 */
1001 if (bp->cnt)
1002 pipeselwakeup(wpipe, wpipe, POLL_IN);
1003
1004 if (wakeup_state & PIPE_RESTART) {
1005 error = ERESTART;
1006 break;
1007 }
1008
1009 pipeunlock(wpipe);
1010 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1011 (void)pipelock(wpipe, false);
1012 if (error != 0)
1013 break;
1014 /*
1015 * If read side wants to go away, we just issue a signal
1016 * to ourselves.
1017 */
1018 if (wpipe->pipe_state & PIPE_EOF) {
1019 error = EPIPE;
1020 break;
1021 }
1022 wakeup_state = wpipe->pipe_state;
1023 }
1024 }
1025
1026 --wpipe->pipe_busy;
1027 if (wpipe->pipe_busy == 0) {
1028 wpipe->pipe_state &= ~PIPE_RESTART;
1029 cv_broadcast(&wpipe->pipe_draincv);
1030 }
1031 if (bp->cnt > 0) {
1032 cv_broadcast(&wpipe->pipe_rcv);
1033 }
1034
1035 /*
1036 * Don't return EPIPE if I/O was successful
1037 */
1038 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1039 error = 0;
1040
1041 if (error == 0)
1042 getnanotime(&wpipe->pipe_mtime);
1043
1044 /*
1045 * We have something to offer, wake up select/poll.
1046 * wmap->cnt is always 0 in this point (direct write
1047 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1048 */
1049 if (bp->cnt)
1050 pipeselwakeup(wpipe, wpipe, POLL_IN);
1051
1052 /*
1053 * Arrange for next read(2) to do a signal.
1054 */
1055 wpipe->pipe_state |= PIPE_SIGNALR;
1056
1057 pipeunlock(wpipe);
1058 mutex_exit(lock);
1059 return (error);
1060 }
1061
1062 /*
1063 * We implement a very minimal set of ioctls for compatibility with sockets.
1064 */
1065 int
1066 pipe_ioctl(file_t *fp, u_long cmd, void *data)
1067 {
1068 struct pipe *pipe = fp->f_pipe;
1069 kmutex_t *lock = pipe->pipe_lock;
1070
1071 switch (cmd) {
1072
1073 case FIONBIO:
1074 return (0);
1075
1076 case FIOASYNC:
1077 mutex_enter(lock);
1078 if (*(int *)data) {
1079 pipe->pipe_state |= PIPE_ASYNC;
1080 } else {
1081 pipe->pipe_state &= ~PIPE_ASYNC;
1082 }
1083 mutex_exit(lock);
1084 return (0);
1085
1086 case FIONREAD:
1087 mutex_enter(lock);
1088 #ifndef PIPE_NODIRECT
1089 if (pipe->pipe_state & PIPE_DIRECTW)
1090 *(int *)data = pipe->pipe_map.cnt;
1091 else
1092 #endif
1093 *(int *)data = pipe->pipe_buffer.cnt;
1094 mutex_exit(lock);
1095 return (0);
1096
1097 case FIONWRITE:
1098 /* Look at other side */
1099 pipe = pipe->pipe_peer;
1100 mutex_enter(lock);
1101 #ifndef PIPE_NODIRECT
1102 if (pipe->pipe_state & PIPE_DIRECTW)
1103 *(int *)data = pipe->pipe_map.cnt;
1104 else
1105 #endif
1106 *(int *)data = pipe->pipe_buffer.cnt;
1107 mutex_exit(lock);
1108 return (0);
1109
1110 case FIONSPACE:
1111 /* Look at other side */
1112 pipe = pipe->pipe_peer;
1113 mutex_enter(lock);
1114 #ifndef PIPE_NODIRECT
1115 /*
1116 * If we're in direct-mode, we don't really have a
1117 * send queue, and any other write will block. Thus
1118 * zero seems like the best answer.
1119 */
1120 if (pipe->pipe_state & PIPE_DIRECTW)
1121 *(int *)data = 0;
1122 else
1123 #endif
1124 *(int *)data = pipe->pipe_buffer.size -
1125 pipe->pipe_buffer.cnt;
1126 mutex_exit(lock);
1127 return (0);
1128
1129 case TIOCSPGRP:
1130 case FIOSETOWN:
1131 return fsetown(&pipe->pipe_pgid, cmd, data);
1132
1133 case TIOCGPGRP:
1134 case FIOGETOWN:
1135 return fgetown(pipe->pipe_pgid, cmd, data);
1136
1137 }
1138 return (EPASSTHROUGH);
1139 }
1140
1141 int
1142 pipe_poll(file_t *fp, int events)
1143 {
1144 struct pipe *rpipe = fp->f_pipe;
1145 struct pipe *wpipe;
1146 int eof = 0;
1147 int revents = 0;
1148
1149 mutex_enter(rpipe->pipe_lock);
1150 wpipe = rpipe->pipe_peer;
1151
1152 if (events & (POLLIN | POLLRDNORM))
1153 if ((rpipe->pipe_buffer.cnt > 0) ||
1154 #ifndef PIPE_NODIRECT
1155 (rpipe->pipe_state & PIPE_DIRECTR) ||
1156 #endif
1157 (rpipe->pipe_state & PIPE_EOF))
1158 revents |= events & (POLLIN | POLLRDNORM);
1159
1160 eof |= (rpipe->pipe_state & PIPE_EOF);
1161
1162 if (wpipe == NULL)
1163 revents |= events & (POLLOUT | POLLWRNORM);
1164 else {
1165 if (events & (POLLOUT | POLLWRNORM))
1166 if ((wpipe->pipe_state & PIPE_EOF) || (
1167 #ifndef PIPE_NODIRECT
1168 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1169 #endif
1170 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1171 revents |= events & (POLLOUT | POLLWRNORM);
1172
1173 eof |= (wpipe->pipe_state & PIPE_EOF);
1174 }
1175
1176 if (wpipe == NULL || eof)
1177 revents |= POLLHUP;
1178
1179 if (revents == 0) {
1180 if (events & (POLLIN | POLLRDNORM))
1181 selrecord(curlwp, &rpipe->pipe_sel);
1182
1183 if (events & (POLLOUT | POLLWRNORM))
1184 selrecord(curlwp, &wpipe->pipe_sel);
1185 }
1186 mutex_exit(rpipe->pipe_lock);
1187
1188 return (revents);
1189 }
1190
1191 static int
1192 pipe_stat(file_t *fp, struct stat *ub)
1193 {
1194 struct pipe *pipe = fp->f_pipe;
1195
1196 mutex_enter(pipe->pipe_lock);
1197 memset(ub, 0, sizeof(*ub));
1198 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1199 ub->st_blksize = pipe->pipe_buffer.size;
1200 if (ub->st_blksize == 0 && pipe->pipe_peer)
1201 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1202 ub->st_size = pipe->pipe_buffer.cnt;
1203 ub->st_blocks = (ub->st_size) ? 1 : 0;
1204 ub->st_atimespec = pipe->pipe_atime;
1205 ub->st_mtimespec = pipe->pipe_mtime;
1206 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1207 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1208 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1209
1210 /*
1211 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1212 * XXX (st_dev, st_ino) should be unique.
1213 */
1214 mutex_exit(pipe->pipe_lock);
1215 return 0;
1216 }
1217
1218 static int
1219 pipe_close(file_t *fp)
1220 {
1221 struct pipe *pipe = fp->f_pipe;
1222
1223 fp->f_pipe = NULL;
1224 pipeclose(pipe);
1225 return (0);
1226 }
1227
1228 static void
1229 pipe_restart(file_t *fp)
1230 {
1231 struct pipe *pipe = fp->f_pipe;
1232
1233 /*
1234 * Unblock blocked reads/writes in order to allow close() to complete.
1235 * System calls return ERESTART so that the fd is revalidated.
1236 * (Partial writes return the transfer length.)
1237 */
1238 mutex_enter(pipe->pipe_lock);
1239 pipe->pipe_state |= PIPE_RESTART;
1240 /* Wakeup both cvs, maybe we only need one, but maybe there are some
1241 * other paths where wakeup is needed, and it saves deciding which! */
1242 cv_broadcast(&pipe->pipe_rcv);
1243 cv_broadcast(&pipe->pipe_wcv);
1244 mutex_exit(pipe->pipe_lock);
1245 }
1246
1247 static void
1248 pipe_free_kmem(struct pipe *pipe)
1249 {
1250
1251 if (pipe->pipe_buffer.buffer != NULL) {
1252 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1253 atomic_dec_uint(&nbigpipe);
1254 }
1255 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1256 uvm_km_free(kernel_map,
1257 (vaddr_t)pipe->pipe_buffer.buffer,
1258 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1259 atomic_add_int(&amountpipekva,
1260 -pipe->pipe_buffer.size);
1261 }
1262 pipe->pipe_buffer.buffer = NULL;
1263 }
1264 #ifndef PIPE_NODIRECT
1265 if (pipe->pipe_map.npages > 0)
1266 pipe_loan_free(pipe);
1267 #endif /* !PIPE_NODIRECT */
1268 }
1269
1270 /*
1271 * Shutdown the pipe.
1272 */
1273 static void
1274 pipeclose(struct pipe *pipe)
1275 {
1276 kmutex_t *lock;
1277 struct pipe *ppipe;
1278
1279 if (pipe == NULL)
1280 return;
1281
1282 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1283 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1284 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1285 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1286
1287 lock = pipe->pipe_lock;
1288 if (lock == NULL)
1289 /* Must have failed during create */
1290 goto free_resources;
1291
1292 mutex_enter(lock);
1293 pipeselwakeup(pipe, pipe, POLL_HUP);
1294
1295 /*
1296 * If the other side is blocked, wake it up saying that
1297 * we want to close it down.
1298 */
1299 pipe->pipe_state |= PIPE_EOF;
1300 if (pipe->pipe_busy) {
1301 while (pipe->pipe_busy) {
1302 cv_broadcast(&pipe->pipe_wcv);
1303 cv_wait_sig(&pipe->pipe_draincv, lock);
1304 }
1305 }
1306
1307 /*
1308 * Disconnect from peer.
1309 */
1310 if ((ppipe = pipe->pipe_peer) != NULL) {
1311 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1312 ppipe->pipe_state |= PIPE_EOF;
1313 cv_broadcast(&ppipe->pipe_rcv);
1314 ppipe->pipe_peer = NULL;
1315 }
1316
1317 /*
1318 * Any knote objects still left in the list are
1319 * the one attached by peer. Since no one will
1320 * traverse this list, we just clear it.
1321 */
1322 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1323
1324 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1325 mutex_exit(lock);
1326 mutex_obj_free(lock);
1327
1328 /*
1329 * Free resources.
1330 */
1331 free_resources:
1332 pipe->pipe_pgid = 0;
1333 pipe->pipe_state = PIPE_SIGNALR;
1334 pipe->pipe_peer = NULL;
1335 pipe->pipe_lock = NULL;
1336 pipe_free_kmem(pipe);
1337 if (pipe->pipe_kmem != 0) {
1338 pool_cache_put(pipe_rd_cache, pipe);
1339 } else {
1340 pool_cache_put(pipe_wr_cache, pipe);
1341 }
1342 }
1343
1344 static void
1345 filt_pipedetach(struct knote *kn)
1346 {
1347 struct pipe *pipe;
1348 kmutex_t *lock;
1349
1350 pipe = ((file_t *)kn->kn_obj)->f_pipe;
1351 lock = pipe->pipe_lock;
1352
1353 mutex_enter(lock);
1354
1355 switch(kn->kn_filter) {
1356 case EVFILT_WRITE:
1357 /* Need the peer structure, not our own. */
1358 pipe = pipe->pipe_peer;
1359
1360 /* If reader end already closed, just return. */
1361 if (pipe == NULL) {
1362 mutex_exit(lock);
1363 return;
1364 }
1365
1366 break;
1367 default:
1368 /* Nothing to do. */
1369 break;
1370 }
1371
1372 KASSERT(kn->kn_hook == pipe);
1373 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1374 mutex_exit(lock);
1375 }
1376
1377 static int
1378 filt_piperead(struct knote *kn, long hint)
1379 {
1380 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1381 struct pipe *wpipe;
1382
1383 if ((hint & NOTE_SUBMIT) == 0) {
1384 mutex_enter(rpipe->pipe_lock);
1385 }
1386 wpipe = rpipe->pipe_peer;
1387 kn->kn_data = rpipe->pipe_buffer.cnt;
1388
1389 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1390 kn->kn_data = rpipe->pipe_map.cnt;
1391
1392 if ((rpipe->pipe_state & PIPE_EOF) ||
1393 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1394 kn->kn_flags |= EV_EOF;
1395 if ((hint & NOTE_SUBMIT) == 0) {
1396 mutex_exit(rpipe->pipe_lock);
1397 }
1398 return (1);
1399 }
1400
1401 if ((hint & NOTE_SUBMIT) == 0) {
1402 mutex_exit(rpipe->pipe_lock);
1403 }
1404 return (kn->kn_data > 0);
1405 }
1406
1407 static int
1408 filt_pipewrite(struct knote *kn, long hint)
1409 {
1410 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1411 struct pipe *wpipe;
1412
1413 if ((hint & NOTE_SUBMIT) == 0) {
1414 mutex_enter(rpipe->pipe_lock);
1415 }
1416 wpipe = rpipe->pipe_peer;
1417
1418 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1419 kn->kn_data = 0;
1420 kn->kn_flags |= EV_EOF;
1421 if ((hint & NOTE_SUBMIT) == 0) {
1422 mutex_exit(rpipe->pipe_lock);
1423 }
1424 return (1);
1425 }
1426 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1427 if (wpipe->pipe_state & PIPE_DIRECTW)
1428 kn->kn_data = 0;
1429
1430 if ((hint & NOTE_SUBMIT) == 0) {
1431 mutex_exit(rpipe->pipe_lock);
1432 }
1433 return (kn->kn_data >= PIPE_BUF);
1434 }
1435
1436 static const struct filterops pipe_rfiltops = {
1437 .f_isfd = 1,
1438 .f_attach = NULL,
1439 .f_detach = filt_pipedetach,
1440 .f_event = filt_piperead,
1441 };
1442
1443 static const struct filterops pipe_wfiltops = {
1444 .f_isfd = 1,
1445 .f_attach = NULL,
1446 .f_detach = filt_pipedetach,
1447 .f_event = filt_pipewrite,
1448 };
1449
1450 static int
1451 pipe_kqfilter(file_t *fp, struct knote *kn)
1452 {
1453 struct pipe *pipe;
1454 kmutex_t *lock;
1455
1456 pipe = ((file_t *)kn->kn_obj)->f_pipe;
1457 lock = pipe->pipe_lock;
1458
1459 mutex_enter(lock);
1460
1461 switch (kn->kn_filter) {
1462 case EVFILT_READ:
1463 kn->kn_fop = &pipe_rfiltops;
1464 break;
1465 case EVFILT_WRITE:
1466 kn->kn_fop = &pipe_wfiltops;
1467 pipe = pipe->pipe_peer;
1468 if (pipe == NULL) {
1469 /* Other end of pipe has been closed. */
1470 mutex_exit(lock);
1471 return (EBADF);
1472 }
1473 break;
1474 default:
1475 mutex_exit(lock);
1476 return (EINVAL);
1477 }
1478
1479 kn->kn_hook = pipe;
1480 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1481 mutex_exit(lock);
1482
1483 return (0);
1484 }
1485
1486 /*
1487 * Handle pipe sysctls.
1488 */
1489 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1490 {
1491
1492 sysctl_createv(clog, 0, NULL, NULL,
1493 CTLFLAG_PERMANENT,
1494 CTLTYPE_NODE, "pipe",
1495 SYSCTL_DESCR("Pipe settings"),
1496 NULL, 0, NULL, 0,
1497 CTL_KERN, KERN_PIPE, CTL_EOL);
1498
1499 sysctl_createv(clog, 0, NULL, NULL,
1500 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1501 CTLTYPE_INT, "maxbigpipes",
1502 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1503 NULL, 0, &maxbigpipes, 0,
1504 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1505 sysctl_createv(clog, 0, NULL, NULL,
1506 CTLFLAG_PERMANENT,
1507 CTLTYPE_INT, "nbigpipes",
1508 SYSCTL_DESCR("Number of \"big\" pipes"),
1509 NULL, 0, &nbigpipe, 0,
1510 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1511 sysctl_createv(clog, 0, NULL, NULL,
1512 CTLFLAG_PERMANENT,
1513 CTLTYPE_INT, "kvasize",
1514 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1515 "buffers"),
1516 NULL, 0, &amountpipekva, 0,
1517 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1518 }
1519