sys_pipe.c revision 1.150.2.1 1 /* $NetBSD: sys_pipe.c,v 1.150.2.1 2020/12/14 14:38:14 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.150.2.1 2020/12/14 14:38:14 thorpej Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
96 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
97 static int pipe_close(file_t *);
98 static int pipe_poll(file_t *, int);
99 static int pipe_kqfilter(file_t *, struct knote *);
100 static int pipe_stat(file_t *, struct stat *);
101 static int pipe_ioctl(file_t *, u_long, void *);
102 static void pipe_restart(file_t *);
103
104 static const struct fileops pipeops = {
105 .fo_name = "pipe",
106 .fo_read = pipe_read,
107 .fo_write = pipe_write,
108 .fo_ioctl = pipe_ioctl,
109 .fo_fcntl = fnullop_fcntl,
110 .fo_poll = pipe_poll,
111 .fo_stat = pipe_stat,
112 .fo_close = pipe_close,
113 .fo_kqfilter = pipe_kqfilter,
114 .fo_restart = pipe_restart,
115 };
116
117 /*
118 * Default pipe buffer size(s), this can be kind-of large now because pipe
119 * space is pageable. The pipe code will try to maintain locality of
120 * reference for performance reasons, so small amounts of outstanding I/O
121 * will not wipe the cache.
122 */
123 #define MINPIPESIZE (PIPE_SIZE / 3)
124 #define MAXPIPESIZE (2 * PIPE_SIZE / 3)
125
126 /*
127 * Limit the number of "big" pipes
128 */
129 #define LIMITBIGPIPES 32
130 static u_int maxbigpipes = LIMITBIGPIPES;
131 static u_int nbigpipe = 0;
132
133 /*
134 * Amount of KVA consumed by pipe buffers.
135 */
136 static u_int amountpipekva = 0;
137
138 static void pipeclose(struct pipe *);
139 static void pipe_free_kmem(struct pipe *);
140 static int pipe_create(struct pipe **, pool_cache_t);
141 static int pipelock(struct pipe *, bool);
142 static inline void pipeunlock(struct pipe *);
143 static void pipeselwakeup(struct pipe *, struct pipe *, int);
144 static int pipespace(struct pipe *, int);
145 static int pipe_ctor(void *, void *, int);
146 static void pipe_dtor(void *, void *);
147
148 static pool_cache_t pipe_wr_cache;
149 static pool_cache_t pipe_rd_cache;
150
151 void
152 pipe_init(void)
153 {
154
155 /* Writer side is not automatically allocated KVA. */
156 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
157 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
158 KASSERT(pipe_wr_cache != NULL);
159
160 /* Reader side gets preallocated KVA. */
161 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
162 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
163 KASSERT(pipe_rd_cache != NULL);
164 }
165
166 static int
167 pipe_ctor(void *arg, void *obj, int flags)
168 {
169 struct pipe *pipe;
170 vaddr_t va;
171
172 pipe = obj;
173
174 memset(pipe, 0, sizeof(struct pipe));
175 if (arg != NULL) {
176 /* Preallocate space. */
177 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
178 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
179 KASSERT(va != 0);
180 pipe->pipe_kmem = va;
181 atomic_add_int(&amountpipekva, PIPE_SIZE);
182 }
183 cv_init(&pipe->pipe_rcv, "pipe_rd");
184 cv_init(&pipe->pipe_wcv, "pipe_wr");
185 cv_init(&pipe->pipe_draincv, "pipe_drn");
186 cv_init(&pipe->pipe_lkcv, "pipe_lk");
187 selinit(&pipe->pipe_sel);
188 pipe->pipe_state = PIPE_SIGNALR;
189
190 return 0;
191 }
192
193 static void
194 pipe_dtor(void *arg, void *obj)
195 {
196 struct pipe *pipe;
197
198 pipe = obj;
199
200 cv_destroy(&pipe->pipe_rcv);
201 cv_destroy(&pipe->pipe_wcv);
202 cv_destroy(&pipe->pipe_draincv);
203 cv_destroy(&pipe->pipe_lkcv);
204 seldestroy(&pipe->pipe_sel);
205 if (pipe->pipe_kmem != 0) {
206 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
207 UVM_KMF_PAGEABLE);
208 atomic_add_int(&amountpipekva, -PIPE_SIZE);
209 }
210 }
211
212 /*
213 * The pipe system call for the DTYPE_PIPE type of pipes
214 */
215 int
216 pipe1(struct lwp *l, int *fildes, int flags)
217 {
218 struct pipe *rpipe, *wpipe;
219 file_t *rf, *wf;
220 int fd, error;
221 proc_t *p;
222
223 if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
224 return EINVAL;
225 p = curproc;
226 rpipe = wpipe = NULL;
227 if ((error = pipe_create(&rpipe, pipe_rd_cache)) ||
228 (error = pipe_create(&wpipe, pipe_wr_cache))) {
229 goto free2;
230 }
231 rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
232 wpipe->pipe_lock = rpipe->pipe_lock;
233 mutex_obj_hold(wpipe->pipe_lock);
234
235 error = fd_allocfile(&rf, &fd);
236 if (error)
237 goto free2;
238 fildes[0] = fd;
239
240 error = fd_allocfile(&wf, &fd);
241 if (error)
242 goto free3;
243 fildes[1] = fd;
244
245 rf->f_flag = FREAD | flags;
246 rf->f_type = DTYPE_PIPE;
247 rf->f_pipe = rpipe;
248 rf->f_ops = &pipeops;
249 fd_set_exclose(l, fildes[0], (flags & O_CLOEXEC) != 0);
250
251 wf->f_flag = FWRITE | flags;
252 wf->f_type = DTYPE_PIPE;
253 wf->f_pipe = wpipe;
254 wf->f_ops = &pipeops;
255 fd_set_exclose(l, fildes[1], (flags & O_CLOEXEC) != 0);
256
257 rpipe->pipe_peer = wpipe;
258 wpipe->pipe_peer = rpipe;
259
260 fd_affix(p, rf, fildes[0]);
261 fd_affix(p, wf, fildes[1]);
262 return (0);
263 free3:
264 fd_abort(p, rf, fildes[0]);
265 free2:
266 pipeclose(wpipe);
267 pipeclose(rpipe);
268
269 return (error);
270 }
271
272 /*
273 * Allocate kva for pipe circular buffer, the space is pageable
274 * This routine will 'realloc' the size of a pipe safely, if it fails
275 * it will retain the old buffer.
276 * If it fails it will return ENOMEM.
277 */
278 static int
279 pipespace(struct pipe *pipe, int size)
280 {
281 void *buffer;
282
283 /*
284 * Allocate pageable virtual address space. Physical memory is
285 * allocated on demand.
286 */
287 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
288 buffer = (void *)pipe->pipe_kmem;
289 } else {
290 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
291 0, UVM_KMF_PAGEABLE);
292 if (buffer == NULL)
293 return (ENOMEM);
294 atomic_add_int(&amountpipekva, size);
295 }
296
297 /* free old resources if we're resizing */
298 pipe_free_kmem(pipe);
299 pipe->pipe_buffer.buffer = buffer;
300 pipe->pipe_buffer.size = size;
301 pipe->pipe_buffer.in = 0;
302 pipe->pipe_buffer.out = 0;
303 pipe->pipe_buffer.cnt = 0;
304 return (0);
305 }
306
307 /*
308 * Initialize and allocate VM and memory for pipe.
309 */
310 static int
311 pipe_create(struct pipe **pipep, pool_cache_t cache)
312 {
313 struct pipe *pipe;
314 int error;
315
316 pipe = pool_cache_get(cache, PR_WAITOK);
317 KASSERT(pipe != NULL);
318 *pipep = pipe;
319 error = 0;
320 getnanotime(&pipe->pipe_btime);
321 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
322 pipe->pipe_lock = NULL;
323 if (cache == pipe_rd_cache) {
324 error = pipespace(pipe, PIPE_SIZE);
325 } else {
326 pipe->pipe_buffer.buffer = NULL;
327 pipe->pipe_buffer.size = 0;
328 pipe->pipe_buffer.in = 0;
329 pipe->pipe_buffer.out = 0;
330 pipe->pipe_buffer.cnt = 0;
331 }
332 return error;
333 }
334
335 /*
336 * Lock a pipe for I/O, blocking other access
337 * Called with pipe spin lock held.
338 */
339 static int
340 pipelock(struct pipe *pipe, bool catch_p)
341 {
342 int error;
343
344 KASSERT(mutex_owned(pipe->pipe_lock));
345
346 while (pipe->pipe_state & PIPE_LOCKFL) {
347 pipe->pipe_state |= PIPE_LWANT;
348 if (catch_p) {
349 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
350 if (error != 0)
351 return error;
352 } else
353 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
354 }
355
356 pipe->pipe_state |= PIPE_LOCKFL;
357
358 return 0;
359 }
360
361 /*
362 * unlock a pipe I/O lock
363 */
364 static inline void
365 pipeunlock(struct pipe *pipe)
366 {
367
368 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
369
370 pipe->pipe_state &= ~PIPE_LOCKFL;
371 if (pipe->pipe_state & PIPE_LWANT) {
372 pipe->pipe_state &= ~PIPE_LWANT;
373 cv_broadcast(&pipe->pipe_lkcv);
374 }
375 }
376
377 /*
378 * Select/poll wakup. This also sends SIGIO to peer connected to
379 * 'sigpipe' side of pipe.
380 */
381 static void
382 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
383 {
384 int band;
385
386 switch (code) {
387 case POLL_IN:
388 band = POLLIN|POLLRDNORM;
389 break;
390 case POLL_OUT:
391 band = POLLOUT|POLLWRNORM;
392 break;
393 case POLL_HUP:
394 band = POLLHUP;
395 break;
396 case POLL_ERR:
397 band = POLLERR;
398 break;
399 default:
400 band = 0;
401 #ifdef DIAGNOSTIC
402 printf("bad siginfo code %d in pipe notification.\n", code);
403 #endif
404 break;
405 }
406
407 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
408
409 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
410 return;
411
412 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
413 }
414
415 static int
416 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
417 int flags)
418 {
419 struct pipe *rpipe = fp->f_pipe;
420 struct pipebuf *bp = &rpipe->pipe_buffer;
421 kmutex_t *lock = rpipe->pipe_lock;
422 int error;
423 size_t nread = 0;
424 size_t size;
425 size_t ocnt;
426 unsigned int wakeup_state = 0;
427
428 mutex_enter(lock);
429 ++rpipe->pipe_busy;
430 ocnt = bp->cnt;
431
432 again:
433 error = pipelock(rpipe, true);
434 if (error)
435 goto unlocked_error;
436
437 while (uio->uio_resid) {
438 /*
439 * Normal pipe buffer receive.
440 */
441 if (bp->cnt > 0) {
442 size = bp->size - bp->out;
443 if (size > bp->cnt)
444 size = bp->cnt;
445 if (size > uio->uio_resid)
446 size = uio->uio_resid;
447
448 mutex_exit(lock);
449 error = uiomove((char *)bp->buffer + bp->out, size, uio);
450 mutex_enter(lock);
451 if (error)
452 break;
453
454 bp->out += size;
455 if (bp->out >= bp->size)
456 bp->out = 0;
457
458 bp->cnt -= size;
459
460 /*
461 * If there is no more to read in the pipe, reset
462 * its pointers to the beginning. This improves
463 * cache hit stats.
464 */
465 if (bp->cnt == 0) {
466 bp->in = 0;
467 bp->out = 0;
468 }
469 nread += size;
470 continue;
471 }
472
473 /*
474 * Break if some data was read.
475 */
476 if (nread > 0)
477 break;
478
479 /*
480 * Detect EOF condition.
481 * Read returns 0 on EOF, no need to set error.
482 */
483 if (rpipe->pipe_state & PIPE_EOF)
484 break;
485
486 /*
487 * Don't block on non-blocking I/O.
488 */
489 if (fp->f_flag & FNONBLOCK) {
490 error = EAGAIN;
491 break;
492 }
493
494 /*
495 * Unlock the pipe buffer for our remaining processing.
496 * We will either break out with an error or we will
497 * sleep and relock to loop.
498 */
499 pipeunlock(rpipe);
500
501 #if 1 /* XXX (dsl) I'm sure these aren't needed here ... */
502 /*
503 * We want to read more, wake up select/poll.
504 */
505 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
506
507 /*
508 * If the "write-side" is blocked, wake it up now.
509 */
510 cv_broadcast(&rpipe->pipe_wcv);
511 #endif
512
513 if (wakeup_state & PIPE_RESTART) {
514 error = ERESTART;
515 goto unlocked_error;
516 }
517
518 /* Now wait until the pipe is filled */
519 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
520 if (error != 0)
521 goto unlocked_error;
522 wakeup_state = rpipe->pipe_state;
523 goto again;
524 }
525
526 if (error == 0)
527 getnanotime(&rpipe->pipe_atime);
528 pipeunlock(rpipe);
529
530 unlocked_error:
531 --rpipe->pipe_busy;
532 if (rpipe->pipe_busy == 0) {
533 rpipe->pipe_state &= ~PIPE_RESTART;
534 cv_broadcast(&rpipe->pipe_draincv);
535 }
536 if (bp->cnt < MINPIPESIZE) {
537 cv_broadcast(&rpipe->pipe_wcv);
538 }
539
540 /*
541 * If anything was read off the buffer, signal to the writer it's
542 * possible to write more data. Also send signal if we are here for the
543 * first time after last write.
544 */
545 if ((bp->size - bp->cnt) >= PIPE_BUF
546 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
547 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
548 rpipe->pipe_state &= ~PIPE_SIGNALR;
549 }
550
551 mutex_exit(lock);
552 return (error);
553 }
554
555 static int
556 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
557 int flags)
558 {
559 struct pipe *wpipe, *rpipe;
560 struct pipebuf *bp;
561 kmutex_t *lock;
562 int error;
563 unsigned int wakeup_state = 0;
564
565 /* We want to write to our peer */
566 rpipe = fp->f_pipe;
567 lock = rpipe->pipe_lock;
568 error = 0;
569
570 mutex_enter(lock);
571 wpipe = rpipe->pipe_peer;
572
573 /*
574 * Detect loss of pipe read side, issue SIGPIPE if lost.
575 */
576 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
577 mutex_exit(lock);
578 return EPIPE;
579 }
580 ++wpipe->pipe_busy;
581
582 /* Aquire the long-term pipe lock */
583 if ((error = pipelock(wpipe, true)) != 0) {
584 --wpipe->pipe_busy;
585 if (wpipe->pipe_busy == 0) {
586 wpipe->pipe_state &= ~PIPE_RESTART;
587 cv_broadcast(&wpipe->pipe_draincv);
588 }
589 mutex_exit(lock);
590 return (error);
591 }
592
593 bp = &wpipe->pipe_buffer;
594
595 /*
596 * If it is advantageous to resize the pipe buffer, do so.
597 */
598 if ((uio->uio_resid > PIPE_SIZE) &&
599 (nbigpipe < maxbigpipes) &&
600 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
601
602 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
603 atomic_inc_uint(&nbigpipe);
604 }
605
606 while (uio->uio_resid) {
607 size_t space;
608
609 space = bp->size - bp->cnt;
610
611 /* Writes of size <= PIPE_BUF must be atomic. */
612 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
613 space = 0;
614
615 if (space > 0) {
616 int size; /* Transfer size */
617 int segsize; /* first segment to transfer */
618
619 /*
620 * Transfer size is minimum of uio transfer
621 * and free space in pipe buffer.
622 */
623 if (space > uio->uio_resid)
624 size = uio->uio_resid;
625 else
626 size = space;
627 /*
628 * First segment to transfer is minimum of
629 * transfer size and contiguous space in
630 * pipe buffer. If first segment to transfer
631 * is less than the transfer size, we've got
632 * a wraparound in the buffer.
633 */
634 segsize = bp->size - bp->in;
635 if (segsize > size)
636 segsize = size;
637
638 /* Transfer first segment */
639 mutex_exit(lock);
640 error = uiomove((char *)bp->buffer + bp->in, segsize,
641 uio);
642
643 if (error == 0 && segsize < size) {
644 /*
645 * Transfer remaining part now, to
646 * support atomic writes. Wraparound
647 * happened.
648 */
649 KASSERT(bp->in + segsize == bp->size);
650 error = uiomove(bp->buffer,
651 size - segsize, uio);
652 }
653 mutex_enter(lock);
654 if (error)
655 break;
656
657 bp->in += size;
658 if (bp->in >= bp->size) {
659 KASSERT(bp->in == size - segsize + bp->size);
660 bp->in = size - segsize;
661 }
662
663 bp->cnt += size;
664 KASSERT(bp->cnt <= bp->size);
665 wakeup_state = 0;
666 } else {
667 /*
668 * If the "read-side" has been blocked, wake it up now.
669 */
670 cv_broadcast(&wpipe->pipe_rcv);
671
672 /*
673 * Don't block on non-blocking I/O.
674 */
675 if (fp->f_flag & FNONBLOCK) {
676 error = EAGAIN;
677 break;
678 }
679
680 /*
681 * We have no more space and have something to offer,
682 * wake up select/poll.
683 */
684 if (bp->cnt)
685 pipeselwakeup(wpipe, wpipe, POLL_IN);
686
687 if (wakeup_state & PIPE_RESTART) {
688 error = ERESTART;
689 break;
690 }
691
692 pipeunlock(wpipe);
693 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
694 (void)pipelock(wpipe, false);
695 if (error != 0)
696 break;
697 /*
698 * If read side wants to go away, we just issue a signal
699 * to ourselves.
700 */
701 if (wpipe->pipe_state & PIPE_EOF) {
702 error = EPIPE;
703 break;
704 }
705 wakeup_state = wpipe->pipe_state;
706 }
707 }
708
709 --wpipe->pipe_busy;
710 if (wpipe->pipe_busy == 0) {
711 wpipe->pipe_state &= ~PIPE_RESTART;
712 cv_broadcast(&wpipe->pipe_draincv);
713 }
714 if (bp->cnt > 0) {
715 cv_broadcast(&wpipe->pipe_rcv);
716 }
717
718 /*
719 * Don't return EPIPE if I/O was successful
720 */
721 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
722 error = 0;
723
724 if (error == 0)
725 getnanotime(&wpipe->pipe_mtime);
726
727 /*
728 * We have something to offer, wake up select/poll.
729 * wmap->cnt is always 0 in this point (direct write
730 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
731 */
732 if (bp->cnt)
733 pipeselwakeup(wpipe, wpipe, POLL_IN);
734
735 /*
736 * Arrange for next read(2) to do a signal.
737 */
738 wpipe->pipe_state |= PIPE_SIGNALR;
739
740 pipeunlock(wpipe);
741 mutex_exit(lock);
742 return (error);
743 }
744
745 /*
746 * We implement a very minimal set of ioctls for compatibility with sockets.
747 */
748 int
749 pipe_ioctl(file_t *fp, u_long cmd, void *data)
750 {
751 struct pipe *pipe = fp->f_pipe;
752 kmutex_t *lock = pipe->pipe_lock;
753
754 switch (cmd) {
755
756 case FIONBIO:
757 return (0);
758
759 case FIOASYNC:
760 mutex_enter(lock);
761 if (*(int *)data) {
762 pipe->pipe_state |= PIPE_ASYNC;
763 } else {
764 pipe->pipe_state &= ~PIPE_ASYNC;
765 }
766 mutex_exit(lock);
767 return (0);
768
769 case FIONREAD:
770 mutex_enter(lock);
771 *(int *)data = pipe->pipe_buffer.cnt;
772 mutex_exit(lock);
773 return (0);
774
775 case FIONWRITE:
776 /* Look at other side */
777 mutex_enter(lock);
778 pipe = pipe->pipe_peer;
779 if (pipe == NULL)
780 *(int *)data = 0;
781 else
782 *(int *)data = pipe->pipe_buffer.cnt;
783 mutex_exit(lock);
784 return (0);
785
786 case FIONSPACE:
787 /* Look at other side */
788 mutex_enter(lock);
789 pipe = pipe->pipe_peer;
790 if (pipe == NULL)
791 *(int *)data = 0;
792 else
793 *(int *)data = pipe->pipe_buffer.size -
794 pipe->pipe_buffer.cnt;
795 mutex_exit(lock);
796 return (0);
797
798 case TIOCSPGRP:
799 case FIOSETOWN:
800 return fsetown(&pipe->pipe_pgid, cmd, data);
801
802 case TIOCGPGRP:
803 case FIOGETOWN:
804 return fgetown(pipe->pipe_pgid, cmd, data);
805
806 }
807 return (EPASSTHROUGH);
808 }
809
810 int
811 pipe_poll(file_t *fp, int events)
812 {
813 struct pipe *rpipe = fp->f_pipe;
814 struct pipe *wpipe;
815 int eof = 0;
816 int revents = 0;
817
818 mutex_enter(rpipe->pipe_lock);
819 wpipe = rpipe->pipe_peer;
820
821 if (events & (POLLIN | POLLRDNORM))
822 if ((rpipe->pipe_buffer.cnt > 0) ||
823 (rpipe->pipe_state & PIPE_EOF))
824 revents |= events & (POLLIN | POLLRDNORM);
825
826 eof |= (rpipe->pipe_state & PIPE_EOF);
827
828 if (wpipe == NULL)
829 revents |= events & (POLLOUT | POLLWRNORM);
830 else {
831 if (events & (POLLOUT | POLLWRNORM))
832 if ((wpipe->pipe_state & PIPE_EOF) || (
833 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
834 revents |= events & (POLLOUT | POLLWRNORM);
835
836 eof |= (wpipe->pipe_state & PIPE_EOF);
837 }
838
839 if (wpipe == NULL || eof)
840 revents |= POLLHUP;
841
842 if (revents == 0) {
843 if (events & (POLLIN | POLLRDNORM))
844 selrecord(curlwp, &rpipe->pipe_sel);
845
846 if (events & (POLLOUT | POLLWRNORM))
847 selrecord(curlwp, &wpipe->pipe_sel);
848 }
849 mutex_exit(rpipe->pipe_lock);
850
851 return (revents);
852 }
853
854 static int
855 pipe_stat(file_t *fp, struct stat *ub)
856 {
857 struct pipe *pipe = fp->f_pipe;
858
859 mutex_enter(pipe->pipe_lock);
860 memset(ub, 0, sizeof(*ub));
861 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
862 ub->st_blksize = pipe->pipe_buffer.size;
863 if (ub->st_blksize == 0 && pipe->pipe_peer)
864 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
865 ub->st_size = pipe->pipe_buffer.cnt;
866 ub->st_blocks = (ub->st_size) ? 1 : 0;
867 ub->st_atimespec = pipe->pipe_atime;
868 ub->st_mtimespec = pipe->pipe_mtime;
869 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
870 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
871 ub->st_gid = kauth_cred_getegid(fp->f_cred);
872
873 /*
874 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
875 * XXX (st_dev, st_ino) should be unique.
876 */
877 mutex_exit(pipe->pipe_lock);
878 return 0;
879 }
880
881 static int
882 pipe_close(file_t *fp)
883 {
884 struct pipe *pipe = fp->f_pipe;
885
886 fp->f_pipe = NULL;
887 pipeclose(pipe);
888 return (0);
889 }
890
891 static void
892 pipe_restart(file_t *fp)
893 {
894 struct pipe *pipe = fp->f_pipe;
895
896 /*
897 * Unblock blocked reads/writes in order to allow close() to complete.
898 * System calls return ERESTART so that the fd is revalidated.
899 * (Partial writes return the transfer length.)
900 */
901 mutex_enter(pipe->pipe_lock);
902 pipe->pipe_state |= PIPE_RESTART;
903 /* Wakeup both cvs, maybe we only need one, but maybe there are some
904 * other paths where wakeup is needed, and it saves deciding which! */
905 cv_broadcast(&pipe->pipe_rcv);
906 cv_broadcast(&pipe->pipe_wcv);
907 mutex_exit(pipe->pipe_lock);
908 }
909
910 static void
911 pipe_free_kmem(struct pipe *pipe)
912 {
913
914 if (pipe->pipe_buffer.buffer != NULL) {
915 if (pipe->pipe_buffer.size > PIPE_SIZE) {
916 atomic_dec_uint(&nbigpipe);
917 }
918 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
919 uvm_km_free(kernel_map,
920 (vaddr_t)pipe->pipe_buffer.buffer,
921 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
922 atomic_add_int(&amountpipekva,
923 -pipe->pipe_buffer.size);
924 }
925 pipe->pipe_buffer.buffer = NULL;
926 }
927 }
928
929 /*
930 * Shutdown the pipe.
931 */
932 static void
933 pipeclose(struct pipe *pipe)
934 {
935 kmutex_t *lock;
936 struct pipe *ppipe;
937
938 if (pipe == NULL)
939 return;
940
941 KASSERT(cv_is_valid(&pipe->pipe_rcv));
942 KASSERT(cv_is_valid(&pipe->pipe_wcv));
943 KASSERT(cv_is_valid(&pipe->pipe_draincv));
944 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
945
946 lock = pipe->pipe_lock;
947 if (lock == NULL)
948 /* Must have failed during create */
949 goto free_resources;
950
951 mutex_enter(lock);
952 pipeselwakeup(pipe, pipe, POLL_HUP);
953
954 /*
955 * If the other side is blocked, wake it up saying that
956 * we want to close it down.
957 */
958 pipe->pipe_state |= PIPE_EOF;
959 if (pipe->pipe_busy) {
960 while (pipe->pipe_busy) {
961 cv_broadcast(&pipe->pipe_wcv);
962 cv_wait_sig(&pipe->pipe_draincv, lock);
963 }
964 }
965
966 /*
967 * Disconnect from peer.
968 */
969 if ((ppipe = pipe->pipe_peer) != NULL) {
970 pipeselwakeup(ppipe, ppipe, POLL_HUP);
971 ppipe->pipe_state |= PIPE_EOF;
972 cv_broadcast(&ppipe->pipe_rcv);
973 ppipe->pipe_peer = NULL;
974 }
975
976 /*
977 * Any knote objects still left in the list are
978 * the one attached by peer. Since no one will
979 * traverse this list, we just clear it.
980 *
981 * XXX Exposes select/kqueue internals.
982 */
983 SLIST_INIT(&pipe->pipe_sel.sel_klist);
984
985 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
986 mutex_exit(lock);
987 mutex_obj_free(lock);
988
989 /*
990 * Free resources.
991 */
992 free_resources:
993 pipe->pipe_pgid = 0;
994 pipe->pipe_state = PIPE_SIGNALR;
995 pipe->pipe_peer = NULL;
996 pipe->pipe_lock = NULL;
997 pipe_free_kmem(pipe);
998 if (pipe->pipe_kmem != 0) {
999 pool_cache_put(pipe_rd_cache, pipe);
1000 } else {
1001 pool_cache_put(pipe_wr_cache, pipe);
1002 }
1003 }
1004
1005 static void
1006 filt_pipedetach(struct knote *kn)
1007 {
1008 struct pipe *pipe;
1009 kmutex_t *lock;
1010
1011 pipe = ((file_t *)kn->kn_obj)->f_pipe;
1012 lock = pipe->pipe_lock;
1013
1014 mutex_enter(lock);
1015
1016 switch(kn->kn_filter) {
1017 case EVFILT_WRITE:
1018 /* Need the peer structure, not our own. */
1019 pipe = pipe->pipe_peer;
1020
1021 /* If reader end already closed, just return. */
1022 if (pipe == NULL) {
1023 mutex_exit(lock);
1024 return;
1025 }
1026
1027 break;
1028 default:
1029 /* Nothing to do. */
1030 break;
1031 }
1032
1033 KASSERT(kn->kn_hook == pipe);
1034 selremove_knote(&pipe->pipe_sel, kn);
1035 mutex_exit(lock);
1036 }
1037
1038 static int
1039 filt_piperead(struct knote *kn, long hint)
1040 {
1041 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1042 struct pipe *wpipe;
1043
1044 if ((hint & NOTE_SUBMIT) == 0) {
1045 mutex_enter(rpipe->pipe_lock);
1046 }
1047 wpipe = rpipe->pipe_peer;
1048 kn->kn_data = rpipe->pipe_buffer.cnt;
1049
1050 if ((rpipe->pipe_state & PIPE_EOF) ||
1051 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1052 kn->kn_flags |= EV_EOF;
1053 if ((hint & NOTE_SUBMIT) == 0) {
1054 mutex_exit(rpipe->pipe_lock);
1055 }
1056 return (1);
1057 }
1058
1059 if ((hint & NOTE_SUBMIT) == 0) {
1060 mutex_exit(rpipe->pipe_lock);
1061 }
1062 return (kn->kn_data > 0);
1063 }
1064
1065 static int
1066 filt_pipewrite(struct knote *kn, long hint)
1067 {
1068 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1069 struct pipe *wpipe;
1070
1071 if ((hint & NOTE_SUBMIT) == 0) {
1072 mutex_enter(rpipe->pipe_lock);
1073 }
1074 wpipe = rpipe->pipe_peer;
1075
1076 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1077 kn->kn_data = 0;
1078 kn->kn_flags |= EV_EOF;
1079 if ((hint & NOTE_SUBMIT) == 0) {
1080 mutex_exit(rpipe->pipe_lock);
1081 }
1082 return (1);
1083 }
1084 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1085
1086 if ((hint & NOTE_SUBMIT) == 0) {
1087 mutex_exit(rpipe->pipe_lock);
1088 }
1089 return (kn->kn_data >= PIPE_BUF);
1090 }
1091
1092 static const struct filterops pipe_rfiltops = {
1093 .f_isfd = 1,
1094 .f_attach = NULL,
1095 .f_detach = filt_pipedetach,
1096 .f_event = filt_piperead,
1097 };
1098
1099 static const struct filterops pipe_wfiltops = {
1100 .f_isfd = 1,
1101 .f_attach = NULL,
1102 .f_detach = filt_pipedetach,
1103 .f_event = filt_pipewrite,
1104 };
1105
1106 static int
1107 pipe_kqfilter(file_t *fp, struct knote *kn)
1108 {
1109 struct pipe *pipe;
1110 kmutex_t *lock;
1111
1112 pipe = ((file_t *)kn->kn_obj)->f_pipe;
1113 lock = pipe->pipe_lock;
1114
1115 mutex_enter(lock);
1116
1117 switch (kn->kn_filter) {
1118 case EVFILT_READ:
1119 kn->kn_fop = &pipe_rfiltops;
1120 break;
1121 case EVFILT_WRITE:
1122 kn->kn_fop = &pipe_wfiltops;
1123 pipe = pipe->pipe_peer;
1124 if (pipe == NULL) {
1125 /* Other end of pipe has been closed. */
1126 mutex_exit(lock);
1127 return (EBADF);
1128 }
1129 break;
1130 default:
1131 mutex_exit(lock);
1132 return (EINVAL);
1133 }
1134
1135 kn->kn_hook = pipe;
1136 selrecord_knote(&pipe->pipe_sel, kn);
1137 mutex_exit(lock);
1138
1139 return (0);
1140 }
1141
1142 /*
1143 * Handle pipe sysctls.
1144 */
1145 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1146 {
1147
1148 sysctl_createv(clog, 0, NULL, NULL,
1149 CTLFLAG_PERMANENT,
1150 CTLTYPE_NODE, "pipe",
1151 SYSCTL_DESCR("Pipe settings"),
1152 NULL, 0, NULL, 0,
1153 CTL_KERN, KERN_PIPE, CTL_EOL);
1154
1155 sysctl_createv(clog, 0, NULL, NULL,
1156 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1157 CTLTYPE_INT, "maxbigpipes",
1158 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1159 NULL, 0, &maxbigpipes, 0,
1160 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1161 sysctl_createv(clog, 0, NULL, NULL,
1162 CTLFLAG_PERMANENT,
1163 CTLTYPE_INT, "nbigpipes",
1164 SYSCTL_DESCR("Number of \"big\" pipes"),
1165 NULL, 0, &nbigpipe, 0,
1166 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1167 sysctl_createv(clog, 0, NULL, NULL,
1168 CTLFLAG_PERMANENT,
1169 CTLTYPE_INT, "kvasize",
1170 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1171 "buffers"),
1172 NULL, 0, &amountpipekva, 0,
1173 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1174 }
1175