sys_pipe.c revision 1.156 1 /* $NetBSD: sys_pipe.c,v 1.156 2021/09/27 00:51:10 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.156 2021/09/27 00:51:10 thorpej Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94
95 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
96 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
97 static int pipe_close(file_t *);
98 static int pipe_poll(file_t *, int);
99 static int pipe_kqfilter(file_t *, struct knote *);
100 static int pipe_stat(file_t *, struct stat *);
101 static int pipe_ioctl(file_t *, u_long, void *);
102 static void pipe_restart(file_t *);
103
104 static const struct fileops pipeops = {
105 .fo_name = "pipe",
106 .fo_read = pipe_read,
107 .fo_write = pipe_write,
108 .fo_ioctl = pipe_ioctl,
109 .fo_fcntl = fnullop_fcntl,
110 .fo_poll = pipe_poll,
111 .fo_stat = pipe_stat,
112 .fo_close = pipe_close,
113 .fo_kqfilter = pipe_kqfilter,
114 .fo_restart = pipe_restart,
115 };
116
117 /*
118 * Default pipe buffer size(s), this can be kind-of large now because pipe
119 * space is pageable. The pipe code will try to maintain locality of
120 * reference for performance reasons, so small amounts of outstanding I/O
121 * will not wipe the cache.
122 */
123 #define MINPIPESIZE (PIPE_SIZE / 3)
124 #define MAXPIPESIZE (2 * PIPE_SIZE / 3)
125
126 /*
127 * Limit the number of "big" pipes
128 */
129 #define LIMITBIGPIPES 32
130 static u_int maxbigpipes = LIMITBIGPIPES;
131 static u_int nbigpipe = 0;
132
133 /*
134 * Amount of KVA consumed by pipe buffers.
135 */
136 static u_int amountpipekva = 0;
137
138 static void pipeclose(struct pipe *);
139 static void pipe_free_kmem(struct pipe *);
140 static int pipe_create(struct pipe **, pool_cache_t);
141 static int pipelock(struct pipe *, bool);
142 static inline void pipeunlock(struct pipe *);
143 static void pipeselwakeup(struct pipe *, struct pipe *, int);
144 static int pipespace(struct pipe *, int);
145 static int pipe_ctor(void *, void *, int);
146 static void pipe_dtor(void *, void *);
147
148 static pool_cache_t pipe_wr_cache;
149 static pool_cache_t pipe_rd_cache;
150
151 void
152 pipe_init(void)
153 {
154
155 /* Writer side is not automatically allocated KVA. */
156 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
157 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
158 KASSERT(pipe_wr_cache != NULL);
159
160 /* Reader side gets preallocated KVA. */
161 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
162 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
163 KASSERT(pipe_rd_cache != NULL);
164 }
165
166 static int
167 pipe_ctor(void *arg, void *obj, int flags)
168 {
169 struct pipe *pipe;
170 vaddr_t va;
171
172 pipe = obj;
173
174 memset(pipe, 0, sizeof(struct pipe));
175 if (arg != NULL) {
176 /* Preallocate space. */
177 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
178 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
179 KASSERT(va != 0);
180 pipe->pipe_kmem = va;
181 atomic_add_int(&amountpipekva, PIPE_SIZE);
182 }
183 cv_init(&pipe->pipe_rcv, "pipe_rd");
184 cv_init(&pipe->pipe_wcv, "pipe_wr");
185 cv_init(&pipe->pipe_draincv, "pipe_drn");
186 cv_init(&pipe->pipe_lkcv, "pipe_lk");
187 selinit(&pipe->pipe_sel);
188 pipe->pipe_state = PIPE_SIGNALR;
189
190 return 0;
191 }
192
193 static void
194 pipe_dtor(void *arg, void *obj)
195 {
196 struct pipe *pipe;
197
198 pipe = obj;
199
200 cv_destroy(&pipe->pipe_rcv);
201 cv_destroy(&pipe->pipe_wcv);
202 cv_destroy(&pipe->pipe_draincv);
203 cv_destroy(&pipe->pipe_lkcv);
204 seldestroy(&pipe->pipe_sel);
205 if (pipe->pipe_kmem != 0) {
206 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
207 UVM_KMF_PAGEABLE);
208 atomic_add_int(&amountpipekva, -PIPE_SIZE);
209 }
210 }
211
212 /*
213 * The pipe system call for the DTYPE_PIPE type of pipes
214 */
215 int
216 pipe1(struct lwp *l, int *fildes, int flags)
217 {
218 struct pipe *rpipe, *wpipe;
219 file_t *rf, *wf;
220 int fd, error;
221 proc_t *p;
222
223 if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
224 return EINVAL;
225 p = curproc;
226 rpipe = wpipe = NULL;
227 if ((error = pipe_create(&rpipe, pipe_rd_cache)) ||
228 (error = pipe_create(&wpipe, pipe_wr_cache))) {
229 goto free2;
230 }
231 rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
232 wpipe->pipe_lock = rpipe->pipe_lock;
233 mutex_obj_hold(wpipe->pipe_lock);
234
235 error = fd_allocfile(&rf, &fd);
236 if (error)
237 goto free2;
238 fildes[0] = fd;
239
240 error = fd_allocfile(&wf, &fd);
241 if (error)
242 goto free3;
243 fildes[1] = fd;
244
245 rf->f_flag = FREAD | flags;
246 rf->f_type = DTYPE_PIPE;
247 rf->f_pipe = rpipe;
248 rf->f_ops = &pipeops;
249 fd_set_exclose(l, fildes[0], (flags & O_CLOEXEC) != 0);
250
251 wf->f_flag = FWRITE | flags;
252 wf->f_type = DTYPE_PIPE;
253 wf->f_pipe = wpipe;
254 wf->f_ops = &pipeops;
255 fd_set_exclose(l, fildes[1], (flags & O_CLOEXEC) != 0);
256
257 rpipe->pipe_peer = wpipe;
258 wpipe->pipe_peer = rpipe;
259
260 fd_affix(p, rf, fildes[0]);
261 fd_affix(p, wf, fildes[1]);
262 return (0);
263 free3:
264 fd_abort(p, rf, fildes[0]);
265 free2:
266 pipeclose(wpipe);
267 pipeclose(rpipe);
268
269 return (error);
270 }
271
272 /*
273 * Allocate kva for pipe circular buffer, the space is pageable
274 * This routine will 'realloc' the size of a pipe safely, if it fails
275 * it will retain the old buffer.
276 * If it fails it will return ENOMEM.
277 */
278 static int
279 pipespace(struct pipe *pipe, int size)
280 {
281 void *buffer;
282
283 /*
284 * Allocate pageable virtual address space. Physical memory is
285 * allocated on demand.
286 */
287 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
288 buffer = (void *)pipe->pipe_kmem;
289 } else {
290 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
291 0, UVM_KMF_PAGEABLE);
292 if (buffer == NULL)
293 return (ENOMEM);
294 atomic_add_int(&amountpipekva, size);
295 }
296
297 /* free old resources if we're resizing */
298 pipe_free_kmem(pipe);
299 pipe->pipe_buffer.buffer = buffer;
300 pipe->pipe_buffer.size = size;
301 pipe->pipe_buffer.in = 0;
302 pipe->pipe_buffer.out = 0;
303 pipe->pipe_buffer.cnt = 0;
304 return (0);
305 }
306
307 /*
308 * Initialize and allocate VM and memory for pipe.
309 */
310 static int
311 pipe_create(struct pipe **pipep, pool_cache_t cache)
312 {
313 struct pipe *pipe;
314 int error;
315
316 pipe = pool_cache_get(cache, PR_WAITOK);
317 KASSERT(pipe != NULL);
318 *pipep = pipe;
319 error = 0;
320 getnanotime(&pipe->pipe_btime);
321 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
322 pipe->pipe_lock = NULL;
323 if (cache == pipe_rd_cache) {
324 error = pipespace(pipe, PIPE_SIZE);
325 } else {
326 pipe->pipe_buffer.buffer = NULL;
327 pipe->pipe_buffer.size = 0;
328 pipe->pipe_buffer.in = 0;
329 pipe->pipe_buffer.out = 0;
330 pipe->pipe_buffer.cnt = 0;
331 }
332 return error;
333 }
334
335 /*
336 * Lock a pipe for I/O, blocking other access
337 * Called with pipe spin lock held.
338 */
339 static int
340 pipelock(struct pipe *pipe, bool catch_p)
341 {
342 int error;
343
344 KASSERT(mutex_owned(pipe->pipe_lock));
345
346 while (pipe->pipe_state & PIPE_LOCKFL) {
347 pipe->pipe_waiters++;
348 KASSERT(pipe->pipe_waiters != 0); /* just in case */
349 if (catch_p) {
350 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
351 if (error != 0) {
352 KASSERT(pipe->pipe_waiters > 0);
353 pipe->pipe_waiters--;
354 return error;
355 }
356 } else
357 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
358 KASSERT(pipe->pipe_waiters > 0);
359 pipe->pipe_waiters--;
360 }
361
362 pipe->pipe_state |= PIPE_LOCKFL;
363
364 return 0;
365 }
366
367 /*
368 * unlock a pipe I/O lock
369 */
370 static inline void
371 pipeunlock(struct pipe *pipe)
372 {
373
374 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
375
376 pipe->pipe_state &= ~PIPE_LOCKFL;
377 if (pipe->pipe_waiters > 0) {
378 cv_signal(&pipe->pipe_lkcv);
379 }
380 }
381
382 /*
383 * Select/poll wakup. This also sends SIGIO to peer connected to
384 * 'sigpipe' side of pipe.
385 */
386 static void
387 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
388 {
389 int band;
390
391 switch (code) {
392 case POLL_IN:
393 band = POLLIN|POLLRDNORM;
394 break;
395 case POLL_OUT:
396 band = POLLOUT|POLLWRNORM;
397 break;
398 case POLL_HUP:
399 band = POLLHUP;
400 break;
401 case POLL_ERR:
402 band = POLLERR;
403 break;
404 default:
405 band = 0;
406 #ifdef DIAGNOSTIC
407 printf("bad siginfo code %d in pipe notification.\n", code);
408 #endif
409 break;
410 }
411
412 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
413
414 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
415 return;
416
417 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
418 }
419
420 static int
421 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
422 int flags)
423 {
424 struct pipe *rpipe = fp->f_pipe;
425 struct pipebuf *bp = &rpipe->pipe_buffer;
426 kmutex_t *lock = rpipe->pipe_lock;
427 int error;
428 size_t nread = 0;
429 size_t size;
430 size_t ocnt;
431 unsigned int wakeup_state = 0;
432
433 mutex_enter(lock);
434 ++rpipe->pipe_busy;
435 ocnt = bp->cnt;
436
437 again:
438 error = pipelock(rpipe, true);
439 if (error)
440 goto unlocked_error;
441
442 while (uio->uio_resid) {
443 /*
444 * Normal pipe buffer receive.
445 */
446 if (bp->cnt > 0) {
447 size = bp->size - bp->out;
448 if (size > bp->cnt)
449 size = bp->cnt;
450 if (size > uio->uio_resid)
451 size = uio->uio_resid;
452
453 mutex_exit(lock);
454 error = uiomove((char *)bp->buffer + bp->out, size, uio);
455 mutex_enter(lock);
456 if (error)
457 break;
458
459 bp->out += size;
460 if (bp->out >= bp->size)
461 bp->out = 0;
462
463 bp->cnt -= size;
464
465 /*
466 * If there is no more to read in the pipe, reset
467 * its pointers to the beginning. This improves
468 * cache hit stats.
469 */
470 if (bp->cnt == 0) {
471 bp->in = 0;
472 bp->out = 0;
473 }
474 nread += size;
475 continue;
476 }
477
478 /*
479 * Break if some data was read.
480 */
481 if (nread > 0)
482 break;
483
484 /*
485 * Detect EOF condition.
486 * Read returns 0 on EOF, no need to set error.
487 */
488 if (rpipe->pipe_state & PIPE_EOF)
489 break;
490
491 /*
492 * Don't block on non-blocking I/O.
493 */
494 if (fp->f_flag & FNONBLOCK) {
495 error = EAGAIN;
496 break;
497 }
498
499 /*
500 * Unlock the pipe buffer for our remaining processing.
501 * We will either break out with an error or we will
502 * sleep and relock to loop.
503 */
504 pipeunlock(rpipe);
505
506 #if 1 /* XXX (dsl) I'm sure these aren't needed here ... */
507 /*
508 * We want to read more, wake up select/poll.
509 */
510 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
511
512 /*
513 * If the "write-side" is blocked, wake it up now.
514 */
515 cv_broadcast(&rpipe->pipe_wcv);
516 #endif
517
518 if (wakeup_state & PIPE_RESTART) {
519 error = ERESTART;
520 goto unlocked_error;
521 }
522
523 /* Now wait until the pipe is filled */
524 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
525 if (error != 0)
526 goto unlocked_error;
527 wakeup_state = rpipe->pipe_state;
528 goto again;
529 }
530
531 if (error == 0)
532 getnanotime(&rpipe->pipe_atime);
533 pipeunlock(rpipe);
534
535 unlocked_error:
536 --rpipe->pipe_busy;
537 if (rpipe->pipe_busy == 0) {
538 rpipe->pipe_state &= ~PIPE_RESTART;
539 cv_broadcast(&rpipe->pipe_draincv);
540 }
541 if (bp->cnt < MINPIPESIZE) {
542 cv_broadcast(&rpipe->pipe_wcv);
543 }
544
545 /*
546 * If anything was read off the buffer, signal to the writer it's
547 * possible to write more data. Also send signal if we are here for the
548 * first time after last write.
549 */
550 if ((bp->size - bp->cnt) >= PIPE_BUF
551 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
552 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
553 rpipe->pipe_state &= ~PIPE_SIGNALR;
554 }
555
556 mutex_exit(lock);
557 return (error);
558 }
559
560 static int
561 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
562 int flags)
563 {
564 struct pipe *wpipe, *rpipe;
565 struct pipebuf *bp;
566 kmutex_t *lock;
567 int error;
568 unsigned int wakeup_state = 0;
569
570 /* We want to write to our peer */
571 rpipe = fp->f_pipe;
572 lock = rpipe->pipe_lock;
573 error = 0;
574
575 mutex_enter(lock);
576 wpipe = rpipe->pipe_peer;
577
578 /*
579 * Detect loss of pipe read side, issue SIGPIPE if lost.
580 */
581 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
582 mutex_exit(lock);
583 return EPIPE;
584 }
585 ++wpipe->pipe_busy;
586
587 /* Acquire the long-term pipe lock */
588 if ((error = pipelock(wpipe, true)) != 0) {
589 --wpipe->pipe_busy;
590 if (wpipe->pipe_busy == 0) {
591 wpipe->pipe_state &= ~PIPE_RESTART;
592 cv_broadcast(&wpipe->pipe_draincv);
593 }
594 mutex_exit(lock);
595 return (error);
596 }
597
598 bp = &wpipe->pipe_buffer;
599
600 /*
601 * If it is advantageous to resize the pipe buffer, do so.
602 */
603 if ((uio->uio_resid > PIPE_SIZE) &&
604 (nbigpipe < maxbigpipes) &&
605 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
606
607 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
608 atomic_inc_uint(&nbigpipe);
609 }
610
611 while (uio->uio_resid) {
612 size_t space;
613
614 space = bp->size - bp->cnt;
615
616 /* Writes of size <= PIPE_BUF must be atomic. */
617 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
618 space = 0;
619
620 if (space > 0) {
621 int size; /* Transfer size */
622 int segsize; /* first segment to transfer */
623
624 /*
625 * Transfer size is minimum of uio transfer
626 * and free space in pipe buffer.
627 */
628 if (space > uio->uio_resid)
629 size = uio->uio_resid;
630 else
631 size = space;
632 /*
633 * First segment to transfer is minimum of
634 * transfer size and contiguous space in
635 * pipe buffer. If first segment to transfer
636 * is less than the transfer size, we've got
637 * a wraparound in the buffer.
638 */
639 segsize = bp->size - bp->in;
640 if (segsize > size)
641 segsize = size;
642
643 /* Transfer first segment */
644 mutex_exit(lock);
645 error = uiomove((char *)bp->buffer + bp->in, segsize,
646 uio);
647
648 if (error == 0 && segsize < size) {
649 /*
650 * Transfer remaining part now, to
651 * support atomic writes. Wraparound
652 * happened.
653 */
654 KASSERT(bp->in + segsize == bp->size);
655 error = uiomove(bp->buffer,
656 size - segsize, uio);
657 }
658 mutex_enter(lock);
659 if (error)
660 break;
661
662 bp->in += size;
663 if (bp->in >= bp->size) {
664 KASSERT(bp->in == size - segsize + bp->size);
665 bp->in = size - segsize;
666 }
667
668 bp->cnt += size;
669 KASSERT(bp->cnt <= bp->size);
670 wakeup_state = 0;
671 } else {
672 /*
673 * If the "read-side" has been blocked, wake it up now.
674 */
675 cv_broadcast(&wpipe->pipe_rcv);
676
677 /*
678 * Don't block on non-blocking I/O.
679 */
680 if (fp->f_flag & FNONBLOCK) {
681 error = EAGAIN;
682 break;
683 }
684
685 /*
686 * We have no more space and have something to offer,
687 * wake up select/poll.
688 */
689 if (bp->cnt)
690 pipeselwakeup(wpipe, wpipe, POLL_IN);
691
692 if (wakeup_state & PIPE_RESTART) {
693 error = ERESTART;
694 break;
695 }
696
697 pipeunlock(wpipe);
698 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
699 (void)pipelock(wpipe, false);
700 if (error != 0)
701 break;
702 /*
703 * If read side wants to go away, we just issue a signal
704 * to ourselves.
705 */
706 if (wpipe->pipe_state & PIPE_EOF) {
707 error = EPIPE;
708 break;
709 }
710 wakeup_state = wpipe->pipe_state;
711 }
712 }
713
714 --wpipe->pipe_busy;
715 if (wpipe->pipe_busy == 0) {
716 wpipe->pipe_state &= ~PIPE_RESTART;
717 cv_broadcast(&wpipe->pipe_draincv);
718 }
719 if (bp->cnt > 0) {
720 cv_broadcast(&wpipe->pipe_rcv);
721 }
722
723 /*
724 * Don't return EPIPE if I/O was successful
725 */
726 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
727 error = 0;
728
729 if (error == 0)
730 getnanotime(&wpipe->pipe_mtime);
731
732 /*
733 * We have something to offer, wake up select/poll.
734 * wmap->cnt is always 0 in this point (direct write
735 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
736 */
737 if (bp->cnt)
738 pipeselwakeup(wpipe, wpipe, POLL_IN);
739
740 /*
741 * Arrange for next read(2) to do a signal.
742 */
743 wpipe->pipe_state |= PIPE_SIGNALR;
744
745 pipeunlock(wpipe);
746 mutex_exit(lock);
747 return (error);
748 }
749
750 /*
751 * We implement a very minimal set of ioctls for compatibility with sockets.
752 */
753 int
754 pipe_ioctl(file_t *fp, u_long cmd, void *data)
755 {
756 struct pipe *pipe = fp->f_pipe;
757 kmutex_t *lock = pipe->pipe_lock;
758
759 switch (cmd) {
760
761 case FIONBIO:
762 return (0);
763
764 case FIOASYNC:
765 mutex_enter(lock);
766 if (*(int *)data) {
767 pipe->pipe_state |= PIPE_ASYNC;
768 } else {
769 pipe->pipe_state &= ~PIPE_ASYNC;
770 }
771 mutex_exit(lock);
772 return (0);
773
774 case FIONREAD:
775 mutex_enter(lock);
776 *(int *)data = pipe->pipe_buffer.cnt;
777 mutex_exit(lock);
778 return (0);
779
780 case FIONWRITE:
781 /* Look at other side */
782 mutex_enter(lock);
783 pipe = pipe->pipe_peer;
784 if (pipe == NULL)
785 *(int *)data = 0;
786 else
787 *(int *)data = pipe->pipe_buffer.cnt;
788 mutex_exit(lock);
789 return (0);
790
791 case FIONSPACE:
792 /* Look at other side */
793 mutex_enter(lock);
794 pipe = pipe->pipe_peer;
795 if (pipe == NULL)
796 *(int *)data = 0;
797 else
798 *(int *)data = pipe->pipe_buffer.size -
799 pipe->pipe_buffer.cnt;
800 mutex_exit(lock);
801 return (0);
802
803 case TIOCSPGRP:
804 case FIOSETOWN:
805 return fsetown(&pipe->pipe_pgid, cmd, data);
806
807 case TIOCGPGRP:
808 case FIOGETOWN:
809 return fgetown(pipe->pipe_pgid, cmd, data);
810
811 }
812 return (EPASSTHROUGH);
813 }
814
815 int
816 pipe_poll(file_t *fp, int events)
817 {
818 struct pipe *rpipe = fp->f_pipe;
819 struct pipe *wpipe;
820 int eof = 0;
821 int revents = 0;
822
823 mutex_enter(rpipe->pipe_lock);
824 wpipe = rpipe->pipe_peer;
825
826 if (events & (POLLIN | POLLRDNORM))
827 if ((rpipe->pipe_buffer.cnt > 0) ||
828 (rpipe->pipe_state & PIPE_EOF))
829 revents |= events & (POLLIN | POLLRDNORM);
830
831 eof |= (rpipe->pipe_state & PIPE_EOF);
832
833 if (wpipe == NULL)
834 revents |= events & (POLLOUT | POLLWRNORM);
835 else {
836 if (events & (POLLOUT | POLLWRNORM))
837 if ((wpipe->pipe_state & PIPE_EOF) || (
838 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
839 revents |= events & (POLLOUT | POLLWRNORM);
840
841 eof |= (wpipe->pipe_state & PIPE_EOF);
842 }
843
844 if (wpipe == NULL || eof)
845 revents |= POLLHUP;
846
847 if (revents == 0) {
848 if (events & (POLLIN | POLLRDNORM))
849 selrecord(curlwp, &rpipe->pipe_sel);
850
851 if (events & (POLLOUT | POLLWRNORM))
852 selrecord(curlwp, &wpipe->pipe_sel);
853 }
854 mutex_exit(rpipe->pipe_lock);
855
856 return (revents);
857 }
858
859 static int
860 pipe_stat(file_t *fp, struct stat *ub)
861 {
862 struct pipe *pipe = fp->f_pipe;
863
864 mutex_enter(pipe->pipe_lock);
865 memset(ub, 0, sizeof(*ub));
866 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
867 ub->st_blksize = pipe->pipe_buffer.size;
868 if (ub->st_blksize == 0 && pipe->pipe_peer)
869 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
870 ub->st_size = pipe->pipe_buffer.cnt;
871 ub->st_blocks = (ub->st_size) ? 1 : 0;
872 ub->st_atimespec = pipe->pipe_atime;
873 ub->st_mtimespec = pipe->pipe_mtime;
874 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
875 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
876 ub->st_gid = kauth_cred_getegid(fp->f_cred);
877
878 /*
879 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
880 * XXX (st_dev, st_ino) should be unique.
881 */
882 mutex_exit(pipe->pipe_lock);
883 return 0;
884 }
885
886 static int
887 pipe_close(file_t *fp)
888 {
889 struct pipe *pipe = fp->f_pipe;
890
891 fp->f_pipe = NULL;
892 pipeclose(pipe);
893 return (0);
894 }
895
896 static void
897 pipe_restart(file_t *fp)
898 {
899 struct pipe *pipe = fp->f_pipe;
900
901 /*
902 * Unblock blocked reads/writes in order to allow close() to complete.
903 * System calls return ERESTART so that the fd is revalidated.
904 * (Partial writes return the transfer length.)
905 */
906 mutex_enter(pipe->pipe_lock);
907 pipe->pipe_state |= PIPE_RESTART;
908 /* Wakeup both cvs, maybe we only need one, but maybe there are some
909 * other paths where wakeup is needed, and it saves deciding which! */
910 cv_broadcast(&pipe->pipe_rcv);
911 cv_broadcast(&pipe->pipe_wcv);
912 mutex_exit(pipe->pipe_lock);
913 }
914
915 static void
916 pipe_free_kmem(struct pipe *pipe)
917 {
918
919 if (pipe->pipe_buffer.buffer != NULL) {
920 if (pipe->pipe_buffer.size > PIPE_SIZE) {
921 atomic_dec_uint(&nbigpipe);
922 }
923 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
924 uvm_km_free(kernel_map,
925 (vaddr_t)pipe->pipe_buffer.buffer,
926 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
927 atomic_add_int(&amountpipekva,
928 -pipe->pipe_buffer.size);
929 }
930 pipe->pipe_buffer.buffer = NULL;
931 }
932 }
933
934 /*
935 * Shutdown the pipe.
936 */
937 static void
938 pipeclose(struct pipe *pipe)
939 {
940 kmutex_t *lock;
941 struct pipe *ppipe;
942
943 if (pipe == NULL)
944 return;
945
946 KASSERT(cv_is_valid(&pipe->pipe_rcv));
947 KASSERT(cv_is_valid(&pipe->pipe_wcv));
948 KASSERT(cv_is_valid(&pipe->pipe_draincv));
949 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
950
951 lock = pipe->pipe_lock;
952 if (lock == NULL)
953 /* Must have failed during create */
954 goto free_resources;
955
956 mutex_enter(lock);
957 pipeselwakeup(pipe, pipe, POLL_HUP);
958
959 /*
960 * If the other side is blocked, wake it up saying that
961 * we want to close it down.
962 */
963 pipe->pipe_state |= PIPE_EOF;
964 if (pipe->pipe_busy) {
965 while (pipe->pipe_busy) {
966 cv_broadcast(&pipe->pipe_wcv);
967 cv_wait_sig(&pipe->pipe_draincv, lock);
968 }
969 }
970
971 /*
972 * Disconnect from peer.
973 */
974 if ((ppipe = pipe->pipe_peer) != NULL) {
975 pipeselwakeup(ppipe, ppipe, POLL_HUP);
976 ppipe->pipe_state |= PIPE_EOF;
977 cv_broadcast(&ppipe->pipe_rcv);
978 ppipe->pipe_peer = NULL;
979 }
980
981 /*
982 * Any knote objects still left in the list are
983 * the one attached by peer. Since no one will
984 * traverse this list, we just clear it.
985 *
986 * XXX Exposes select/kqueue internals.
987 */
988 SLIST_INIT(&pipe->pipe_sel.sel_klist);
989
990 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
991 mutex_exit(lock);
992 mutex_obj_free(lock);
993
994 /*
995 * Free resources.
996 */
997 free_resources:
998 pipe->pipe_pgid = 0;
999 pipe->pipe_state = PIPE_SIGNALR;
1000 pipe->pipe_peer = NULL;
1001 pipe->pipe_lock = NULL;
1002 pipe_free_kmem(pipe);
1003 if (pipe->pipe_kmem != 0) {
1004 pool_cache_put(pipe_rd_cache, pipe);
1005 } else {
1006 pool_cache_put(pipe_wr_cache, pipe);
1007 }
1008 }
1009
1010 static void
1011 filt_pipedetach(struct knote *kn)
1012 {
1013 struct pipe *pipe;
1014 kmutex_t *lock;
1015
1016 pipe = ((file_t *)kn->kn_obj)->f_pipe;
1017 lock = pipe->pipe_lock;
1018
1019 mutex_enter(lock);
1020
1021 switch(kn->kn_filter) {
1022 case EVFILT_WRITE:
1023 /* Need the peer structure, not our own. */
1024 pipe = pipe->pipe_peer;
1025
1026 /* If reader end already closed, just return. */
1027 if (pipe == NULL) {
1028 mutex_exit(lock);
1029 return;
1030 }
1031
1032 break;
1033 default:
1034 /* Nothing to do. */
1035 break;
1036 }
1037
1038 KASSERT(kn->kn_hook == pipe);
1039 selremove_knote(&pipe->pipe_sel, kn);
1040 mutex_exit(lock);
1041 }
1042
1043 static int
1044 filt_piperead(struct knote *kn, long hint)
1045 {
1046 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1047 struct pipe *wpipe;
1048 int rv;
1049
1050 if ((hint & NOTE_SUBMIT) == 0) {
1051 mutex_enter(rpipe->pipe_lock);
1052 }
1053 wpipe = rpipe->pipe_peer;
1054 kn->kn_data = rpipe->pipe_buffer.cnt;
1055
1056 if ((rpipe->pipe_state & PIPE_EOF) ||
1057 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1058 kn->kn_flags |= EV_EOF;
1059 rv = 1;
1060 } else {
1061 rv = kn->kn_data > 0;
1062 }
1063
1064 if ((hint & NOTE_SUBMIT) == 0) {
1065 mutex_exit(rpipe->pipe_lock);
1066 }
1067 return rv;
1068 }
1069
1070 static int
1071 filt_pipewrite(struct knote *kn, long hint)
1072 {
1073 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1074 struct pipe *wpipe;
1075 int rv;
1076
1077 if ((hint & NOTE_SUBMIT) == 0) {
1078 mutex_enter(rpipe->pipe_lock);
1079 }
1080 wpipe = rpipe->pipe_peer;
1081
1082 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1083 kn->kn_data = 0;
1084 kn->kn_flags |= EV_EOF;
1085 rv = 1;
1086 } else {
1087 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1088 rv = kn->kn_data >= PIPE_BUF;
1089 }
1090
1091 if ((hint & NOTE_SUBMIT) == 0) {
1092 mutex_exit(rpipe->pipe_lock);
1093 }
1094 return rv;
1095 }
1096
1097 static const struct filterops pipe_rfiltops = {
1098 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1099 .f_attach = NULL,
1100 .f_detach = filt_pipedetach,
1101 .f_event = filt_piperead,
1102 };
1103
1104 static const struct filterops pipe_wfiltops = {
1105 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1106 .f_attach = NULL,
1107 .f_detach = filt_pipedetach,
1108 .f_event = filt_pipewrite,
1109 };
1110
1111 static int
1112 pipe_kqfilter(file_t *fp, struct knote *kn)
1113 {
1114 struct pipe *pipe;
1115 kmutex_t *lock;
1116
1117 pipe = ((file_t *)kn->kn_obj)->f_pipe;
1118 lock = pipe->pipe_lock;
1119
1120 mutex_enter(lock);
1121
1122 switch (kn->kn_filter) {
1123 case EVFILT_READ:
1124 kn->kn_fop = &pipe_rfiltops;
1125 break;
1126 case EVFILT_WRITE:
1127 kn->kn_fop = &pipe_wfiltops;
1128 pipe = pipe->pipe_peer;
1129 if (pipe == NULL) {
1130 /* Other end of pipe has been closed. */
1131 mutex_exit(lock);
1132 return (EBADF);
1133 }
1134 break;
1135 default:
1136 mutex_exit(lock);
1137 return (EINVAL);
1138 }
1139
1140 kn->kn_hook = pipe;
1141 selrecord_knote(&pipe->pipe_sel, kn);
1142 mutex_exit(lock);
1143
1144 return (0);
1145 }
1146
1147 /*
1148 * Handle pipe sysctls.
1149 */
1150 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1151 {
1152
1153 sysctl_createv(clog, 0, NULL, NULL,
1154 CTLFLAG_PERMANENT,
1155 CTLTYPE_NODE, "pipe",
1156 SYSCTL_DESCR("Pipe settings"),
1157 NULL, 0, NULL, 0,
1158 CTL_KERN, KERN_PIPE, CTL_EOL);
1159
1160 sysctl_createv(clog, 0, NULL, NULL,
1161 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1162 CTLTYPE_INT, "maxbigpipes",
1163 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1164 NULL, 0, &maxbigpipes, 0,
1165 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1166 sysctl_createv(clog, 0, NULL, NULL,
1167 CTLFLAG_PERMANENT,
1168 CTLTYPE_INT, "nbigpipes",
1169 SYSCTL_DESCR("Number of \"big\" pipes"),
1170 NULL, 0, &nbigpipe, 0,
1171 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1172 sysctl_createv(clog, 0, NULL, NULL,
1173 CTLFLAG_PERMANENT,
1174 CTLTYPE_INT, "kvasize",
1175 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1176 "buffers"),
1177 NULL, 0, &amountpipekva, 0,
1178 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1179 }
1180