Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.167
      1 /*	$NetBSD: sys_pipe.c,v 1.167 2024/02/10 09:21:54 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2007, 2008, 2009, 2023 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1996 John S. Dyson
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice immediately at the beginning of the file, without modification,
     41  *    this list of conditions, and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Absolutely no warranty of function or purpose is made by the author
     46  *    John S. Dyson.
     47  * 4. Modifications may be freely made to this file if the above conditions
     48  *    are met.
     49  */
     50 
     51 /*
     52  * This file contains a high-performance replacement for the socket-based
     53  * pipes scheme originally used.  It does not support all features of
     54  * sockets, but does do everything that pipes normally do.
     55  */
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.167 2024/02/10 09:21:54 andvar Exp $");
     59 
     60 #include <sys/param.h>
     61 #include <sys/systm.h>
     62 #include <sys/proc.h>
     63 #include <sys/fcntl.h>
     64 #include <sys/file.h>
     65 #include <sys/filedesc.h>
     66 #include <sys/filio.h>
     67 #include <sys/kernel.h>
     68 #include <sys/ttycom.h>
     69 #include <sys/stat.h>
     70 #include <sys/poll.h>
     71 #include <sys/signalvar.h>
     72 #include <sys/vnode.h>
     73 #include <sys/uio.h>
     74 #include <sys/select.h>
     75 #include <sys/mount.h>
     76 #include <sys/syscallargs.h>
     77 #include <sys/sysctl.h>
     78 #include <sys/kauth.h>
     79 #include <sys/atomic.h>
     80 #include <sys/pipe.h>
     81 
     82 static int	pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
     83 static int	pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
     84 static int	pipe_close(file_t *);
     85 static int	pipe_poll(file_t *, int);
     86 static int	pipe_kqfilter(file_t *, struct knote *);
     87 static int	pipe_stat(file_t *, struct stat *);
     88 static int	pipe_ioctl(file_t *, u_long, void *);
     89 static void	pipe_restart(file_t *);
     90 static int	pipe_fpathconf(file_t *, int, register_t *);
     91 static int	pipe_posix_fadvise(file_t *, off_t, off_t, int);
     92 
     93 static const struct fileops pipeops = {
     94 	.fo_name = "pipe",
     95 	.fo_read = pipe_read,
     96 	.fo_write = pipe_write,
     97 	.fo_ioctl = pipe_ioctl,
     98 	.fo_fcntl = fnullop_fcntl,
     99 	.fo_poll = pipe_poll,
    100 	.fo_stat = pipe_stat,
    101 	.fo_close = pipe_close,
    102 	.fo_kqfilter = pipe_kqfilter,
    103 	.fo_restart = pipe_restart,
    104 	.fo_fpathconf = pipe_fpathconf,
    105 	.fo_posix_fadvise = pipe_posix_fadvise,
    106 };
    107 
    108 /*
    109  * Default pipe buffer size(s), this can be kind-of large now because pipe
    110  * space is pageable.  The pipe code will try to maintain locality of
    111  * reference for performance reasons, so small amounts of outstanding I/O
    112  * will not wipe the cache.
    113  */
    114 #define	MINPIPESIZE	(PIPE_SIZE / 3)
    115 #define	MAXPIPESIZE	(2 * PIPE_SIZE / 3)
    116 
    117 /*
    118  * Limit the number of "big" pipes
    119  */
    120 #define	LIMITBIGPIPES	32
    121 static u_int	maxbigpipes __read_mostly = LIMITBIGPIPES;
    122 static u_int	nbigpipe = 0;
    123 
    124 /*
    125  * Amount of KVA consumed by pipe buffers.
    126  */
    127 static u_int	amountpipekva = 0;
    128 
    129 static void	pipeclose(struct pipe *);
    130 static void	pipe_free_kmem(struct pipe *);
    131 static int	pipe_create(struct pipe **, pool_cache_t, struct timespec *);
    132 static int	pipelock(struct pipe *, bool);
    133 static inline void pipeunlock(struct pipe *);
    134 static void	pipeselwakeup(struct pipe *, struct pipe *, int);
    135 static int	pipespace(struct pipe *, int);
    136 static int	pipe_ctor(void *, void *, int);
    137 static void	pipe_dtor(void *, void *);
    138 
    139 static pool_cache_t	pipe_wr_cache;
    140 static pool_cache_t	pipe_rd_cache;
    141 
    142 void
    143 pipe_init(void)
    144 {
    145 
    146 	/* Writer side is not automatically allocated KVA. */
    147 	pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
    148 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
    149 	KASSERT(pipe_wr_cache != NULL);
    150 
    151 	/* Reader side gets preallocated KVA. */
    152 	pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
    153 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
    154 	KASSERT(pipe_rd_cache != NULL);
    155 }
    156 
    157 static int
    158 pipe_ctor(void *arg, void *obj, int flags)
    159 {
    160 	struct pipe *pipe;
    161 	vaddr_t va;
    162 
    163 	pipe = obj;
    164 
    165 	memset(pipe, 0, sizeof(struct pipe));
    166 	if (arg != NULL) {
    167 		/* Preallocate space. */
    168 		va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
    169 		    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    170 		KASSERT(va != 0);
    171 		pipe->pipe_kmem = va;
    172 		atomic_add_int(&amountpipekva, PIPE_SIZE);
    173 	}
    174 	cv_init(&pipe->pipe_rcv, "pipe_rd");
    175 	cv_init(&pipe->pipe_wcv, "pipe_wr");
    176 	cv_init(&pipe->pipe_draincv, "pipe_drn");
    177 	cv_init(&pipe->pipe_lkcv, "pipe_lk");
    178 	selinit(&pipe->pipe_sel);
    179 	pipe->pipe_state = PIPE_SIGNALR;
    180 
    181 	return 0;
    182 }
    183 
    184 static void
    185 pipe_dtor(void *arg, void *obj)
    186 {
    187 	struct pipe *pipe;
    188 
    189 	pipe = obj;
    190 
    191 	cv_destroy(&pipe->pipe_rcv);
    192 	cv_destroy(&pipe->pipe_wcv);
    193 	cv_destroy(&pipe->pipe_draincv);
    194 	cv_destroy(&pipe->pipe_lkcv);
    195 	seldestroy(&pipe->pipe_sel);
    196 	if (pipe->pipe_kmem != 0) {
    197 		uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
    198 		    UVM_KMF_PAGEABLE);
    199 		atomic_add_int(&amountpipekva, -PIPE_SIZE);
    200 	}
    201 }
    202 
    203 /*
    204  * The pipe system call for the DTYPE_PIPE type of pipes
    205  */
    206 int
    207 pipe1(struct lwp *l, int *fildes, int flags)
    208 {
    209 	struct pipe *rpipe, *wpipe;
    210 	struct timespec nt;
    211 	file_t *rf, *wf;
    212 	int fd, error;
    213 	proc_t *p;
    214 
    215 	if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
    216 		return EINVAL;
    217 	p = curproc;
    218 	rpipe = wpipe = NULL;
    219 	getnanotime(&nt);
    220 	if ((error = pipe_create(&rpipe, pipe_rd_cache, &nt)) ||
    221 	    (error = pipe_create(&wpipe, pipe_wr_cache, &nt))) {
    222 		goto free2;
    223 	}
    224 	rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    225 	wpipe->pipe_lock = rpipe->pipe_lock;
    226 	mutex_obj_hold(wpipe->pipe_lock);
    227 
    228 	error = fd_allocfile(&rf, &fd);
    229 	if (error)
    230 		goto free2;
    231 	fildes[0] = fd;
    232 
    233 	error = fd_allocfile(&wf, &fd);
    234 	if (error)
    235 		goto free3;
    236 	fildes[1] = fd;
    237 
    238 	rf->f_flag = FREAD | flags;
    239 	rf->f_type = DTYPE_PIPE;
    240 	rf->f_pipe = rpipe;
    241 	rf->f_ops = &pipeops;
    242 	fd_set_exclose(l, fildes[0], (flags & O_CLOEXEC) != 0);
    243 
    244 	wf->f_flag = FWRITE | flags;
    245 	wf->f_type = DTYPE_PIPE;
    246 	wf->f_pipe = wpipe;
    247 	wf->f_ops = &pipeops;
    248 	fd_set_exclose(l, fildes[1], (flags & O_CLOEXEC) != 0);
    249 
    250 	rpipe->pipe_peer = wpipe;
    251 	wpipe->pipe_peer = rpipe;
    252 
    253 	fd_affix(p, rf, fildes[0]);
    254 	fd_affix(p, wf, fildes[1]);
    255 	return (0);
    256 free3:
    257 	fd_abort(p, rf, fildes[0]);
    258 free2:
    259 	pipeclose(wpipe);
    260 	pipeclose(rpipe);
    261 
    262 	return (error);
    263 }
    264 
    265 /*
    266  * Allocate kva for pipe circular buffer, the space is pageable
    267  * This routine will 'realloc' the size of a pipe safely, if it fails
    268  * it will retain the old buffer.
    269  * If it fails it will return ENOMEM.
    270  */
    271 static int
    272 pipespace(struct pipe *pipe, int size)
    273 {
    274 	void *buffer;
    275 
    276 	/*
    277 	 * Allocate pageable virtual address space.  Physical memory is
    278 	 * allocated on demand.
    279 	 */
    280 	if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
    281 		buffer = (void *)pipe->pipe_kmem;
    282 	} else {
    283 		buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
    284 		    0, UVM_KMF_PAGEABLE);
    285 		if (buffer == NULL)
    286 			return (ENOMEM);
    287 		atomic_add_int(&amountpipekva, size);
    288 	}
    289 
    290 	/* free old resources if we're resizing */
    291 	pipe_free_kmem(pipe);
    292 	pipe->pipe_buffer.buffer = buffer;
    293 	pipe->pipe_buffer.size = size;
    294 	pipe->pipe_buffer.in = 0;
    295 	pipe->pipe_buffer.out = 0;
    296 	pipe->pipe_buffer.cnt = 0;
    297 	return (0);
    298 }
    299 
    300 /*
    301  * Initialize and allocate VM and memory for pipe.
    302  */
    303 static int
    304 pipe_create(struct pipe **pipep, pool_cache_t cache, struct timespec *nt)
    305 {
    306 	struct pipe *pipe;
    307 	int error;
    308 
    309 	pipe = pool_cache_get(cache, PR_WAITOK);
    310 	KASSERT(pipe != NULL);
    311 	*pipep = pipe;
    312 	error = 0;
    313 	pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime = *nt;
    314 	pipe->pipe_lock = NULL;
    315 	if (cache == pipe_rd_cache) {
    316 		error = pipespace(pipe, PIPE_SIZE);
    317 	} else {
    318 		pipe->pipe_buffer.buffer = NULL;
    319 		pipe->pipe_buffer.size = 0;
    320 		pipe->pipe_buffer.in = 0;
    321 		pipe->pipe_buffer.out = 0;
    322 		pipe->pipe_buffer.cnt = 0;
    323 	}
    324 	return error;
    325 }
    326 
    327 /*
    328  * Lock a pipe for I/O, blocking other access
    329  * Called with pipe spin lock held.
    330  */
    331 static int
    332 pipelock(struct pipe *pipe, bool catch_p)
    333 {
    334 	int error;
    335 
    336 	KASSERT(mutex_owned(pipe->pipe_lock));
    337 
    338 	while (pipe->pipe_state & PIPE_LOCKFL) {
    339 		if (catch_p) {
    340 			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
    341 			if (error != 0) {
    342 				return error;
    343 			}
    344 		} else
    345 			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
    346 	}
    347 
    348 	pipe->pipe_state |= PIPE_LOCKFL;
    349 
    350 	return 0;
    351 }
    352 
    353 /*
    354  * unlock a pipe I/O lock
    355  */
    356 static inline void
    357 pipeunlock(struct pipe *pipe)
    358 {
    359 
    360 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
    361 
    362 	pipe->pipe_state &= ~PIPE_LOCKFL;
    363 	cv_signal(&pipe->pipe_lkcv);
    364 }
    365 
    366 /*
    367  * Select/poll wakeup. This also sends SIGIO to peer connected to
    368  * 'sigpipe' side of pipe.
    369  */
    370 static void
    371 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
    372 {
    373 	int band;
    374 
    375 	switch (code) {
    376 	case POLL_IN:
    377 		band = POLLIN|POLLRDNORM;
    378 		break;
    379 	case POLL_OUT:
    380 		band = POLLOUT|POLLWRNORM;
    381 		break;
    382 	case POLL_HUP:
    383 		band = POLLHUP;
    384 		break;
    385 	case POLL_ERR:
    386 		band = POLLERR;
    387 		break;
    388 	default:
    389 		band = 0;
    390 #ifdef DIAGNOSTIC
    391 		printf("bad siginfo code %d in pipe notification.\n", code);
    392 #endif
    393 		break;
    394 	}
    395 
    396 	selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
    397 
    398 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    399 		return;
    400 
    401 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    402 }
    403 
    404 static int
    405 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    406     int flags)
    407 {
    408 	struct pipe *rpipe = fp->f_pipe;
    409 	struct pipebuf *bp = &rpipe->pipe_buffer;
    410 	kmutex_t *lock = rpipe->pipe_lock;
    411 	int error;
    412 	size_t nread = 0;
    413 	size_t size;
    414 	size_t ocnt;
    415 	unsigned int wakeup_state = 0;
    416 
    417 	/*
    418 	 * Try to avoid locking the pipe if we have nothing to do.
    419 	 *
    420 	 * There are programs which share one pipe amongst multiple processes
    421 	 * and perform non-blocking reads in parallel, even if the pipe is
    422 	 * empty.  This in particular is the case with BSD make, which when
    423 	 * spawned with a high -j number can find itself with over half of the
    424 	 * calls failing to find anything.
    425 	 */
    426 	if ((fp->f_flag & FNONBLOCK) != 0) {
    427 		if (__predict_false(uio->uio_resid == 0))
    428 			return (0);
    429 		if (atomic_load_relaxed(&bp->cnt) == 0 &&
    430 		    (atomic_load_relaxed(&rpipe->pipe_state) & PIPE_EOF) == 0)
    431 			return (EAGAIN);
    432 	}
    433 
    434 	mutex_enter(lock);
    435 	++rpipe->pipe_busy;
    436 	ocnt = bp->cnt;
    437 
    438 again:
    439 	error = pipelock(rpipe, true);
    440 	if (error)
    441 		goto unlocked_error;
    442 
    443 	while (uio->uio_resid) {
    444 		/*
    445 		 * Normal pipe buffer receive.
    446 		 */
    447 		if (bp->cnt > 0) {
    448 			size = bp->size - bp->out;
    449 			if (size > bp->cnt)
    450 				size = bp->cnt;
    451 			if (size > uio->uio_resid)
    452 				size = uio->uio_resid;
    453 
    454 			mutex_exit(lock);
    455 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
    456 			mutex_enter(lock);
    457 			if (error)
    458 				break;
    459 
    460 			bp->out += size;
    461 			if (bp->out >= bp->size)
    462 				bp->out = 0;
    463 
    464 			bp->cnt -= size;
    465 
    466 			/*
    467 			 * If there is no more to read in the pipe, reset
    468 			 * its pointers to the beginning.  This improves
    469 			 * cache hit stats.
    470 			 */
    471 			if (bp->cnt == 0) {
    472 				bp->in = 0;
    473 				bp->out = 0;
    474 			}
    475 			nread += size;
    476 			continue;
    477 		}
    478 
    479 		/*
    480 		 * Break if some data was read.
    481 		 */
    482 		if (nread > 0)
    483 			break;
    484 
    485 		/*
    486 		 * Detect EOF condition.
    487 		 * Read returns 0 on EOF, no need to set error.
    488 		 */
    489 		if (rpipe->pipe_state & PIPE_EOF)
    490 			break;
    491 
    492 		/*
    493 		 * Don't block on non-blocking I/O.
    494 		 */
    495 		if (fp->f_flag & FNONBLOCK) {
    496 			error = EAGAIN;
    497 			break;
    498 		}
    499 
    500 		/*
    501 		 * Unlock the pipe buffer for our remaining processing.
    502 		 * We will either break out with an error or we will
    503 		 * sleep and relock to loop.
    504 		 */
    505 		pipeunlock(rpipe);
    506 
    507 #if 1   /* XXX (dsl) I'm sure these aren't needed here ... */
    508 		/*
    509 		 * We want to read more, wake up select/poll.
    510 		 */
    511 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    512 
    513 		/*
    514 		 * If the "write-side" is blocked, wake it up now.
    515 		 */
    516 		cv_broadcast(&rpipe->pipe_wcv);
    517 #endif
    518 
    519 		if (wakeup_state & PIPE_RESTART) {
    520 			error = ERESTART;
    521 			goto unlocked_error;
    522 		}
    523 
    524 		/* Now wait until the pipe is filled */
    525 		error = cv_wait_sig(&rpipe->pipe_rcv, lock);
    526 		if (error != 0)
    527 			goto unlocked_error;
    528 		wakeup_state = rpipe->pipe_state;
    529 		goto again;
    530 	}
    531 
    532 	if (error == 0)
    533 		getnanotime(&rpipe->pipe_atime);
    534 	pipeunlock(rpipe);
    535 
    536 unlocked_error:
    537 	--rpipe->pipe_busy;
    538 	if (rpipe->pipe_busy == 0) {
    539 		rpipe->pipe_state &= ~PIPE_RESTART;
    540 		cv_broadcast(&rpipe->pipe_draincv);
    541 	}
    542 	if (bp->cnt < MINPIPESIZE) {
    543 		cv_broadcast(&rpipe->pipe_wcv);
    544 	}
    545 
    546 	/*
    547 	 * If anything was read off the buffer, signal to the writer it's
    548 	 * possible to write more data. Also send signal if we are here for the
    549 	 * first time after last write.
    550 	 */
    551 	if ((bp->size - bp->cnt) >= PIPE_BUF
    552 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    553 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    554 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    555 	}
    556 
    557 	mutex_exit(lock);
    558 	return (error);
    559 }
    560 
    561 static int
    562 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    563     int flags)
    564 {
    565 	struct pipe *wpipe, *rpipe;
    566 	struct pipebuf *bp;
    567 	kmutex_t *lock;
    568 	int error;
    569 	unsigned int wakeup_state = 0;
    570 
    571 	/* We want to write to our peer */
    572 	rpipe = fp->f_pipe;
    573 	lock = rpipe->pipe_lock;
    574 	error = 0;
    575 
    576 	mutex_enter(lock);
    577 	wpipe = rpipe->pipe_peer;
    578 
    579 	/*
    580 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    581 	 */
    582 	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
    583 		mutex_exit(lock);
    584 		return EPIPE;
    585 	}
    586 	++wpipe->pipe_busy;
    587 
    588 	/* Acquire the long-term pipe lock */
    589 	if ((error = pipelock(wpipe, true)) != 0) {
    590 		--wpipe->pipe_busy;
    591 		if (wpipe->pipe_busy == 0) {
    592 			wpipe->pipe_state &= ~PIPE_RESTART;
    593 			cv_broadcast(&wpipe->pipe_draincv);
    594 		}
    595 		mutex_exit(lock);
    596 		return (error);
    597 	}
    598 
    599 	bp = &wpipe->pipe_buffer;
    600 
    601 	/*
    602 	 * If it is advantageous to resize the pipe buffer, do so.
    603 	 */
    604 	if ((uio->uio_resid > PIPE_SIZE) &&
    605 	    (nbigpipe < maxbigpipes) &&
    606 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    607 
    608 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    609 			atomic_inc_uint(&nbigpipe);
    610 	}
    611 
    612 	while (uio->uio_resid) {
    613 		size_t space;
    614 
    615 		space = bp->size - bp->cnt;
    616 
    617 		/* Writes of size <= PIPE_BUF must be atomic. */
    618 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    619 			space = 0;
    620 
    621 		if (space > 0) {
    622 			int size;	/* Transfer size */
    623 			int segsize;	/* first segment to transfer */
    624 
    625 			/*
    626 			 * Transfer size is minimum of uio transfer
    627 			 * and free space in pipe buffer.
    628 			 */
    629 			if (space > uio->uio_resid)
    630 				size = uio->uio_resid;
    631 			else
    632 				size = space;
    633 			/*
    634 			 * First segment to transfer is minimum of
    635 			 * transfer size and contiguous space in
    636 			 * pipe buffer.  If first segment to transfer
    637 			 * is less than the transfer size, we've got
    638 			 * a wraparound in the buffer.
    639 			 */
    640 			segsize = bp->size - bp->in;
    641 			if (segsize > size)
    642 				segsize = size;
    643 
    644 			/* Transfer first segment */
    645 			mutex_exit(lock);
    646 			error = uiomove((char *)bp->buffer + bp->in, segsize,
    647 			    uio);
    648 
    649 			if (error == 0 && segsize < size) {
    650 				/*
    651 				 * Transfer remaining part now, to
    652 				 * support atomic writes.  Wraparound
    653 				 * happened.
    654 				 */
    655 				KASSERT(bp->in + segsize == bp->size);
    656 				error = uiomove(bp->buffer,
    657 				    size - segsize, uio);
    658 			}
    659 			mutex_enter(lock);
    660 			if (error)
    661 				break;
    662 
    663 			bp->in += size;
    664 			if (bp->in >= bp->size) {
    665 				KASSERT(bp->in == size - segsize + bp->size);
    666 				bp->in = size - segsize;
    667 			}
    668 
    669 			bp->cnt += size;
    670 			KASSERT(bp->cnt <= bp->size);
    671 			wakeup_state = 0;
    672 		} else {
    673 			/*
    674 			 * If the "read-side" has been blocked, wake it up now.
    675 			 */
    676 			cv_broadcast(&wpipe->pipe_rcv);
    677 
    678 			/*
    679 			 * Don't block on non-blocking I/O.
    680 			 */
    681 			if (fp->f_flag & FNONBLOCK) {
    682 				error = EAGAIN;
    683 				break;
    684 			}
    685 
    686 			/*
    687 			 * We have no more space and have something to offer,
    688 			 * wake up select/poll.
    689 			 */
    690 			if (bp->cnt)
    691 				pipeselwakeup(wpipe, wpipe, POLL_IN);
    692 
    693 			if (wakeup_state & PIPE_RESTART) {
    694 				error = ERESTART;
    695 				break;
    696 			}
    697 
    698 			/*
    699 			 * If read side wants to go away, we just issue a signal
    700 			 * to ourselves.
    701 			 */
    702 			if (wpipe->pipe_state & PIPE_EOF) {
    703 				error = EPIPE;
    704 				break;
    705 			}
    706 
    707 			pipeunlock(wpipe);
    708 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    709 			(void)pipelock(wpipe, false);
    710 			if (error != 0)
    711 				break;
    712 			wakeup_state = wpipe->pipe_state;
    713 		}
    714 	}
    715 
    716 	--wpipe->pipe_busy;
    717 	if (wpipe->pipe_busy == 0) {
    718 		wpipe->pipe_state &= ~PIPE_RESTART;
    719 		cv_broadcast(&wpipe->pipe_draincv);
    720 	}
    721 	if (bp->cnt > 0) {
    722 		cv_broadcast(&wpipe->pipe_rcv);
    723 	}
    724 
    725 	/*
    726 	 * Don't return EPIPE if I/O was successful
    727 	 */
    728 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
    729 		error = 0;
    730 
    731 	if (error == 0)
    732 		getnanotime(&wpipe->pipe_mtime);
    733 
    734 	/*
    735 	 * We have something to offer, wake up select/poll.
    736 	 */
    737 	if (bp->cnt)
    738 		pipeselwakeup(wpipe, wpipe, POLL_IN);
    739 
    740 	/*
    741 	 * Arrange for next read(2) to do a signal.
    742 	 */
    743 	wpipe->pipe_state |= PIPE_SIGNALR;
    744 
    745 	pipeunlock(wpipe);
    746 	mutex_exit(lock);
    747 	return (error);
    748 }
    749 
    750 /*
    751  * We implement a very minimal set of ioctls for compatibility with sockets.
    752  */
    753 int
    754 pipe_ioctl(file_t *fp, u_long cmd, void *data)
    755 {
    756 	struct pipe *pipe = fp->f_pipe;
    757 	kmutex_t *lock = pipe->pipe_lock;
    758 
    759 	switch (cmd) {
    760 
    761 	case FIONBIO:
    762 		return (0);
    763 
    764 	case FIOASYNC:
    765 		mutex_enter(lock);
    766 		if (*(int *)data) {
    767 			pipe->pipe_state |= PIPE_ASYNC;
    768 		} else {
    769 			pipe->pipe_state &= ~PIPE_ASYNC;
    770 		}
    771 		mutex_exit(lock);
    772 		return (0);
    773 
    774 	case FIONREAD:
    775 		mutex_enter(lock);
    776 		*(int *)data = pipe->pipe_buffer.cnt;
    777 		mutex_exit(lock);
    778 		return (0);
    779 
    780 	case FIONWRITE:
    781 		/* Look at other side */
    782 		mutex_enter(lock);
    783 		pipe = pipe->pipe_peer;
    784 		if (pipe == NULL)
    785 			*(int *)data = 0;
    786 		else
    787 			*(int *)data = pipe->pipe_buffer.cnt;
    788 		mutex_exit(lock);
    789 		return (0);
    790 
    791 	case FIONSPACE:
    792 		/* Look at other side */
    793 		mutex_enter(lock);
    794 		pipe = pipe->pipe_peer;
    795 		if (pipe == NULL)
    796 			*(int *)data = 0;
    797 		else
    798 			*(int *)data = pipe->pipe_buffer.size -
    799 			    pipe->pipe_buffer.cnt;
    800 		mutex_exit(lock);
    801 		return (0);
    802 
    803 	case TIOCSPGRP:
    804 	case FIOSETOWN:
    805 		return fsetown(&pipe->pipe_pgid, cmd, data);
    806 
    807 	case TIOCGPGRP:
    808 	case FIOGETOWN:
    809 		return fgetown(pipe->pipe_pgid, cmd, data);
    810 
    811 	}
    812 	return (EPASSTHROUGH);
    813 }
    814 
    815 int
    816 pipe_poll(file_t *fp, int events)
    817 {
    818 	struct pipe *rpipe = fp->f_pipe;
    819 	struct pipe *wpipe;
    820 	int eof = 0;
    821 	int revents = 0;
    822 
    823 	mutex_enter(rpipe->pipe_lock);
    824 	wpipe = rpipe->pipe_peer;
    825 
    826 	if (events & (POLLIN | POLLRDNORM))
    827 		if ((rpipe->pipe_buffer.cnt > 0) ||
    828 		    (rpipe->pipe_state & PIPE_EOF))
    829 			revents |= events & (POLLIN | POLLRDNORM);
    830 
    831 	eof |= (rpipe->pipe_state & PIPE_EOF);
    832 
    833 	if (wpipe == NULL)
    834 		revents |= events & (POLLOUT | POLLWRNORM);
    835 	else {
    836 		if (events & (POLLOUT | POLLWRNORM))
    837 			if ((wpipe->pipe_state & PIPE_EOF) || (
    838 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
    839 				revents |= events & (POLLOUT | POLLWRNORM);
    840 
    841 		eof |= (wpipe->pipe_state & PIPE_EOF);
    842 	}
    843 
    844 	if (wpipe == NULL || eof)
    845 		revents |= POLLHUP;
    846 
    847 	if (revents == 0) {
    848 		if (events & (POLLIN | POLLRDNORM))
    849 			selrecord(curlwp, &rpipe->pipe_sel);
    850 
    851 		if (events & (POLLOUT | POLLWRNORM))
    852 			selrecord(curlwp, &wpipe->pipe_sel);
    853 	}
    854 	mutex_exit(rpipe->pipe_lock);
    855 
    856 	return (revents);
    857 }
    858 
    859 static int
    860 pipe_stat(file_t *fp, struct stat *ub)
    861 {
    862 	struct pipe *pipe = fp->f_pipe;
    863 
    864 	mutex_enter(pipe->pipe_lock);
    865 	memset(ub, 0, sizeof(*ub));
    866 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
    867 	ub->st_blksize = pipe->pipe_buffer.size;
    868 	if (ub->st_blksize == 0 && pipe->pipe_peer)
    869 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
    870 	ub->st_size = pipe->pipe_buffer.cnt;
    871 	ub->st_blocks = (ub->st_size) ? 1 : 0;
    872 	ub->st_atimespec = pipe->pipe_atime;
    873 	ub->st_mtimespec = pipe->pipe_mtime;
    874 	ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
    875 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
    876 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
    877 
    878 	/*
    879 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
    880 	 * XXX (st_dev, st_ino) should be unique.
    881 	 */
    882 	mutex_exit(pipe->pipe_lock);
    883 	return 0;
    884 }
    885 
    886 static int
    887 pipe_close(file_t *fp)
    888 {
    889 	struct pipe *pipe = fp->f_pipe;
    890 
    891 	fp->f_pipe = NULL;
    892 	pipeclose(pipe);
    893 	return (0);
    894 }
    895 
    896 static void
    897 pipe_restart(file_t *fp)
    898 {
    899 	struct pipe *pipe = fp->f_pipe;
    900 
    901 	/*
    902 	 * Unblock blocked reads/writes in order to allow close() to complete.
    903 	 * System calls return ERESTART so that the fd is revalidated.
    904 	 * (Partial writes return the transfer length.)
    905 	 */
    906 	mutex_enter(pipe->pipe_lock);
    907 	pipe->pipe_state |= PIPE_RESTART;
    908 	/* Wakeup both cvs, maybe we only need one, but maybe there are some
    909 	 * other paths where wakeup is needed, and it saves deciding which! */
    910 	cv_broadcast(&pipe->pipe_rcv);
    911 	cv_broadcast(&pipe->pipe_wcv);
    912 	mutex_exit(pipe->pipe_lock);
    913 }
    914 
    915 static int
    916 pipe_fpathconf(struct file *fp, int name, register_t *retval)
    917 {
    918 
    919 	switch (name) {
    920 	case _PC_PIPE_BUF:
    921 		*retval = PIPE_BUF;
    922 		return 0;
    923 	default:
    924 		return EINVAL;
    925 	}
    926 }
    927 
    928 static int
    929 pipe_posix_fadvise(struct file *fp, off_t offset, off_t len, int advice)
    930 {
    931 
    932 	return ESPIPE;
    933 }
    934 
    935 static void
    936 pipe_free_kmem(struct pipe *pipe)
    937 {
    938 
    939 	if (pipe->pipe_buffer.buffer != NULL) {
    940 		if (pipe->pipe_buffer.size > PIPE_SIZE) {
    941 			atomic_dec_uint(&nbigpipe);
    942 		}
    943 		if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
    944 			uvm_km_free(kernel_map,
    945 			    (vaddr_t)pipe->pipe_buffer.buffer,
    946 			    pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
    947 			atomic_add_int(&amountpipekva,
    948 			    -pipe->pipe_buffer.size);
    949 		}
    950 		pipe->pipe_buffer.buffer = NULL;
    951 	}
    952 }
    953 
    954 /*
    955  * Shutdown the pipe.
    956  */
    957 static void
    958 pipeclose(struct pipe *pipe)
    959 {
    960 	kmutex_t *lock;
    961 	struct pipe *ppipe;
    962 
    963 	if (pipe == NULL)
    964 		return;
    965 
    966 	KASSERT(cv_is_valid(&pipe->pipe_rcv));
    967 	KASSERT(cv_is_valid(&pipe->pipe_wcv));
    968 	KASSERT(cv_is_valid(&pipe->pipe_draincv));
    969 	KASSERT(cv_is_valid(&pipe->pipe_lkcv));
    970 
    971 	lock = pipe->pipe_lock;
    972 	if (lock == NULL)
    973 		/* Must have failed during create */
    974 		goto free_resources;
    975 
    976 	mutex_enter(lock);
    977 	pipeselwakeup(pipe, pipe, POLL_HUP);
    978 
    979 	/*
    980 	 * If the other side is blocked, wake it up saying that
    981 	 * we want to close it down.
    982 	 */
    983 	pipe->pipe_state |= PIPE_EOF;
    984 	if (pipe->pipe_busy) {
    985 		while (pipe->pipe_busy) {
    986 			cv_broadcast(&pipe->pipe_wcv);
    987 			cv_wait_sig(&pipe->pipe_draincv, lock);
    988 		}
    989 	}
    990 
    991 	/*
    992 	 * Disconnect from peer.
    993 	 */
    994 	if ((ppipe = pipe->pipe_peer) != NULL) {
    995 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
    996 		ppipe->pipe_state |= PIPE_EOF;
    997 		cv_broadcast(&ppipe->pipe_rcv);
    998 		ppipe->pipe_peer = NULL;
    999 	}
   1000 
   1001 	/*
   1002 	 * Any knote objects still left in the list are
   1003 	 * the one attached by peer.  Since no one will
   1004 	 * traverse this list, we just clear it.
   1005 	 *
   1006 	 * XXX Exposes select/kqueue internals.
   1007 	 */
   1008 	SLIST_INIT(&pipe->pipe_sel.sel_klist);
   1009 
   1010 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
   1011 	mutex_exit(lock);
   1012 	mutex_obj_free(lock);
   1013 
   1014 	/*
   1015 	 * Free resources.
   1016 	 */
   1017     free_resources:
   1018 	pipe->pipe_pgid = 0;
   1019 	pipe->pipe_state = PIPE_SIGNALR;
   1020 	pipe->pipe_peer = NULL;
   1021 	pipe->pipe_lock = NULL;
   1022 	pipe_free_kmem(pipe);
   1023 	if (pipe->pipe_kmem != 0) {
   1024 		pool_cache_put(pipe_rd_cache, pipe);
   1025 	} else {
   1026 		pool_cache_put(pipe_wr_cache, pipe);
   1027 	}
   1028 }
   1029 
   1030 static void
   1031 filt_pipedetach(struct knote *kn)
   1032 {
   1033 	struct pipe *pipe;
   1034 	kmutex_t *lock;
   1035 
   1036 	pipe = ((file_t *)kn->kn_obj)->f_pipe;
   1037 	lock = pipe->pipe_lock;
   1038 
   1039 	mutex_enter(lock);
   1040 
   1041 	switch(kn->kn_filter) {
   1042 	case EVFILT_WRITE:
   1043 		/* Need the peer structure, not our own. */
   1044 		pipe = pipe->pipe_peer;
   1045 
   1046 		/* If reader end already closed, just return. */
   1047 		if (pipe == NULL) {
   1048 			mutex_exit(lock);
   1049 			return;
   1050 		}
   1051 
   1052 		break;
   1053 	default:
   1054 		/* Nothing to do. */
   1055 		break;
   1056 	}
   1057 
   1058 	KASSERT(kn->kn_hook == pipe);
   1059 	selremove_knote(&pipe->pipe_sel, kn);
   1060 	mutex_exit(lock);
   1061 }
   1062 
   1063 static int
   1064 filt_piperead(struct knote *kn, long hint)
   1065 {
   1066 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
   1067 	struct pipe *wpipe;
   1068 	int rv;
   1069 
   1070 	if ((hint & NOTE_SUBMIT) == 0) {
   1071 		mutex_enter(rpipe->pipe_lock);
   1072 	}
   1073 	wpipe = rpipe->pipe_peer;
   1074 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1075 
   1076 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1077 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1078 		knote_set_eof(kn, 0);
   1079 		rv = 1;
   1080 	} else {
   1081 		rv = kn->kn_data > 0;
   1082 	}
   1083 
   1084 	if ((hint & NOTE_SUBMIT) == 0) {
   1085 		mutex_exit(rpipe->pipe_lock);
   1086 	}
   1087 	return rv;
   1088 }
   1089 
   1090 static int
   1091 filt_pipewrite(struct knote *kn, long hint)
   1092 {
   1093 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
   1094 	struct pipe *wpipe;
   1095 	int rv;
   1096 
   1097 	if ((hint & NOTE_SUBMIT) == 0) {
   1098 		mutex_enter(rpipe->pipe_lock);
   1099 	}
   1100 	wpipe = rpipe->pipe_peer;
   1101 
   1102 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1103 		kn->kn_data = 0;
   1104 		knote_set_eof(kn, 0);
   1105 		rv = 1;
   1106 	} else {
   1107 		kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1108 		rv = kn->kn_data >= PIPE_BUF;
   1109 	}
   1110 
   1111 	if ((hint & NOTE_SUBMIT) == 0) {
   1112 		mutex_exit(rpipe->pipe_lock);
   1113 	}
   1114 	return rv;
   1115 }
   1116 
   1117 static const struct filterops pipe_rfiltops = {
   1118 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   1119 	.f_attach = NULL,
   1120 	.f_detach = filt_pipedetach,
   1121 	.f_event = filt_piperead,
   1122 };
   1123 
   1124 static const struct filterops pipe_wfiltops = {
   1125 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   1126 	.f_attach = NULL,
   1127 	.f_detach = filt_pipedetach,
   1128 	.f_event = filt_pipewrite,
   1129 };
   1130 
   1131 static int
   1132 pipe_kqfilter(file_t *fp, struct knote *kn)
   1133 {
   1134 	struct pipe *pipe;
   1135 	kmutex_t *lock;
   1136 
   1137 	pipe = ((file_t *)kn->kn_obj)->f_pipe;
   1138 	lock = pipe->pipe_lock;
   1139 
   1140 	mutex_enter(lock);
   1141 
   1142 	switch (kn->kn_filter) {
   1143 	case EVFILT_READ:
   1144 		kn->kn_fop = &pipe_rfiltops;
   1145 		break;
   1146 	case EVFILT_WRITE:
   1147 		kn->kn_fop = &pipe_wfiltops;
   1148 		pipe = pipe->pipe_peer;
   1149 		if (pipe == NULL) {
   1150 			/* Other end of pipe has been closed. */
   1151 			mutex_exit(lock);
   1152 			return (EBADF);
   1153 		}
   1154 		break;
   1155 	default:
   1156 		mutex_exit(lock);
   1157 		return (EINVAL);
   1158 	}
   1159 
   1160 	kn->kn_hook = pipe;
   1161 	selrecord_knote(&pipe->pipe_sel, kn);
   1162 	mutex_exit(lock);
   1163 
   1164 	return (0);
   1165 }
   1166 
   1167 /*
   1168  * Handle pipe sysctls.
   1169  */
   1170 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1171 {
   1172 
   1173 	sysctl_createv(clog, 0, NULL, NULL,
   1174 		       CTLFLAG_PERMANENT,
   1175 		       CTLTYPE_NODE, "pipe",
   1176 		       SYSCTL_DESCR("Pipe settings"),
   1177 		       NULL, 0, NULL, 0,
   1178 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1179 
   1180 	sysctl_createv(clog, 0, NULL, NULL,
   1181 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1182 		       CTLTYPE_INT, "maxbigpipes",
   1183 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
   1184 		       NULL, 0, &maxbigpipes, 0,
   1185 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1186 	sysctl_createv(clog, 0, NULL, NULL,
   1187 		       CTLFLAG_PERMANENT,
   1188 		       CTLTYPE_INT, "nbigpipes",
   1189 		       SYSCTL_DESCR("Number of \"big\" pipes"),
   1190 		       NULL, 0, &nbigpipe, 0,
   1191 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1192 	sysctl_createv(clog, 0, NULL, NULL,
   1193 		       CTLFLAG_PERMANENT,
   1194 		       CTLTYPE_INT, "kvasize",
   1195 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
   1196 				    "buffers"),
   1197 		       NULL, 0, &amountpipekva, 0,
   1198 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1199 }
   1200