sys_pipe.c revision 1.168 1 /* $NetBSD: sys_pipe.c,v 1.168 2025/07/16 19:14:13 kre Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009, 2023 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
49 */
50
51 /*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.168 2025/07/16 19:14:13 kre Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/proc.h>
63 #include <sys/fcntl.h>
64 #include <sys/file.h>
65 #include <sys/filedesc.h>
66 #include <sys/filio.h>
67 #include <sys/kernel.h>
68 #include <sys/ttycom.h>
69 #include <sys/stat.h>
70 #include <sys/poll.h>
71 #include <sys/signalvar.h>
72 #include <sys/vnode.h>
73 #include <sys/uio.h>
74 #include <sys/select.h>
75 #include <sys/mount.h>
76 #include <sys/syscallargs.h>
77 #include <sys/sysctl.h>
78 #include <sys/kauth.h>
79 #include <sys/atomic.h>
80 #include <sys/pipe.h>
81
82 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
83 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
84 static int pipe_close(file_t *);
85 static int pipe_poll(file_t *, int);
86 static int pipe_kqfilter(file_t *, struct knote *);
87 static int pipe_stat(file_t *, struct stat *);
88 static int pipe_ioctl(file_t *, u_long, void *);
89 static void pipe_restart(file_t *);
90 static int pipe_fpathconf(file_t *, int, register_t *);
91 static int pipe_posix_fadvise(file_t *, off_t, off_t, int);
92
93 static const struct fileops pipeops = {
94 .fo_name = "pipe",
95 .fo_read = pipe_read,
96 .fo_write = pipe_write,
97 .fo_ioctl = pipe_ioctl,
98 .fo_fcntl = fnullop_fcntl,
99 .fo_poll = pipe_poll,
100 .fo_stat = pipe_stat,
101 .fo_close = pipe_close,
102 .fo_kqfilter = pipe_kqfilter,
103 .fo_restart = pipe_restart,
104 .fo_fpathconf = pipe_fpathconf,
105 .fo_posix_fadvise = pipe_posix_fadvise,
106 };
107
108 /*
109 * Default pipe buffer size(s), this can be kind-of large now because pipe
110 * space is pageable. The pipe code will try to maintain locality of
111 * reference for performance reasons, so small amounts of outstanding I/O
112 * will not wipe the cache.
113 */
114 #define MINPIPESIZE (PIPE_SIZE / 3)
115 #define MAXPIPESIZE (2 * PIPE_SIZE / 3)
116
117 /*
118 * Limit the number of "big" pipes
119 */
120 #define LIMITBIGPIPES 32
121 static u_int maxbigpipes __read_mostly = LIMITBIGPIPES;
122 static u_int nbigpipe = 0;
123
124 /*
125 * Amount of KVA consumed by pipe buffers.
126 */
127 static u_int amountpipekva = 0;
128
129 static void pipeclose(struct pipe *);
130 static void pipe_free_kmem(struct pipe *);
131 static int pipe_create(struct pipe **, pool_cache_t, struct timespec *);
132 static int pipelock(struct pipe *, bool);
133 static inline void pipeunlock(struct pipe *);
134 static void pipeselwakeup(struct pipe *, struct pipe *, int);
135 static int pipespace(struct pipe *, int);
136 static int pipe_ctor(void *, void *, int);
137 static void pipe_dtor(void *, void *);
138
139 static pool_cache_t pipe_wr_cache;
140 static pool_cache_t pipe_rd_cache;
141
142 void
143 pipe_init(void)
144 {
145
146 /* Writer side is not automatically allocated KVA. */
147 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
148 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
149 KASSERT(pipe_wr_cache != NULL);
150
151 /* Reader side gets preallocated KVA. */
152 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
153 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
154 KASSERT(pipe_rd_cache != NULL);
155 }
156
157 static int
158 pipe_ctor(void *arg, void *obj, int flags)
159 {
160 struct pipe *pipe;
161 vaddr_t va;
162
163 pipe = obj;
164
165 memset(pipe, 0, sizeof(struct pipe));
166 if (arg != NULL) {
167 /* Preallocate space. */
168 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
169 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
170 KASSERT(va != 0);
171 pipe->pipe_kmem = va;
172 atomic_add_int(&amountpipekva, PIPE_SIZE);
173 }
174 cv_init(&pipe->pipe_rcv, "pipe_rd");
175 cv_init(&pipe->pipe_wcv, "pipe_wr");
176 cv_init(&pipe->pipe_draincv, "pipe_drn");
177 cv_init(&pipe->pipe_lkcv, "pipe_lk");
178 selinit(&pipe->pipe_sel);
179 pipe->pipe_state = PIPE_SIGNALR;
180
181 return 0;
182 }
183
184 static void
185 pipe_dtor(void *arg, void *obj)
186 {
187 struct pipe *pipe;
188
189 pipe = obj;
190
191 cv_destroy(&pipe->pipe_rcv);
192 cv_destroy(&pipe->pipe_wcv);
193 cv_destroy(&pipe->pipe_draincv);
194 cv_destroy(&pipe->pipe_lkcv);
195 seldestroy(&pipe->pipe_sel);
196 if (pipe->pipe_kmem != 0) {
197 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
198 UVM_KMF_PAGEABLE);
199 atomic_add_int(&amountpipekva, -PIPE_SIZE);
200 }
201 }
202
203 /*
204 * The pipe system call for the DTYPE_PIPE type of pipes
205 */
206 int
207 pipe1(struct lwp *l, int *fildes, int flags)
208 {
209 struct pipe *rpipe, *wpipe;
210 struct timespec nt;
211 file_t *rf, *wf;
212 int fd, error;
213 proc_t *p;
214
215 if (flags & ~(O_CLOEXEC|O_CLOFORK|O_NONBLOCK|O_NOSIGPIPE))
216 return EINVAL;
217 p = curproc;
218 rpipe = wpipe = NULL;
219 getnanotime(&nt);
220 if ((error = pipe_create(&rpipe, pipe_rd_cache, &nt)) ||
221 (error = pipe_create(&wpipe, pipe_wr_cache, &nt))) {
222 goto free2;
223 }
224 rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
225 wpipe->pipe_lock = rpipe->pipe_lock;
226 mutex_obj_hold(wpipe->pipe_lock);
227
228 error = fd_allocfile(&rf, &fd);
229 if (error)
230 goto free2;
231 fildes[0] = fd;
232
233 error = fd_allocfile(&wf, &fd);
234 if (error)
235 goto free3;
236 fildes[1] = fd;
237
238 rf->f_flag = FREAD | flags;
239 rf->f_type = DTYPE_PIPE;
240 rf->f_pipe = rpipe;
241 rf->f_ops = &pipeops;
242 fd_set_exclose(l, fildes[0], (flags & O_CLOEXEC) != 0);
243 fd_set_foclose(l, fildes[0], (flags & O_CLOFORK) != 0);
244
245 wf->f_flag = FWRITE | flags;
246 wf->f_type = DTYPE_PIPE;
247 wf->f_pipe = wpipe;
248 wf->f_ops = &pipeops;
249 fd_set_exclose(l, fildes[1], (flags & O_CLOEXEC) != 0);
250 fd_set_foclose(l, fildes[1], (flags & O_CLOFORK) != 0);
251
252 rpipe->pipe_peer = wpipe;
253 wpipe->pipe_peer = rpipe;
254
255 fd_affix(p, rf, fildes[0]);
256 fd_affix(p, wf, fildes[1]);
257 return (0);
258 free3:
259 fd_abort(p, rf, fildes[0]);
260 free2:
261 pipeclose(wpipe);
262 pipeclose(rpipe);
263
264 return (error);
265 }
266
267 /*
268 * Allocate kva for pipe circular buffer, the space is pageable
269 * This routine will 'realloc' the size of a pipe safely, if it fails
270 * it will retain the old buffer.
271 * If it fails it will return ENOMEM.
272 */
273 static int
274 pipespace(struct pipe *pipe, int size)
275 {
276 void *buffer;
277
278 /*
279 * Allocate pageable virtual address space. Physical memory is
280 * allocated on demand.
281 */
282 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
283 buffer = (void *)pipe->pipe_kmem;
284 } else {
285 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
286 0, UVM_KMF_PAGEABLE);
287 if (buffer == NULL)
288 return (ENOMEM);
289 atomic_add_int(&amountpipekva, size);
290 }
291
292 /* free old resources if we're resizing */
293 pipe_free_kmem(pipe);
294 pipe->pipe_buffer.buffer = buffer;
295 pipe->pipe_buffer.size = size;
296 pipe->pipe_buffer.in = 0;
297 pipe->pipe_buffer.out = 0;
298 pipe->pipe_buffer.cnt = 0;
299 return (0);
300 }
301
302 /*
303 * Initialize and allocate VM and memory for pipe.
304 */
305 static int
306 pipe_create(struct pipe **pipep, pool_cache_t cache, struct timespec *nt)
307 {
308 struct pipe *pipe;
309 int error;
310
311 pipe = pool_cache_get(cache, PR_WAITOK);
312 KASSERT(pipe != NULL);
313 *pipep = pipe;
314 error = 0;
315 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime = *nt;
316 pipe->pipe_lock = NULL;
317 if (cache == pipe_rd_cache) {
318 error = pipespace(pipe, PIPE_SIZE);
319 } else {
320 pipe->pipe_buffer.buffer = NULL;
321 pipe->pipe_buffer.size = 0;
322 pipe->pipe_buffer.in = 0;
323 pipe->pipe_buffer.out = 0;
324 pipe->pipe_buffer.cnt = 0;
325 }
326 return error;
327 }
328
329 /*
330 * Lock a pipe for I/O, blocking other access
331 * Called with pipe spin lock held.
332 */
333 static int
334 pipelock(struct pipe *pipe, bool catch_p)
335 {
336 int error;
337
338 KASSERT(mutex_owned(pipe->pipe_lock));
339
340 while (pipe->pipe_state & PIPE_LOCKFL) {
341 if (catch_p) {
342 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
343 if (error != 0) {
344 return error;
345 }
346 } else
347 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
348 }
349
350 pipe->pipe_state |= PIPE_LOCKFL;
351
352 return 0;
353 }
354
355 /*
356 * unlock a pipe I/O lock
357 */
358 static inline void
359 pipeunlock(struct pipe *pipe)
360 {
361
362 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
363
364 pipe->pipe_state &= ~PIPE_LOCKFL;
365 cv_signal(&pipe->pipe_lkcv);
366 }
367
368 /*
369 * Select/poll wakeup. This also sends SIGIO to peer connected to
370 * 'sigpipe' side of pipe.
371 */
372 static void
373 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
374 {
375 int band;
376
377 switch (code) {
378 case POLL_IN:
379 band = POLLIN|POLLRDNORM;
380 break;
381 case POLL_OUT:
382 band = POLLOUT|POLLWRNORM;
383 break;
384 case POLL_HUP:
385 band = POLLHUP;
386 break;
387 case POLL_ERR:
388 band = POLLERR;
389 break;
390 default:
391 band = 0;
392 #ifdef DIAGNOSTIC
393 printf("bad siginfo code %d in pipe notification.\n", code);
394 #endif
395 break;
396 }
397
398 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
399
400 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
401 return;
402
403 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
404 }
405
406 static int
407 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
408 int flags)
409 {
410 struct pipe *rpipe = fp->f_pipe;
411 struct pipebuf *bp = &rpipe->pipe_buffer;
412 kmutex_t *lock = rpipe->pipe_lock;
413 int error;
414 size_t nread = 0;
415 size_t size;
416 size_t ocnt;
417 unsigned int wakeup_state = 0;
418
419 /*
420 * Try to avoid locking the pipe if we have nothing to do.
421 *
422 * There are programs which share one pipe amongst multiple processes
423 * and perform non-blocking reads in parallel, even if the pipe is
424 * empty. This in particular is the case with BSD make, which when
425 * spawned with a high -j number can find itself with over half of the
426 * calls failing to find anything.
427 */
428 if ((fp->f_flag & FNONBLOCK) != 0) {
429 if (__predict_false(uio->uio_resid == 0))
430 return (0);
431 if (atomic_load_relaxed(&bp->cnt) == 0 &&
432 (atomic_load_relaxed(&rpipe->pipe_state) & PIPE_EOF) == 0)
433 return (EAGAIN);
434 }
435
436 mutex_enter(lock);
437 ++rpipe->pipe_busy;
438 ocnt = bp->cnt;
439
440 again:
441 error = pipelock(rpipe, true);
442 if (error)
443 goto unlocked_error;
444
445 while (uio->uio_resid) {
446 /*
447 * Normal pipe buffer receive.
448 */
449 if (bp->cnt > 0) {
450 size = bp->size - bp->out;
451 if (size > bp->cnt)
452 size = bp->cnt;
453 if (size > uio->uio_resid)
454 size = uio->uio_resid;
455
456 mutex_exit(lock);
457 error = uiomove((char *)bp->buffer + bp->out, size, uio);
458 mutex_enter(lock);
459 if (error)
460 break;
461
462 bp->out += size;
463 if (bp->out >= bp->size)
464 bp->out = 0;
465
466 bp->cnt -= size;
467
468 /*
469 * If there is no more to read in the pipe, reset
470 * its pointers to the beginning. This improves
471 * cache hit stats.
472 */
473 if (bp->cnt == 0) {
474 bp->in = 0;
475 bp->out = 0;
476 }
477 nread += size;
478 continue;
479 }
480
481 /*
482 * Break if some data was read.
483 */
484 if (nread > 0)
485 break;
486
487 /*
488 * Detect EOF condition.
489 * Read returns 0 on EOF, no need to set error.
490 */
491 if (rpipe->pipe_state & PIPE_EOF)
492 break;
493
494 /*
495 * Don't block on non-blocking I/O.
496 */
497 if (fp->f_flag & FNONBLOCK) {
498 error = EAGAIN;
499 break;
500 }
501
502 /*
503 * Unlock the pipe buffer for our remaining processing.
504 * We will either break out with an error or we will
505 * sleep and relock to loop.
506 */
507 pipeunlock(rpipe);
508
509 #if 1 /* XXX (dsl) I'm sure these aren't needed here ... */
510 /*
511 * We want to read more, wake up select/poll.
512 */
513 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
514
515 /*
516 * If the "write-side" is blocked, wake it up now.
517 */
518 cv_broadcast(&rpipe->pipe_wcv);
519 #endif
520
521 if (wakeup_state & PIPE_RESTART) {
522 error = ERESTART;
523 goto unlocked_error;
524 }
525
526 /* Now wait until the pipe is filled */
527 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
528 if (error != 0)
529 goto unlocked_error;
530 wakeup_state = rpipe->pipe_state;
531 goto again;
532 }
533
534 if (error == 0)
535 getnanotime(&rpipe->pipe_atime);
536 pipeunlock(rpipe);
537
538 unlocked_error:
539 --rpipe->pipe_busy;
540 if (rpipe->pipe_busy == 0) {
541 rpipe->pipe_state &= ~PIPE_RESTART;
542 cv_broadcast(&rpipe->pipe_draincv);
543 }
544 if (bp->cnt < MINPIPESIZE) {
545 cv_broadcast(&rpipe->pipe_wcv);
546 }
547
548 /*
549 * If anything was read off the buffer, signal to the writer it's
550 * possible to write more data. Also send signal if we are here for the
551 * first time after last write.
552 */
553 if ((bp->size - bp->cnt) >= PIPE_BUF
554 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
555 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
556 rpipe->pipe_state &= ~PIPE_SIGNALR;
557 }
558
559 mutex_exit(lock);
560 return (error);
561 }
562
563 static int
564 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
565 int flags)
566 {
567 struct pipe *wpipe, *rpipe;
568 struct pipebuf *bp;
569 kmutex_t *lock;
570 int error;
571 unsigned int wakeup_state = 0;
572
573 /* We want to write to our peer */
574 rpipe = fp->f_pipe;
575 lock = rpipe->pipe_lock;
576 error = 0;
577
578 mutex_enter(lock);
579 wpipe = rpipe->pipe_peer;
580
581 /*
582 * Detect loss of pipe read side, issue SIGPIPE if lost.
583 */
584 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
585 mutex_exit(lock);
586 return EPIPE;
587 }
588 ++wpipe->pipe_busy;
589
590 /* Acquire the long-term pipe lock */
591 if ((error = pipelock(wpipe, true)) != 0) {
592 --wpipe->pipe_busy;
593 if (wpipe->pipe_busy == 0) {
594 wpipe->pipe_state &= ~PIPE_RESTART;
595 cv_broadcast(&wpipe->pipe_draincv);
596 }
597 mutex_exit(lock);
598 return (error);
599 }
600
601 bp = &wpipe->pipe_buffer;
602
603 /*
604 * If it is advantageous to resize the pipe buffer, do so.
605 */
606 if ((uio->uio_resid > PIPE_SIZE) &&
607 (nbigpipe < maxbigpipes) &&
608 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
609
610 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
611 atomic_inc_uint(&nbigpipe);
612 }
613
614 while (uio->uio_resid) {
615 size_t space;
616
617 space = bp->size - bp->cnt;
618
619 /* Writes of size <= PIPE_BUF must be atomic. */
620 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
621 space = 0;
622
623 if (space > 0) {
624 int size; /* Transfer size */
625 int segsize; /* first segment to transfer */
626
627 /*
628 * Transfer size is minimum of uio transfer
629 * and free space in pipe buffer.
630 */
631 if (space > uio->uio_resid)
632 size = uio->uio_resid;
633 else
634 size = space;
635 /*
636 * First segment to transfer is minimum of
637 * transfer size and contiguous space in
638 * pipe buffer. If first segment to transfer
639 * is less than the transfer size, we've got
640 * a wraparound in the buffer.
641 */
642 segsize = bp->size - bp->in;
643 if (segsize > size)
644 segsize = size;
645
646 /* Transfer first segment */
647 mutex_exit(lock);
648 error = uiomove((char *)bp->buffer + bp->in, segsize,
649 uio);
650
651 if (error == 0 && segsize < size) {
652 /*
653 * Transfer remaining part now, to
654 * support atomic writes. Wraparound
655 * happened.
656 */
657 KASSERT(bp->in + segsize == bp->size);
658 error = uiomove(bp->buffer,
659 size - segsize, uio);
660 }
661 mutex_enter(lock);
662 if (error)
663 break;
664
665 bp->in += size;
666 if (bp->in >= bp->size) {
667 KASSERT(bp->in == size - segsize + bp->size);
668 bp->in = size - segsize;
669 }
670
671 bp->cnt += size;
672 KASSERT(bp->cnt <= bp->size);
673 wakeup_state = 0;
674 } else {
675 /*
676 * If the "read-side" has been blocked, wake it up now.
677 */
678 cv_broadcast(&wpipe->pipe_rcv);
679
680 /*
681 * Don't block on non-blocking I/O.
682 */
683 if (fp->f_flag & FNONBLOCK) {
684 error = EAGAIN;
685 break;
686 }
687
688 /*
689 * We have no more space and have something to offer,
690 * wake up select/poll.
691 */
692 if (bp->cnt)
693 pipeselwakeup(wpipe, wpipe, POLL_IN);
694
695 if (wakeup_state & PIPE_RESTART) {
696 error = ERESTART;
697 break;
698 }
699
700 /*
701 * If read side wants to go away, we just issue a signal
702 * to ourselves.
703 */
704 if (wpipe->pipe_state & PIPE_EOF) {
705 error = EPIPE;
706 break;
707 }
708
709 pipeunlock(wpipe);
710 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
711 (void)pipelock(wpipe, false);
712 if (error != 0)
713 break;
714 wakeup_state = wpipe->pipe_state;
715 }
716 }
717
718 --wpipe->pipe_busy;
719 if (wpipe->pipe_busy == 0) {
720 wpipe->pipe_state &= ~PIPE_RESTART;
721 cv_broadcast(&wpipe->pipe_draincv);
722 }
723 if (bp->cnt > 0) {
724 cv_broadcast(&wpipe->pipe_rcv);
725 }
726
727 /*
728 * Don't return EPIPE if I/O was successful
729 */
730 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
731 error = 0;
732
733 if (error == 0)
734 getnanotime(&wpipe->pipe_mtime);
735
736 /*
737 * We have something to offer, wake up select/poll.
738 */
739 if (bp->cnt)
740 pipeselwakeup(wpipe, wpipe, POLL_IN);
741
742 /*
743 * Arrange for next read(2) to do a signal.
744 */
745 wpipe->pipe_state |= PIPE_SIGNALR;
746
747 pipeunlock(wpipe);
748 mutex_exit(lock);
749 return (error);
750 }
751
752 /*
753 * We implement a very minimal set of ioctls for compatibility with sockets.
754 */
755 int
756 pipe_ioctl(file_t *fp, u_long cmd, void *data)
757 {
758 struct pipe *pipe = fp->f_pipe;
759 kmutex_t *lock = pipe->pipe_lock;
760
761 switch (cmd) {
762
763 case FIONBIO:
764 return (0);
765
766 case FIOASYNC:
767 mutex_enter(lock);
768 if (*(int *)data) {
769 pipe->pipe_state |= PIPE_ASYNC;
770 } else {
771 pipe->pipe_state &= ~PIPE_ASYNC;
772 }
773 mutex_exit(lock);
774 return (0);
775
776 case FIONREAD:
777 mutex_enter(lock);
778 *(int *)data = pipe->pipe_buffer.cnt;
779 mutex_exit(lock);
780 return (0);
781
782 case FIONWRITE:
783 /* Look at other side */
784 mutex_enter(lock);
785 pipe = pipe->pipe_peer;
786 if (pipe == NULL)
787 *(int *)data = 0;
788 else
789 *(int *)data = pipe->pipe_buffer.cnt;
790 mutex_exit(lock);
791 return (0);
792
793 case FIONSPACE:
794 /* Look at other side */
795 mutex_enter(lock);
796 pipe = pipe->pipe_peer;
797 if (pipe == NULL)
798 *(int *)data = 0;
799 else
800 *(int *)data = pipe->pipe_buffer.size -
801 pipe->pipe_buffer.cnt;
802 mutex_exit(lock);
803 return (0);
804
805 case TIOCSPGRP:
806 case FIOSETOWN:
807 return fsetown(&pipe->pipe_pgid, cmd, data);
808
809 case TIOCGPGRP:
810 case FIOGETOWN:
811 return fgetown(pipe->pipe_pgid, cmd, data);
812
813 }
814 return (EPASSTHROUGH);
815 }
816
817 int
818 pipe_poll(file_t *fp, int events)
819 {
820 struct pipe *rpipe = fp->f_pipe;
821 struct pipe *wpipe;
822 int eof = 0;
823 int revents = 0;
824
825 mutex_enter(rpipe->pipe_lock);
826 wpipe = rpipe->pipe_peer;
827
828 if (events & (POLLIN | POLLRDNORM))
829 if ((rpipe->pipe_buffer.cnt > 0) ||
830 (rpipe->pipe_state & PIPE_EOF))
831 revents |= events & (POLLIN | POLLRDNORM);
832
833 eof |= (rpipe->pipe_state & PIPE_EOF);
834
835 if (wpipe == NULL)
836 revents |= events & (POLLOUT | POLLWRNORM);
837 else {
838 if (events & (POLLOUT | POLLWRNORM))
839 if ((wpipe->pipe_state & PIPE_EOF) || (
840 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
841 revents |= events & (POLLOUT | POLLWRNORM);
842
843 eof |= (wpipe->pipe_state & PIPE_EOF);
844 }
845
846 if (wpipe == NULL || eof)
847 revents |= POLLHUP;
848
849 if (revents == 0) {
850 if (events & (POLLIN | POLLRDNORM))
851 selrecord(curlwp, &rpipe->pipe_sel);
852
853 if (events & (POLLOUT | POLLWRNORM))
854 selrecord(curlwp, &wpipe->pipe_sel);
855 }
856 mutex_exit(rpipe->pipe_lock);
857
858 return (revents);
859 }
860
861 static int
862 pipe_stat(file_t *fp, struct stat *ub)
863 {
864 struct pipe *pipe = fp->f_pipe;
865
866 mutex_enter(pipe->pipe_lock);
867 memset(ub, 0, sizeof(*ub));
868 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
869 ub->st_blksize = pipe->pipe_buffer.size;
870 if (ub->st_blksize == 0 && pipe->pipe_peer)
871 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
872 ub->st_size = pipe->pipe_buffer.cnt;
873 ub->st_blocks = (ub->st_size) ? 1 : 0;
874 ub->st_atimespec = pipe->pipe_atime;
875 ub->st_mtimespec = pipe->pipe_mtime;
876 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
877 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
878 ub->st_gid = kauth_cred_getegid(fp->f_cred);
879
880 /*
881 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
882 * XXX (st_dev, st_ino) should be unique.
883 */
884 mutex_exit(pipe->pipe_lock);
885 return 0;
886 }
887
888 static int
889 pipe_close(file_t *fp)
890 {
891 struct pipe *pipe = fp->f_pipe;
892
893 fp->f_pipe = NULL;
894 pipeclose(pipe);
895 return (0);
896 }
897
898 static void
899 pipe_restart(file_t *fp)
900 {
901 struct pipe *pipe = fp->f_pipe;
902
903 /*
904 * Unblock blocked reads/writes in order to allow close() to complete.
905 * System calls return ERESTART so that the fd is revalidated.
906 * (Partial writes return the transfer length.)
907 */
908 mutex_enter(pipe->pipe_lock);
909 pipe->pipe_state |= PIPE_RESTART;
910 /* Wakeup both cvs, maybe we only need one, but maybe there are some
911 * other paths where wakeup is needed, and it saves deciding which! */
912 cv_broadcast(&pipe->pipe_rcv);
913 cv_broadcast(&pipe->pipe_wcv);
914 mutex_exit(pipe->pipe_lock);
915 }
916
917 static int
918 pipe_fpathconf(struct file *fp, int name, register_t *retval)
919 {
920
921 switch (name) {
922 case _PC_PIPE_BUF:
923 *retval = PIPE_BUF;
924 return 0;
925 default:
926 return EINVAL;
927 }
928 }
929
930 static int
931 pipe_posix_fadvise(struct file *fp, off_t offset, off_t len, int advice)
932 {
933
934 return ESPIPE;
935 }
936
937 static void
938 pipe_free_kmem(struct pipe *pipe)
939 {
940
941 if (pipe->pipe_buffer.buffer != NULL) {
942 if (pipe->pipe_buffer.size > PIPE_SIZE) {
943 atomic_dec_uint(&nbigpipe);
944 }
945 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
946 uvm_km_free(kernel_map,
947 (vaddr_t)pipe->pipe_buffer.buffer,
948 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
949 atomic_add_int(&amountpipekva,
950 -pipe->pipe_buffer.size);
951 }
952 pipe->pipe_buffer.buffer = NULL;
953 }
954 }
955
956 /*
957 * Shutdown the pipe.
958 */
959 static void
960 pipeclose(struct pipe *pipe)
961 {
962 kmutex_t *lock;
963 struct pipe *ppipe;
964
965 if (pipe == NULL)
966 return;
967
968 KASSERT(cv_is_valid(&pipe->pipe_rcv));
969 KASSERT(cv_is_valid(&pipe->pipe_wcv));
970 KASSERT(cv_is_valid(&pipe->pipe_draincv));
971 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
972
973 lock = pipe->pipe_lock;
974 if (lock == NULL)
975 /* Must have failed during create */
976 goto free_resources;
977
978 mutex_enter(lock);
979 pipeselwakeup(pipe, pipe, POLL_HUP);
980
981 /*
982 * If the other side is blocked, wake it up saying that
983 * we want to close it down.
984 */
985 pipe->pipe_state |= PIPE_EOF;
986 if (pipe->pipe_busy) {
987 while (pipe->pipe_busy) {
988 cv_broadcast(&pipe->pipe_wcv);
989 cv_wait_sig(&pipe->pipe_draincv, lock);
990 }
991 }
992
993 /*
994 * Disconnect from peer.
995 */
996 if ((ppipe = pipe->pipe_peer) != NULL) {
997 pipeselwakeup(ppipe, ppipe, POLL_HUP);
998 ppipe->pipe_state |= PIPE_EOF;
999 cv_broadcast(&ppipe->pipe_rcv);
1000 ppipe->pipe_peer = NULL;
1001 }
1002
1003 /*
1004 * Any knote objects still left in the list are
1005 * the one attached by peer. Since no one will
1006 * traverse this list, we just clear it.
1007 *
1008 * XXX Exposes select/kqueue internals.
1009 */
1010 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1011
1012 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1013 mutex_exit(lock);
1014 mutex_obj_free(lock);
1015
1016 /*
1017 * Free resources.
1018 */
1019 free_resources:
1020 pipe->pipe_pgid = 0;
1021 pipe->pipe_state = PIPE_SIGNALR;
1022 pipe->pipe_peer = NULL;
1023 pipe->pipe_lock = NULL;
1024 pipe_free_kmem(pipe);
1025 if (pipe->pipe_kmem != 0) {
1026 pool_cache_put(pipe_rd_cache, pipe);
1027 } else {
1028 pool_cache_put(pipe_wr_cache, pipe);
1029 }
1030 }
1031
1032 static void
1033 filt_pipedetach(struct knote *kn)
1034 {
1035 struct pipe *pipe;
1036 kmutex_t *lock;
1037
1038 pipe = ((file_t *)kn->kn_obj)->f_pipe;
1039 lock = pipe->pipe_lock;
1040
1041 mutex_enter(lock);
1042
1043 switch(kn->kn_filter) {
1044 case EVFILT_WRITE:
1045 /* Need the peer structure, not our own. */
1046 pipe = pipe->pipe_peer;
1047
1048 /* If reader end already closed, just return. */
1049 if (pipe == NULL) {
1050 mutex_exit(lock);
1051 return;
1052 }
1053
1054 break;
1055 default:
1056 /* Nothing to do. */
1057 break;
1058 }
1059
1060 KASSERT(kn->kn_hook == pipe);
1061 selremove_knote(&pipe->pipe_sel, kn);
1062 mutex_exit(lock);
1063 }
1064
1065 static int
1066 filt_piperead(struct knote *kn, long hint)
1067 {
1068 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1069 struct pipe *wpipe;
1070 int rv;
1071
1072 if ((hint & NOTE_SUBMIT) == 0) {
1073 mutex_enter(rpipe->pipe_lock);
1074 }
1075 wpipe = rpipe->pipe_peer;
1076 kn->kn_data = rpipe->pipe_buffer.cnt;
1077
1078 if ((rpipe->pipe_state & PIPE_EOF) ||
1079 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1080 knote_set_eof(kn, 0);
1081 rv = 1;
1082 } else {
1083 rv = kn->kn_data > 0;
1084 }
1085
1086 if ((hint & NOTE_SUBMIT) == 0) {
1087 mutex_exit(rpipe->pipe_lock);
1088 }
1089 return rv;
1090 }
1091
1092 static int
1093 filt_pipewrite(struct knote *kn, long hint)
1094 {
1095 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1096 struct pipe *wpipe;
1097 int rv;
1098
1099 if ((hint & NOTE_SUBMIT) == 0) {
1100 mutex_enter(rpipe->pipe_lock);
1101 }
1102 wpipe = rpipe->pipe_peer;
1103
1104 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1105 kn->kn_data = 0;
1106 knote_set_eof(kn, 0);
1107 rv = 1;
1108 } else {
1109 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1110 rv = kn->kn_data >= PIPE_BUF;
1111 }
1112
1113 if ((hint & NOTE_SUBMIT) == 0) {
1114 mutex_exit(rpipe->pipe_lock);
1115 }
1116 return rv;
1117 }
1118
1119 static const struct filterops pipe_rfiltops = {
1120 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1121 .f_attach = NULL,
1122 .f_detach = filt_pipedetach,
1123 .f_event = filt_piperead,
1124 };
1125
1126 static const struct filterops pipe_wfiltops = {
1127 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1128 .f_attach = NULL,
1129 .f_detach = filt_pipedetach,
1130 .f_event = filt_pipewrite,
1131 };
1132
1133 static int
1134 pipe_kqfilter(file_t *fp, struct knote *kn)
1135 {
1136 struct pipe *pipe;
1137 kmutex_t *lock;
1138
1139 pipe = ((file_t *)kn->kn_obj)->f_pipe;
1140 lock = pipe->pipe_lock;
1141
1142 mutex_enter(lock);
1143
1144 switch (kn->kn_filter) {
1145 case EVFILT_READ:
1146 kn->kn_fop = &pipe_rfiltops;
1147 break;
1148 case EVFILT_WRITE:
1149 kn->kn_fop = &pipe_wfiltops;
1150 pipe = pipe->pipe_peer;
1151 if (pipe == NULL) {
1152 /* Other end of pipe has been closed. */
1153 mutex_exit(lock);
1154 return (EBADF);
1155 }
1156 break;
1157 default:
1158 mutex_exit(lock);
1159 return (EINVAL);
1160 }
1161
1162 kn->kn_hook = pipe;
1163 selrecord_knote(&pipe->pipe_sel, kn);
1164 mutex_exit(lock);
1165
1166 return (0);
1167 }
1168
1169 /*
1170 * Handle pipe sysctls.
1171 */
1172 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1173 {
1174
1175 sysctl_createv(clog, 0, NULL, NULL,
1176 CTLFLAG_PERMANENT,
1177 CTLTYPE_NODE, "pipe",
1178 SYSCTL_DESCR("Pipe settings"),
1179 NULL, 0, NULL, 0,
1180 CTL_KERN, KERN_PIPE, CTL_EOL);
1181
1182 sysctl_createv(clog, 0, NULL, NULL,
1183 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1184 CTLTYPE_INT, "maxbigpipes",
1185 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1186 NULL, 0, &maxbigpipes, 0,
1187 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1188 sysctl_createv(clog, 0, NULL, NULL,
1189 CTLFLAG_PERMANENT,
1190 CTLTYPE_INT, "nbigpipes",
1191 SYSCTL_DESCR("Number of \"big\" pipes"),
1192 NULL, 0, &nbigpipe, 0,
1193 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1194 sysctl_createv(clog, 0, NULL, NULL,
1195 CTLFLAG_PERMANENT,
1196 CTLTYPE_INT, "kvasize",
1197 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1198 "buffers"),
1199 NULL, 0, &amountpipekva, 0,
1200 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1201 }
1202