Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.17
      1 /*	$NetBSD: sys_pipe.c,v 1.17 2001/10/28 20:47:15 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1996 John S. Dyson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice immediately at the beginning of the file, without modification,
     12  *    this list of conditions, and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Absolutely no warranty of function or purpose is made by the author
     17  *    John S. Dyson.
     18  * 4. Modifications may be freely made to this file if the above conditions
     19  *    are met.
     20  *
     21  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.82 2001/06/15 20:45:01 jlemon Exp $
     22  */
     23 
     24 /*
     25  * This file contains a high-performance replacement for the socket-based
     26  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
     27  * all features of sockets, but does do everything that pipes normally
     28  * do.
     29  *
     30  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
     31  * written by Jaromir Dolecek.
     32  */
     33 
     34 /*
     35  * This code has two modes of operation, a small write mode and a large
     36  * write mode.  The small write mode acts like conventional pipes with
     37  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     38  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     39  * and PIPE_SIZE in size, it is fully mapped into the kernel (on FreeBSD,
     40  * those pages are also wired), and the receiving process can copy it directly
     41  * from the pages in the sending process.
     42  *
     43  * If the sending process receives a signal, it is possible that it will
     44  * go away, and certainly its address space can change, because control
     45  * is returned back to the user-mode side.  In that case, the pipe code
     46  * arranges to copy the buffer supplied by the user process on FreeBSD, to
     47  * a pageable kernel buffer, and the receiving process will grab the data
     48  * from the pageable kernel buffer.  Since signals don't happen all that often,
     49  * the copy operation is normally eliminated.
     50  * For NetBSD, the pages are mapped read-only, COW for kernel by uvm_loan(),
     51  * so no explicit handling need to be done, all is handled by standard VM
     52  * facilities.
     53  *
     54  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     55  * happen for small transfers so that the system will not spend all of
     56  * its time context switching.  PIPE_SIZE is constrained by the
     57  * amount of kernel virtual memory.
     58  */
     59 
     60 #include <sys/param.h>
     61 #include <sys/systm.h>
     62 #include <sys/proc.h>
     63 #include <sys/fcntl.h>
     64 #include <sys/file.h>
     65 #include <sys/filedesc.h>
     66 #include <sys/filio.h>
     67 #include <sys/ttycom.h>
     68 #include <sys/stat.h>
     69 #include <sys/poll.h>
     70 #include <sys/signalvar.h>
     71 #include <sys/vnode.h>
     72 #include <sys/uio.h>
     73 #include <sys/lock.h>
     74 #ifdef __FreeBSD__
     75 #include <sys/mutex.h>
     76 #include <sys/selinfo.h>
     77 #include <sys/sysproto.h>
     78 #elif defined(__NetBSD__)
     79 #include <sys/select.h>
     80 #include <sys/malloc.h>
     81 #include <sys/mount.h>
     82 #include <sys/syscallargs.h>
     83 #include <uvm/uvm.h>
     84 #include <sys/sysctl.h>
     85 #include <sys/kernel.h>
     86 #endif /* NetBSD, FreeBSD */
     87 
     88 #include <sys/pipe.h>
     89 
     90 #ifdef __NetBSD__
     91 /*
     92  * Avoid microtime(9), it's slow. We don't guard the read from time(9)
     93  * with splclock(9) since we don't actually need to be THAT sure the access
     94  * is atomic.
     95  */
     96 #define vfs_timestamp(tv)	(*(tv) = time)
     97 #endif
     98 
     99 /*
    100  * Use this define if you want to disable *fancy* VM things.  Expect an
    101  * approx 30% decrease in transfer rate.  This could be useful for
    102  * OpenBSD.
    103  */
    104 /* #define PIPE_NODIRECT */
    105 
    106 /*
    107  * interfaces to the outside world
    108  */
    109 #ifdef __FreeBSD__
    110 static int pipe_read __P((struct file *fp, struct uio *uio,
    111 		struct ucred *cred, int flags, struct proc *p));
    112 static int pipe_write __P((struct file *fp, struct uio *uio,
    113 		struct ucred *cred, int flags, struct proc *p));
    114 static int pipe_close __P((struct file *fp, struct proc *p));
    115 static int pipe_poll __P((struct file *fp, int events, struct ucred *cred,
    116 		struct proc *p));
    117 static int pipe_kqfilter __P((struct file *fp, struct knote *kn));
    118 static int pipe_stat __P((struct file *fp, struct stat *sb, struct proc *p));
    119 static int pipe_ioctl __P((struct file *fp, u_long cmd, caddr_t data, struct proc *p));
    120 
    121 static struct fileops pipeops = {
    122 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
    123 	pipe_stat, pipe_close
    124 };
    125 
    126 static void	filt_pipedetach(struct knote *kn);
    127 static int	filt_piperead(struct knote *kn, long hint);
    128 static int	filt_pipewrite(struct knote *kn, long hint);
    129 
    130 static struct filterops pipe_rfiltops =
    131 	{ 1, NULL, filt_pipedetach, filt_piperead };
    132 static struct filterops pipe_wfiltops =
    133 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
    134 #endif /* FreeBSD */
    135 
    136 #ifdef __NetBSD__
    137 static int pipe_read __P((struct file *fp, off_t *offset, struct uio *uio,
    138 		struct ucred *cred, int flags));
    139 static int pipe_write __P((struct file *fp, off_t *offset, struct uio *uio,
    140 		struct ucred *cred, int flags));
    141 static int pipe_close __P((struct file *fp, struct proc *p));
    142 static int pipe_poll __P((struct file *fp, int events, struct proc *p));
    143 static int pipe_fcntl __P((struct file *fp, u_int com, caddr_t data,
    144 		struct proc *p));
    145 static int pipe_stat __P((struct file *fp, struct stat *sb, struct proc *p));
    146 static int pipe_ioctl __P((struct file *fp, u_long cmd, caddr_t data, struct proc *p));
    147 
    148 static struct fileops pipeops =
    149     { pipe_read, pipe_write, pipe_ioctl, pipe_fcntl, pipe_poll,
    150       pipe_stat, pipe_close };
    151 #endif /* NetBSD */
    152 
    153 /*
    154  * Default pipe buffer size(s), this can be kind-of large now because pipe
    155  * space is pageable.  The pipe code will try to maintain locality of
    156  * reference for performance reasons, so small amounts of outstanding I/O
    157  * will not wipe the cache.
    158  */
    159 #define MINPIPESIZE (PIPE_SIZE/3)
    160 #define MAXPIPESIZE (2*PIPE_SIZE/3)
    161 
    162 /*
    163  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    164  * is there so that on large systems, we don't exhaust it.
    165  */
    166 #define MAXPIPEKVA (8*1024*1024)
    167 static int maxpipekva = MAXPIPEKVA;
    168 
    169 /*
    170  * Limit for direct transfers, we cannot, of course limit
    171  * the amount of kva for pipes in general though.
    172  */
    173 #define LIMITPIPEKVA (16*1024*1024)
    174 static int limitpipekva = LIMITPIPEKVA;
    175 
    176 /*
    177  * Limit the number of "big" pipes
    178  */
    179 #define LIMITBIGPIPES  32
    180 static int maxbigpipes = LIMITBIGPIPES;
    181 static int nbigpipe = 0;
    182 
    183 /*
    184  * Amount of KVA consumed by pipe buffers.
    185  */
    186 static int amountpipekva = 0;
    187 
    188 static void pipeclose __P((struct pipe *cpipe));
    189 static void pipe_free_kmem __P((struct pipe *cpipe));
    190 static int pipe_create __P((struct pipe **cpipep, int allockva));
    191 static __inline int pipelock __P((struct pipe *cpipe, int catch));
    192 static __inline void pipeunlock __P((struct pipe *cpipe));
    193 static __inline void pipeselwakeup __P((struct pipe *selp,
    194 			struct pipe *sigp));
    195 static int pipespace __P((struct pipe *cpipe, int size));
    196 
    197 #ifdef __FreeBSD__
    198 #ifndef PIPE_NODIRECT
    199 static int pipe_build_write_buffer __P((struct pipe *wpipe, struct uio *uio));
    200 static void pipe_destroy_write_buffer __P((struct pipe *wpipe));
    201 static int pipe_direct_write __P((struct pipe *wpipe, struct uio *uio));
    202 static void pipe_clone_write_buffer __P((struct pipe *wpipe));
    203 #endif
    204 
    205 static vm_zone_t pipe_zone;
    206 #endif /* FreeBSD */
    207 
    208 #ifdef __NetBSD__
    209 #ifndef PIPE_NODIRECT
    210 static __inline int pipe_direct_write __P((struct pipe *wpipe, struct uio *uio));
    211 static __inline int pipe_loan_alloc __P((struct pipe *wpipe, int npages,
    212 						vsize_t blen));
    213 static void pipe_loan_free __P((struct pipe *wpipe));
    214 #endif /* PIPE_NODIRECT */
    215 
    216 static struct pool pipe_pool;
    217 #endif /* NetBSD */
    218 
    219 /*
    220  * The pipe system call for the DTYPE_PIPE type of pipes
    221  */
    222 
    223 /* ARGSUSED */
    224 #ifdef __FreeBSD__
    225 int
    226 pipe(p, uap)
    227 	struct proc *p;
    228 	struct pipe_args /* {
    229 		int	dummy;
    230 	} */ *uap;
    231 #elif defined(__NetBSD__)
    232 int
    233 sys_pipe(p, v, retval)
    234 	struct proc *p;
    235 	void *v;
    236 	register_t *retval;
    237 #endif
    238 {
    239 	struct file *rf, *wf;
    240 	struct pipe *rpipe, *wpipe;
    241 	int fd, error;
    242 
    243 #ifdef __FreeBSD__
    244 	if (pipe_zone == NULL)
    245 		pipe_zone = zinit("PIPE", sizeof(struct pipe), 0, 0, 4);
    246 
    247 	rpipe = wpipe = NULL;
    248 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 1)) {
    249 		pipeclose(rpipe);
    250 		pipeclose(wpipe);
    251 		return (ENFILE);
    252 	}
    253 
    254 	error = falloc(p, &rf, &fd);
    255 	if (error) {
    256 		pipeclose(rpipe);
    257 		pipeclose(wpipe);
    258 		return (error);
    259 	}
    260 	fhold(rf);
    261 	p->p_retval[0] = fd;
    262 
    263 	/*
    264 	 * Warning: once we've gotten past allocation of the fd for the
    265 	 * read-side, we can only drop the read side via fdrop() in order
    266 	 * to avoid races against processes which manage to dup() the read
    267 	 * side while we are blocked trying to allocate the write side.
    268 	 */
    269 	rf->f_flag = FREAD | FWRITE;
    270 	rf->f_type = DTYPE_PIPE;
    271 	rf->f_data = (caddr_t)rpipe;
    272 	rf->f_ops = &pipeops;
    273 	error = falloc(p, &wf, &fd);
    274 	if (error) {
    275 		struct filedesc *fdp = p->p_fd;
    276 
    277 		if (fdp->fd_ofiles[p->p_retval[0]] == rf) {
    278 			fdp->fd_ofiles[p->p_retval[0]] = NULL;
    279 			fdrop(rf, p);
    280 		}
    281 		fdrop(rf, p);
    282 		/* rpipe has been closed by fdrop(). */
    283 		pipeclose(wpipe);
    284 		return (error);
    285 	}
    286 	wf->f_flag = FREAD | FWRITE;
    287 	wf->f_type = DTYPE_PIPE;
    288 	wf->f_data = (caddr_t)wpipe;
    289 	wf->f_ops = &pipeops;
    290 	p->p_retval[1] = fd;
    291 
    292 	rpipe->pipe_peer = wpipe;
    293 	wpipe->pipe_peer = rpipe;
    294 	fdrop(rf, p);
    295 #endif /* FreeBSD */
    296 
    297 #ifdef __NetBSD__
    298 	rpipe = wpipe = NULL;
    299 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
    300 		pipeclose(rpipe);
    301 		pipeclose(wpipe);
    302 		return (ENFILE);
    303 	}
    304 
    305 	/*
    306 	 * Note: the file structure returned from falloc() is marked
    307 	 * as 'larval' initially. Unless we mark it as 'mature' by
    308 	 * FILE_SET_MATURE(), any attempt to do anything with it would
    309 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
    310 	 * file descriptor races if we block in the second falloc().
    311 	 */
    312 
    313 	error = falloc(p, &rf, &fd);
    314 	if (error)
    315 		goto free2;
    316 	retval[0] = fd;
    317 	rf->f_flag = FREAD;
    318 	rf->f_type = DTYPE_PIPE;
    319 	rf->f_data = (caddr_t)rpipe;
    320 	rf->f_ops = &pipeops;
    321 
    322 	error = falloc(p, &wf, &fd);
    323 	if (error)
    324 		goto free3;
    325 	retval[1] = fd;
    326 	wf->f_flag = FWRITE;
    327 	wf->f_type = DTYPE_PIPE;
    328 	wf->f_data = (caddr_t)wpipe;
    329 	wf->f_ops = &pipeops;
    330 
    331 	rpipe->pipe_peer = wpipe;
    332 	wpipe->pipe_peer = rpipe;
    333 
    334 	FILE_SET_MATURE(rf);
    335 	FILE_SET_MATURE(wf);
    336 	FILE_UNUSE(rf, p);
    337 	FILE_UNUSE(wf, p);
    338 	return (0);
    339 free3:
    340 	FILE_UNUSE(rf, p);
    341 	ffree(rf);
    342 	fdremove(p->p_fd, retval[0]);
    343 free2:
    344 	pipeclose(wpipe);
    345 	pipeclose(rpipe);
    346 #endif /* NetBSD */
    347 
    348 	return (error);
    349 }
    350 
    351 /*
    352  * Allocate kva for pipe circular buffer, the space is pageable
    353  * This routine will 'realloc' the size of a pipe safely, if it fails
    354  * it will retain the old buffer.
    355  * If it fails it will return ENOMEM.
    356  */
    357 static int
    358 pipespace(cpipe, size)
    359 	struct pipe *cpipe;
    360 	int size;
    361 {
    362 	caddr_t buffer;
    363 #ifdef __FreeBSD__
    364 	struct vm_object *object;
    365 	int npages, error;
    366 
    367 	npages = round_page(size)/PAGE_SIZE;
    368 	/*
    369 	 * Create an object, I don't like the idea of paging to/from
    370 	 * kernel_object.
    371 	 */
    372 	mtx_lock(&vm_mtx);
    373 	object = vm_object_allocate(OBJT_DEFAULT, npages);
    374 	buffer = (caddr_t) vm_map_min(kernel_map);
    375 
    376 	/*
    377 	 * Insert the object into the kernel map, and allocate kva for it.
    378 	 * The map entry is, by default, pageable.
    379 	 */
    380 	error = vm_map_find(kernel_map, object, 0,
    381 		(vm_offset_t *) &buffer, size, 1,
    382 		VM_PROT_ALL, VM_PROT_ALL, 0);
    383 
    384 	if (error != KERN_SUCCESS) {
    385 		vm_object_deallocate(object);
    386 		mtx_unlock(&vm_mtx);
    387 		return (ENOMEM);
    388 	}
    389 #endif /* FreeBSD */
    390 
    391 #ifdef __NetBSD__
    392 	/*
    393 	 * Allocate pageable virtual address space. Physical memory is allocated
    394 	 * on demand.
    395 	 */
    396 	buffer = (caddr_t) uvm_km_valloc(kernel_map, round_page(size));
    397 	if (buffer == NULL)
    398 		return (ENOMEM);
    399 #endif /* NetBSD */
    400 
    401 	/* free old resources if we're resizing */
    402 	pipe_free_kmem(cpipe);
    403 #ifdef __FreeBSD__
    404 	mtx_unlock(&vm_mtx);
    405 	cpipe->pipe_buffer.object = object;
    406 #endif
    407 	cpipe->pipe_buffer.buffer = buffer;
    408 	cpipe->pipe_buffer.size = size;
    409 	cpipe->pipe_buffer.in = 0;
    410 	cpipe->pipe_buffer.out = 0;
    411 	cpipe->pipe_buffer.cnt = 0;
    412 	amountpipekva += cpipe->pipe_buffer.size;
    413 	return (0);
    414 }
    415 
    416 /*
    417  * initialize and allocate VM and memory for pipe
    418  */
    419 static int
    420 pipe_create(cpipep, allockva)
    421 	struct pipe **cpipep;
    422 	int allockva;
    423 {
    424 	struct pipe *cpipe;
    425 	int error;
    426 
    427 #ifdef __FreeBSD__
    428 	*cpipep = zalloc(pipe_zone);
    429 #endif
    430 #ifdef __NetBSD__
    431 	*cpipep = pool_get(&pipe_pool, M_WAITOK);
    432 #endif
    433 	if (*cpipep == NULL)
    434 		return (ENOMEM);
    435 
    436 	cpipe = *cpipep;
    437 
    438 	/* Initialize */
    439 	memset(cpipe, 0, sizeof(*cpipe));
    440 	cpipe->pipe_state = PIPE_SIGNALR;
    441 
    442 	if (allockva && (error = pipespace(cpipe, PIPE_SIZE)))
    443 		return (error);
    444 
    445 	vfs_timestamp(&cpipe->pipe_ctime);
    446 	cpipe->pipe_atime = cpipe->pipe_ctime;
    447 	cpipe->pipe_mtime = cpipe->pipe_ctime;
    448 #ifdef __NetBSD__
    449 	cpipe->pipe_pgid = NO_PID;
    450 	lockinit(&cpipe->pipe_lock, PRIBIO | PCATCH, "pipelk", 0, 0);
    451 #endif
    452 
    453 	return (0);
    454 }
    455 
    456 
    457 /*
    458  * lock a pipe for I/O, blocking other access
    459  */
    460 static __inline int
    461 pipelock(cpipe, catch)
    462 	struct pipe *cpipe;
    463 	int catch;
    464 {
    465 	int error;
    466 
    467 #ifdef __FreeBSD__
    468 	while (cpipe->pipe_state & PIPE_LOCK) {
    469 		cpipe->pipe_state |= PIPE_LWANT;
    470 		error = tsleep(cpipe, catch ? (PRIBIO | PCATCH) : PRIBIO,
    471 		    "pipelk", 0);
    472 		if (error != 0)
    473 			return (error);
    474 	}
    475 	cpipe->pipe_state |= PIPE_LOCK;
    476 	return (0);
    477 #endif
    478 
    479 #ifdef __NetBSD__
    480 	do {
    481 		error = lockmgr(&cpipe->pipe_lock, LK_EXCLUSIVE, NULL);
    482 	} while (!catch && (error == EINTR || error == ERESTART));
    483 	return (error);
    484 #endif
    485 }
    486 
    487 /*
    488  * unlock a pipe I/O lock
    489  */
    490 static __inline void
    491 pipeunlock(cpipe)
    492 	struct pipe *cpipe;
    493 {
    494 #ifdef __FreeBSD__
    495 	cpipe->pipe_state &= ~PIPE_LOCK;
    496 	if (cpipe->pipe_state & PIPE_LWANT) {
    497 		cpipe->pipe_state &= ~PIPE_LWANT;
    498 		wakeup(cpipe);
    499 	}
    500 #endif
    501 
    502 #ifdef __NetBSD__
    503 	lockmgr(&cpipe->pipe_lock, LK_RELEASE, NULL);
    504 #endif
    505 }
    506 
    507 /*
    508  * Select/poll wakup. This also sends SIGIO to peer connected to
    509  * 'sigpipe' side of pipe.
    510  */
    511 static __inline void
    512 pipeselwakeup(selp, sigp)
    513 	struct pipe *selp, *sigp;
    514 {
    515 	if (selp->pipe_state & PIPE_SEL) {
    516 		selp->pipe_state &= ~PIPE_SEL;
    517 		selwakeup(&selp->pipe_sel);
    518 	}
    519 #ifdef __FreeBSD__
    520 	if (sigp && (sigp->pipe_state & PIPE_ASYNC) && sigp->pipe_sigio)
    521 		pgsigio(sigp->pipe_sigio, SIGIO, 0);
    522 	KNOTE(&selp->pipe_sel.si_note, 0);
    523 #endif
    524 
    525 #ifdef __NetBSD__
    526 	if (sigp && (sigp->pipe_state & PIPE_ASYNC)
    527 	    && sigp->pipe_pgid != NO_PID){
    528 		struct proc *p;
    529 
    530 		if (sigp->pipe_pgid < 0)
    531 			gsignal(-sigp->pipe_pgid, SIGIO);
    532 		else if (sigp->pipe_pgid > 0 && (p = pfind(sigp->pipe_pgid)) != 0)
    533 			psignal(p, SIGIO);
    534 	}
    535 #endif /* NetBSD */
    536 }
    537 
    538 /* ARGSUSED */
    539 #ifdef __FreeBSD__
    540 static int
    541 pipe_read(fp, uio, cred, flags, p)
    542 	struct file *fp;
    543 	struct uio *uio;
    544 	struct ucred *cred;
    545 	int flags;
    546 	struct proc *p;
    547 #elif defined(__NetBSD__)
    548 static int
    549 pipe_read(fp, offset, uio, cred, flags)
    550 	struct file *fp;
    551 	off_t *offset;
    552 	struct uio *uio;
    553 	struct ucred *cred;
    554 	int flags;
    555 #endif
    556 {
    557 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    558 	int error;
    559 	size_t nread = 0;
    560 	size_t size;
    561 	size_t ocnt;
    562 
    563 	++rpipe->pipe_busy;
    564 	error = pipelock(rpipe, 1);
    565 	if (error)
    566 		goto unlocked_error;
    567 
    568 	ocnt = rpipe->pipe_buffer.cnt;
    569 
    570 	while (uio->uio_resid) {
    571 		/*
    572 		 * normal pipe buffer receive
    573 		 */
    574 		if (rpipe->pipe_buffer.cnt > 0) {
    575 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
    576 			if (size > rpipe->pipe_buffer.cnt)
    577 				size = rpipe->pipe_buffer.cnt;
    578 			if (size > uio->uio_resid)
    579 				size = uio->uio_resid;
    580 
    581 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
    582 					size, uio);
    583 			if (error)
    584 				break;
    585 
    586 			rpipe->pipe_buffer.out += size;
    587 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
    588 				rpipe->pipe_buffer.out = 0;
    589 
    590 			rpipe->pipe_buffer.cnt -= size;
    591 
    592 			/*
    593 			 * If there is no more to read in the pipe, reset
    594 			 * its pointers to the beginning.  This improves
    595 			 * cache hit stats.
    596 			 */
    597 			if (rpipe->pipe_buffer.cnt == 0) {
    598 				rpipe->pipe_buffer.in = 0;
    599 				rpipe->pipe_buffer.out = 0;
    600 			}
    601 			nread += size;
    602 #ifndef PIPE_NODIRECT
    603 		/*
    604 		 * Direct copy, bypassing a kernel buffer.
    605 		 */
    606 		} else if ((size = rpipe->pipe_map.cnt) &&
    607 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
    608 			caddr_t	va;
    609 			if (size > uio->uio_resid)
    610 				size = uio->uio_resid;
    611 
    612 			va = (caddr_t) rpipe->pipe_map.kva +
    613 			    rpipe->pipe_map.pos;
    614 			error = uiomove(va, size, uio);
    615 			if (error)
    616 				break;
    617 			nread += size;
    618 			rpipe->pipe_map.pos += size;
    619 			rpipe->pipe_map.cnt -= size;
    620 			if (rpipe->pipe_map.cnt == 0) {
    621 				rpipe->pipe_state &= ~PIPE_DIRECTW;
    622 				wakeup(rpipe);
    623 			}
    624 #endif
    625 		} else {
    626 			/*
    627 			 * detect EOF condition
    628 			 * read returns 0 on EOF, no need to set error
    629 			 */
    630 			if (rpipe->pipe_state & PIPE_EOF)
    631 				break;
    632 
    633 			/*
    634 			 * If the "write-side" has been blocked, wake it up now.
    635 			 */
    636 			if (rpipe->pipe_state & PIPE_WANTW) {
    637 				rpipe->pipe_state &= ~PIPE_WANTW;
    638 				wakeup(rpipe);
    639 			}
    640 
    641 			/*
    642 			 * Break if some data was read.
    643 			 */
    644 			if (nread > 0)
    645 				break;
    646 
    647 			/*
    648 			 * don't block on non-blocking I/O
    649 			 */
    650 			if (fp->f_flag & FNONBLOCK) {
    651 				error = EAGAIN;
    652 				break;
    653 			}
    654 
    655 			/*
    656 			 * Unlock the pipe buffer for our remaining processing.
    657 			 * We will either break out with an error or we will
    658 			 * sleep and relock to loop.
    659 			 */
    660 			pipeunlock(rpipe);
    661 
    662 			/*
    663 			 * We want to read more, wake up select/poll.
    664 			 */
    665 			pipeselwakeup(rpipe, rpipe->pipe_peer);
    666 
    667 			rpipe->pipe_state |= PIPE_WANTR;
    668 			error = tsleep(rpipe, PRIBIO | PCATCH, "piperd", 0);
    669 			if (error != 0 || (error = pipelock(rpipe, 1)))
    670 				goto unlocked_error;
    671 		}
    672 	}
    673 	pipeunlock(rpipe);
    674 
    675 	if (error == 0)
    676 		vfs_timestamp(&rpipe->pipe_atime);
    677 unlocked_error:
    678 	--rpipe->pipe_busy;
    679 
    680 	/*
    681 	 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
    682 	 */
    683 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
    684 		rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
    685 		wakeup(rpipe);
    686 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
    687 		/*
    688 		 * Handle write blocking hysteresis.
    689 		 */
    690 		if (rpipe->pipe_state & PIPE_WANTW) {
    691 			rpipe->pipe_state &= ~PIPE_WANTW;
    692 			wakeup(rpipe);
    693 		}
    694 	}
    695 
    696 	/*
    697 	 * If anything was read off the buffer, signal to the writer it's
    698 	 * possible to write more data. Also send signal if we are here for the
    699 	 * first time after last write.
    700 	 */
    701 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF
    702 	    && (ocnt != rpipe->pipe_buffer.cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    703 		pipeselwakeup(rpipe, rpipe->pipe_peer);
    704 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    705 	}
    706 
    707 	return (error);
    708 }
    709 
    710 #ifdef __FreeBSD__
    711 #ifndef PIPE_NODIRECT
    712 /*
    713  * Map the sending processes' buffer into kernel space and wire it.
    714  * This is similar to a physical write operation.
    715  */
    716 static int
    717 pipe_build_write_buffer(wpipe, uio)
    718 	struct pipe *wpipe;
    719 	struct uio *uio;
    720 {
    721 	size_t size;
    722 	int i;
    723 	vm_offset_t addr, endaddr, paddr;
    724 
    725 	size = uio->uio_iov->iov_len;
    726 	if (size > wpipe->pipe_buffer.size)
    727 		size = wpipe->pipe_buffer.size;
    728 
    729 	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
    730 	mtx_lock(&vm_mtx);
    731 	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
    732 	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
    733 		vm_page_t m;
    734 
    735 		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
    736 		    (paddr = pmap_kextract(addr)) == 0) {
    737 			int j;
    738 
    739 			for (j = 0; j < i; j++)
    740 				vm_page_unwire(wpipe->pipe_map.ms[j], 1);
    741 			mtx_unlock(&vm_mtx);
    742 			return (EFAULT);
    743 		}
    744 
    745 		m = PHYS_TO_VM_PAGE(paddr);
    746 		vm_page_wire(m);
    747 		wpipe->pipe_map.ms[i] = m;
    748 	}
    749 
    750 /*
    751  * set up the control block
    752  */
    753 	wpipe->pipe_map.npages = i;
    754 	wpipe->pipe_map.pos =
    755 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
    756 	wpipe->pipe_map.cnt = size;
    757 
    758 /*
    759  * and map the buffer
    760  */
    761 	if (wpipe->pipe_map.kva == 0) {
    762 		/*
    763 		 * We need to allocate space for an extra page because the
    764 		 * address range might (will) span pages at times.
    765 		 */
    766 		wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
    767 			wpipe->pipe_buffer.size + PAGE_SIZE);
    768 		amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE;
    769 	}
    770 	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
    771 		wpipe->pipe_map.npages);
    772 
    773 	mtx_unlock(&vm_mtx);
    774 /*
    775  * and update the uio data
    776  */
    777 
    778 	uio->uio_iov->iov_len -= size;
    779 	uio->uio_iov->iov_base += size;
    780 	if (uio->uio_iov->iov_len == 0)
    781 		uio->uio_iov++;
    782 	uio->uio_resid -= size;
    783 	uio->uio_offset += size;
    784 	return (0);
    785 }
    786 
    787 /*
    788  * unmap and unwire the process buffer
    789  */
    790 static void
    791 pipe_destroy_write_buffer(wpipe)
    792 	struct pipe *wpipe;
    793 {
    794 	int i;
    795 
    796 	mtx_lock(&vm_mtx);
    797 	if (wpipe->pipe_map.kva) {
    798 		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
    799 
    800 		if (amountpipekva > maxpipekva) {
    801 			vm_offset_t kva = wpipe->pipe_map.kva;
    802 			wpipe->pipe_map.kva = 0;
    803 			kmem_free(kernel_map, kva,
    804 				wpipe->pipe_buffer.size + PAGE_SIZE);
    805 			amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
    806 		}
    807 	}
    808 	for (i = 0; i < wpipe->pipe_map.npages; i++)
    809 		vm_page_unwire(wpipe->pipe_map.ms[i], 1);
    810 	mtx_unlock(&vm_mtx);
    811 }
    812 
    813 /*
    814  * In the case of a signal, the writing process might go away.  This
    815  * code copies the data into the circular buffer so that the source
    816  * pages can be freed without loss of data.
    817  */
    818 static void
    819 pipe_clone_write_buffer(wpipe)
    820 	struct pipe *wpipe;
    821 {
    822 	int size;
    823 	int pos;
    824 
    825 	size = wpipe->pipe_map.cnt;
    826 	pos = wpipe->pipe_map.pos;
    827 	memcpy((caddr_t) wpipe->pipe_buffer.buffer,
    828 	    (caddr_t) wpipe->pipe_map.kva + pos, size);
    829 
    830 	wpipe->pipe_buffer.in = size;
    831 	wpipe->pipe_buffer.out = 0;
    832 	wpipe->pipe_buffer.cnt = size;
    833 	wpipe->pipe_state &= ~PIPE_DIRECTW;
    834 
    835 	pipe_destroy_write_buffer(wpipe);
    836 }
    837 
    838 /*
    839  * This implements the pipe buffer write mechanism.  Note that only
    840  * a direct write OR a normal pipe write can be pending at any given time.
    841  * If there are any characters in the pipe buffer, the direct write will
    842  * be deferred until the receiving process grabs all of the bytes from
    843  * the pipe buffer.  Then the direct mapping write is set-up.
    844  */
    845 static int
    846 pipe_direct_write(wpipe, uio)
    847 	struct pipe *wpipe;
    848 	struct uio *uio;
    849 {
    850 	int error;
    851 
    852 retry:
    853 	while (wpipe->pipe_state & PIPE_DIRECTW) {
    854 		if (wpipe->pipe_state & PIPE_WANTR) {
    855 			wpipe->pipe_state &= ~PIPE_WANTR;
    856 			wakeup(wpipe);
    857 		}
    858 		wpipe->pipe_state |= PIPE_WANTW;
    859 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdww", 0);
    860 		if (error)
    861 			goto error1;
    862 		if (wpipe->pipe_state & PIPE_EOF) {
    863 			error = EPIPE;
    864 			goto error1;
    865 		}
    866 	}
    867 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
    868 	if (wpipe->pipe_buffer.cnt > 0) {
    869 		if (wpipe->pipe_state & PIPE_WANTR) {
    870 			wpipe->pipe_state &= ~PIPE_WANTR;
    871 			wakeup(wpipe);
    872 		}
    873 
    874 		wpipe->pipe_state |= PIPE_WANTW;
    875 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0);
    876 		if (error)
    877 			goto error1;
    878 		if (wpipe->pipe_state & PIPE_EOF) {
    879 			error = EPIPE;
    880 			goto error1;
    881 		}
    882 		goto retry;
    883 	}
    884 
    885 	wpipe->pipe_state |= PIPE_DIRECTW;
    886 
    887 	error = pipe_build_write_buffer(wpipe, uio);
    888 	if (error) {
    889 		wpipe->pipe_state &= ~PIPE_DIRECTW;
    890 		goto error1;
    891 	}
    892 
    893 	error = 0;
    894 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
    895 		if (wpipe->pipe_state & PIPE_EOF) {
    896 			pipelock(wpipe, 0);
    897 			pipe_destroy_write_buffer(wpipe);
    898 			pipeunlock(wpipe);
    899 			pipeselwakeup(wpipe, wpipe);
    900 			error = EPIPE;
    901 			goto error1;
    902 		}
    903 		if (wpipe->pipe_state & PIPE_WANTR) {
    904 			wpipe->pipe_state &= ~PIPE_WANTR;
    905 			wakeup(wpipe);
    906 		}
    907 		pipeselwakeup(wpipe, wpipe);
    908 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0);
    909 	}
    910 
    911 	pipelock(wpipe,0);
    912 	if (wpipe->pipe_state & PIPE_DIRECTW) {
    913 		/*
    914 		 * this bit of trickery substitutes a kernel buffer for
    915 		 * the process that might be going away.
    916 		 */
    917 		pipe_clone_write_buffer(wpipe);
    918 	} else {
    919 		pipe_destroy_write_buffer(wpipe);
    920 	}
    921 	pipeunlock(wpipe);
    922 	return (error);
    923 
    924 error1:
    925 	wakeup(wpipe);
    926 	return (error);
    927 }
    928 #endif /* !PIPE_NODIRECT */
    929 #endif /* FreeBSD */
    930 
    931 #ifdef __NetBSD__
    932 #ifndef PIPE_NODIRECT
    933 /*
    934  * Allocate structure for loan transfer.
    935  */
    936 static __inline int
    937 pipe_loan_alloc(wpipe, npages, blen)
    938 	struct pipe *wpipe;
    939 	int npages;
    940 	vsize_t blen;
    941 {
    942 	wpipe->pipe_map.kva = uvm_km_valloc_wait(kernel_map, blen);
    943 	if (wpipe->pipe_map.kva == NULL)
    944 		return (ENOMEM);
    945 
    946 	amountpipekva += blen;
    947 	wpipe->pipe_map.npages = npages;
    948 	wpipe->pipe_map.ms = (struct vm_page **) malloc(
    949 		npages * sizeof(struct vm_page *), M_PIPE, M_WAITOK);
    950 
    951 	return (0);
    952 }
    953 
    954 /*
    955  * Free resources allocated for loan transfer.
    956  */
    957 static void
    958 pipe_loan_free(wpipe)
    959 	struct pipe *wpipe;
    960 {
    961 	uvm_km_free(kernel_map, wpipe->pipe_map.kva,
    962 			wpipe->pipe_map.npages * PAGE_SIZE);
    963 	wpipe->pipe_map.kva = NULL;
    964 	amountpipekva -= wpipe->pipe_map.npages * PAGE_SIZE;
    965 	free(wpipe->pipe_map.ms, M_PIPE);
    966 	wpipe->pipe_map.ms = NULL;
    967 }
    968 
    969 /*
    970  * NetBSD direct write, using uvm_loan() mechanism.
    971  * This implements the pipe buffer write mechanism.  Note that only
    972  * a direct write OR a normal pipe write can be pending at any given time.
    973  * If there are any characters in the pipe buffer, the direct write will
    974  * be deferred until the receiving process grabs all of the bytes from
    975  * the pipe buffer.  Then the direct mapping write is set-up.
    976  */
    977 static __inline int
    978 pipe_direct_write(wpipe, uio)
    979 	struct pipe *wpipe;
    980 	struct uio *uio;
    981 {
    982 	int error, npages, j;
    983 	struct vm_page **res = NULL;
    984 	vaddr_t bbase, kva, base, bend;
    985 	vsize_t blen, bcnt;
    986 	voff_t bpos;
    987 
    988 retry:
    989 	while (wpipe->pipe_state & PIPE_DIRECTW) {
    990 		if (wpipe->pipe_state & PIPE_WANTR) {
    991 			wpipe->pipe_state &= ~PIPE_WANTR;
    992 			wakeup(wpipe);
    993 		}
    994 		wpipe->pipe_state |= PIPE_WANTW;
    995 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdww", 0);
    996 		if (error)
    997 			goto error;
    998 		if (wpipe->pipe_state & PIPE_EOF) {
    999 			error = EPIPE;
   1000 			goto error;
   1001 		}
   1002 	}
   1003 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
   1004 	if (wpipe->pipe_buffer.cnt > 0) {
   1005 		if (wpipe->pipe_state & PIPE_WANTR) {
   1006 			wpipe->pipe_state &= ~PIPE_WANTR;
   1007 			wakeup(wpipe);
   1008 		}
   1009 
   1010 		wpipe->pipe_state |= PIPE_WANTW;
   1011 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0);
   1012 		if (error)
   1013 			goto error;
   1014 		if (wpipe->pipe_state & PIPE_EOF) {
   1015 			error = EPIPE;
   1016 			goto error;
   1017 		}
   1018 		goto retry;
   1019 	}
   1020 
   1021 	/*
   1022 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
   1023 	 * not aligned to PAGE_SIZE.
   1024 	 */
   1025 	bbase = (vaddr_t)uio->uio_iov->iov_base;
   1026 	base = trunc_page(bbase);
   1027 	bend = round_page(bbase + uio->uio_iov->iov_len);
   1028 	blen = bend - base;
   1029 	bpos = bbase - base;
   1030 
   1031 	if (blen > PIPE_DIRECT_CHUNK) {
   1032 		blen = PIPE_DIRECT_CHUNK;
   1033 		bend = base + blen;
   1034 		bcnt = PIPE_DIRECT_CHUNK - bpos;
   1035 	} else
   1036 		bcnt = uio->uio_iov->iov_len;
   1037 
   1038 	npages = blen / PAGE_SIZE;
   1039 
   1040 	wpipe->pipe_map.pos = bpos;
   1041 	wpipe->pipe_map.cnt = bcnt;
   1042 
   1043 	/*
   1044 	 * Free the old kva if we need more pages than we have
   1045 	 * allocated.
   1046 	 */
   1047 	if (wpipe->pipe_map.kva && npages > wpipe->pipe_map.npages)
   1048 		pipe_loan_free(wpipe);
   1049 
   1050 	/* Allocate new kva. */
   1051 	if (!wpipe->pipe_map.kva
   1052 	    && (error = pipe_loan_alloc(wpipe, npages, blen)))
   1053 		goto error;
   1054 
   1055 	/* Loan the write buffer memory from writer process */
   1056 	error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
   1057 	    (void **) wpipe->pipe_map.ms, UVM_LOAN_TOPAGE);
   1058 	if (error)
   1059 		goto cleanup;
   1060 	res = wpipe->pipe_map.ms;
   1061 
   1062 	/* Enter the loaned pages to kva */
   1063 	kva = wpipe->pipe_map.kva;
   1064 	for(j=0; j < npages; j++, kva += PAGE_SIZE)
   1065 		pmap_enter(pmap_kernel(), kva, res[j]->phys_addr,
   1066 			VM_PROT_READ, 0);
   1067 	pmap_update(pmap_kernel());
   1068 
   1069 	wpipe->pipe_state |= PIPE_DIRECTW;
   1070 	error = 0;
   1071 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
   1072 		if (wpipe->pipe_state & PIPE_EOF) {
   1073 			error = EPIPE;
   1074 			break;
   1075 		}
   1076 		if (wpipe->pipe_state & PIPE_WANTR) {
   1077 			wpipe->pipe_state &= ~PIPE_WANTR;
   1078 			wakeup(wpipe);
   1079 		}
   1080 		pipeselwakeup(wpipe, wpipe);
   1081 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0);
   1082 	}
   1083 
   1084 	if (error)
   1085 		wpipe->pipe_state &= ~PIPE_DIRECTW;
   1086 
   1087     cleanup:
   1088 	pipelock(wpipe, 0);
   1089 	if (res)
   1090 		uvm_unloan((void **) res, npages, UVM_LOAN_TOPAGE);
   1091 	if (error || amountpipekva > maxpipekva)
   1092 		pipe_loan_free(wpipe);
   1093 	pipeunlock(wpipe);
   1094 
   1095 	if (error) {
   1096 		pipeselwakeup(wpipe, wpipe);
   1097 
   1098 		/*
   1099 		 * If nothing was read from what we offered, return error
   1100 		 * streight on. Otherwise update uio resid first. Caller
   1101 		 * will deal with the error condition, returning short
   1102 		 * write, error, or restarting the write(2) as appropriate.
   1103 		 */
   1104 		if (wpipe->pipe_map.cnt == bcnt) {
   1105    error:
   1106 			wakeup(wpipe);
   1107 			return (error);
   1108 		}
   1109 
   1110 		bcnt -= wpipe->pipe_map.cnt;
   1111 	}
   1112 
   1113 	uio->uio_resid  -= bcnt;
   1114 	/* uio_offset not updated, not set/used for write(2) */
   1115 	(char *) uio->uio_iov->iov_base += bcnt;
   1116 	uio->uio_iov->iov_len -= bcnt;
   1117 	if (uio->uio_iov->iov_len == 0) {
   1118 		uio->uio_iov++;
   1119 		uio->uio_iovcnt--;
   1120 	}
   1121 
   1122 	return (error);
   1123 }
   1124 #endif /* !PIPE_NODIRECT */
   1125 #endif /* NetBSD */
   1126 
   1127 #ifdef __FreeBSD__
   1128 static int
   1129 pipe_write(fp, uio, cred, flags, p)
   1130 	struct file *fp;
   1131 	off_t *offset;
   1132 	struct uio *uio;
   1133 	struct ucred *cred;
   1134 	int flags;
   1135 	struct proc *p;
   1136 #elif defined(__NetBSD__)
   1137 static int
   1138 pipe_write(fp, offset, uio, cred, flags)
   1139 	struct file *fp;
   1140 	off_t *offset;
   1141 	struct uio *uio;
   1142 	struct ucred *cred;
   1143 	int flags;
   1144 #endif
   1145 {
   1146 	int error = 0;
   1147 	struct pipe *wpipe, *rpipe;
   1148 
   1149 	rpipe = (struct pipe *) fp->f_data;
   1150 	wpipe = rpipe->pipe_peer;
   1151 
   1152 	/*
   1153 	 * detect loss of pipe read side, issue SIGPIPE if lost.
   1154 	 */
   1155 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF))
   1156 		return (EPIPE);
   1157 
   1158 	++wpipe->pipe_busy;
   1159 
   1160 	/*
   1161 	 * If it is advantageous to resize the pipe buffer, do
   1162 	 * so.
   1163 	 */
   1164 	if ((uio->uio_resid > PIPE_SIZE) &&
   1165 		(nbigpipe < maxbigpipes) &&
   1166 #ifndef PIPE_NODIRECT
   1167 		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1168 #endif
   1169 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
   1170 		(wpipe->pipe_buffer.cnt == 0)) {
   1171 
   1172 		if ((error = pipelock(wpipe,1)) == 0) {
   1173 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
   1174 				nbigpipe++;
   1175 			pipeunlock(wpipe);
   1176 		} else {
   1177 			/*
   1178 			 * If an error occurred, unbusy and return, waking up
   1179 			 * any waiting readers.
   1180 			 */
   1181 			--wpipe->pipe_busy;
   1182 			if (wpipe->pipe_busy == 0
   1183 			    && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1184 				wpipe->pipe_state &=
   1185 				    ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1186 				wakeup(wpipe);
   1187 			}
   1188 
   1189 			return (error);
   1190 		}
   1191 	}
   1192 
   1193 #ifdef __FreeBSD__
   1194 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
   1195 #endif
   1196 
   1197 	while (uio->uio_resid) {
   1198 		int space;
   1199 
   1200 #ifndef PIPE_NODIRECT
   1201 		/*
   1202 		 * If the transfer is large, we can gain performance if
   1203 		 * we do process-to-process copies directly.
   1204 		 * If the write is non-blocking, we don't use the
   1205 		 * direct write mechanism.
   1206 		 *
   1207 		 * The direct write mechanism will detect the reader going
   1208 		 * away on us.
   1209 		 */
   1210 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
   1211 		    (fp->f_flag & FNONBLOCK) == 0 &&
   1212 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
   1213 			error = pipe_direct_write(wpipe, uio);
   1214 
   1215 			/*
   1216 			 * Break out if error occured, unless it's ENOMEM.
   1217 			 * ENOMEM means we failed to allocate some resources
   1218 			 * for direct write, so we just fallback to ordinary
   1219 			 * write. If the direct write was successful,
   1220 			 * process rest of data via ordinary write.
   1221 			 */
   1222 			if (!error)
   1223 				continue;
   1224 
   1225 			if (error != ENOMEM)
   1226 				break;
   1227 		}
   1228 #endif /* PIPE_NODIRECT */
   1229 
   1230 		/*
   1231 		 * Pipe buffered writes cannot be coincidental with
   1232 		 * direct writes.  We wait until the currently executing
   1233 		 * direct write is completed before we start filling the
   1234 		 * pipe buffer.  We break out if a signal occurs or the
   1235 		 * reader goes away.
   1236 		 */
   1237 	retrywrite:
   1238 		while (wpipe->pipe_state & PIPE_DIRECTW) {
   1239 			if (wpipe->pipe_state & PIPE_WANTR) {
   1240 				wpipe->pipe_state &= ~PIPE_WANTR;
   1241 				wakeup(wpipe);
   1242 			}
   1243 			error = tsleep(wpipe, PRIBIO | PCATCH, "pipbww", 0);
   1244 			if (wpipe->pipe_state & PIPE_EOF)
   1245 				break;
   1246 			if (error)
   1247 				break;
   1248 		}
   1249 		if (wpipe->pipe_state & PIPE_EOF) {
   1250 			error = EPIPE;
   1251 			break;
   1252 		}
   1253 
   1254 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1255 
   1256 		/* Writes of size <= PIPE_BUF must be atomic. */
   1257 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
   1258 			space = 0;
   1259 
   1260 		if (space > 0) {
   1261 			int size;	/* Transfer size */
   1262 			int segsize;	/* first segment to transfer */
   1263 
   1264 			if ((error = pipelock(wpipe,1)) != 0)
   1265 				break;
   1266 
   1267 			/*
   1268 			 * It is possible for a direct write to
   1269 			 * slip in on us... handle it here...
   1270 			 */
   1271 			if (wpipe->pipe_state & PIPE_DIRECTW) {
   1272 				pipeunlock(wpipe);
   1273 				goto retrywrite;
   1274 			}
   1275 			/*
   1276 			 * If a process blocked in uiomove, our
   1277 			 * value for space might be bad.
   1278 			 *
   1279 			 * XXX will we be ok if the reader has gone
   1280 			 * away here?
   1281 			 */
   1282 			if (space > wpipe->pipe_buffer.size -
   1283 				    wpipe->pipe_buffer.cnt) {
   1284 				pipeunlock(wpipe);
   1285 				goto retrywrite;
   1286 			}
   1287 
   1288 			/*
   1289 			 * Transfer size is minimum of uio transfer
   1290 			 * and free space in pipe buffer.
   1291 			 */
   1292 			if (space > uio->uio_resid)
   1293 				size = uio->uio_resid;
   1294 			else
   1295 				size = space;
   1296 			/*
   1297 			 * First segment to transfer is minimum of
   1298 			 * transfer size and contiguous space in
   1299 			 * pipe buffer.  If first segment to transfer
   1300 			 * is less than the transfer size, we've got
   1301 			 * a wraparound in the buffer.
   1302 			 */
   1303 			segsize = wpipe->pipe_buffer.size -
   1304 				wpipe->pipe_buffer.in;
   1305 			if (segsize > size)
   1306 				segsize = size;
   1307 
   1308 			/* Transfer first segment */
   1309 
   1310 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
   1311 						segsize, uio);
   1312 
   1313 			if (error == 0 && segsize < size) {
   1314 				/*
   1315 				 * Transfer remaining part now, to
   1316 				 * support atomic writes.  Wraparound
   1317 				 * happened.
   1318 				 */
   1319 #ifdef DEBUG
   1320 				if (wpipe->pipe_buffer.in + segsize !=
   1321 				    wpipe->pipe_buffer.size)
   1322 					panic("Expected pipe buffer wraparound disappeared");
   1323 #endif
   1324 
   1325 				error = uiomove(&wpipe->pipe_buffer.buffer[0],
   1326 						size - segsize, uio);
   1327 			}
   1328 			if (error == 0) {
   1329 				wpipe->pipe_buffer.in += size;
   1330 				if (wpipe->pipe_buffer.in >=
   1331 				    wpipe->pipe_buffer.size) {
   1332 #ifdef DEBUG
   1333 					if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
   1334 						panic("Expected wraparound bad");
   1335 #endif
   1336 					wpipe->pipe_buffer.in = size - segsize;
   1337 				}
   1338 
   1339 				wpipe->pipe_buffer.cnt += size;
   1340 #ifdef DEBUG
   1341 				if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
   1342 					panic("Pipe buffer overflow");
   1343 #endif
   1344 
   1345 			}
   1346 			pipeunlock(wpipe);
   1347 			if (error)
   1348 				break;
   1349 
   1350 		} else {
   1351 			/*
   1352 			 * If the "read-side" has been blocked, wake it up now.
   1353 			 */
   1354 			if (wpipe->pipe_state & PIPE_WANTR) {
   1355 				wpipe->pipe_state &= ~PIPE_WANTR;
   1356 				wakeup(wpipe);
   1357 			}
   1358 
   1359 			/*
   1360 			 * don't block on non-blocking I/O
   1361 			 */
   1362 			if (fp->f_flag & FNONBLOCK) {
   1363 				error = EAGAIN;
   1364 				break;
   1365 			}
   1366 
   1367 			/*
   1368 			 * We have no more space and have something to offer,
   1369 			 * wake up select/poll.
   1370 			 */
   1371 			pipeselwakeup(wpipe, wpipe);
   1372 
   1373 			wpipe->pipe_state |= PIPE_WANTW;
   1374 			error = tsleep(wpipe, PRIBIO | PCATCH, "pipewr", 0);
   1375 			if (error != 0)
   1376 				break;
   1377 			/*
   1378 			 * If read side wants to go away, we just issue a signal
   1379 			 * to ourselves.
   1380 			 */
   1381 			if (wpipe->pipe_state & PIPE_EOF) {
   1382 				error = EPIPE;
   1383 				break;
   1384 			}
   1385 		}
   1386 	}
   1387 
   1388 	--wpipe->pipe_busy;
   1389 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1390 		wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1391 		wakeup(wpipe);
   1392 	} else if (wpipe->pipe_buffer.cnt > 0) {
   1393 		/*
   1394 		 * If we have put any characters in the buffer, we wake up
   1395 		 * the reader.
   1396 		 */
   1397 		if (wpipe->pipe_state & PIPE_WANTR) {
   1398 			wpipe->pipe_state &= ~PIPE_WANTR;
   1399 			wakeup(wpipe);
   1400 		}
   1401 	}
   1402 
   1403 	/*
   1404 	 * Don't return EPIPE if I/O was successful
   1405 	 */
   1406 	if ((error == EPIPE) && (wpipe->pipe_buffer.cnt == 0)
   1407 	    && (uio->uio_resid == 0))
   1408 		error = 0;
   1409 
   1410 	if (error == 0)
   1411 		vfs_timestamp(&wpipe->pipe_mtime);
   1412 
   1413 	/*
   1414 	 * We have something to offer, wake up select/poll.
   1415 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1416 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1417 	 */
   1418 	if (wpipe->pipe_buffer.cnt)
   1419 		pipeselwakeup(wpipe, wpipe);
   1420 
   1421 	/*
   1422 	 * Arrange for next read(2) to do a signal.
   1423 	 */
   1424 	wpipe->pipe_state |= PIPE_SIGNALR;
   1425 
   1426 	return (error);
   1427 }
   1428 
   1429 /*
   1430  * we implement a very minimal set of ioctls for compatibility with sockets.
   1431  */
   1432 int
   1433 pipe_ioctl(fp, cmd, data, p)
   1434 	struct file *fp;
   1435 	u_long cmd;
   1436 	caddr_t data;
   1437 	struct proc *p;
   1438 {
   1439 	struct pipe *mpipe = (struct pipe *)fp->f_data;
   1440 
   1441 	switch (cmd) {
   1442 
   1443 	case FIONBIO:
   1444 		return (0);
   1445 
   1446 	case FIOASYNC:
   1447 		if (*(int *)data) {
   1448 			mpipe->pipe_state |= PIPE_ASYNC;
   1449 		} else {
   1450 			mpipe->pipe_state &= ~PIPE_ASYNC;
   1451 		}
   1452 		return (0);
   1453 
   1454 	case FIONREAD:
   1455 #ifndef PIPE_NODIRECT
   1456 		if (mpipe->pipe_state & PIPE_DIRECTW)
   1457 			*(int *)data = mpipe->pipe_map.cnt;
   1458 		else
   1459 #endif
   1460 			*(int *)data = mpipe->pipe_buffer.cnt;
   1461 		return (0);
   1462 
   1463 #ifdef __FreeBSD__
   1464 	case FIOSETOWN:
   1465 		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
   1466 
   1467 	case FIOGETOWN:
   1468 		*(int *)data = fgetown(mpipe->pipe_sigio);
   1469 		return (0);
   1470 
   1471 	/* This is deprecated, FIOSETOWN should be used instead. */
   1472 	case TIOCSPGRP:
   1473 		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
   1474 
   1475 	/* This is deprecated, FIOGETOWN should be used instead. */
   1476 	case TIOCGPGRP:
   1477 		*(int *)data = -fgetown(mpipe->pipe_sigio);
   1478 		return (0);
   1479 #endif /* FreeBSD */
   1480 #ifdef __NetBSD__
   1481 	case TIOCSPGRP:
   1482 		mpipe->pipe_pgid = *(int *)data;
   1483 		return (0);
   1484 
   1485 	case TIOCGPGRP:
   1486 		*(int *)data = mpipe->pipe_pgid;
   1487 		return (0);
   1488 #endif /* NetBSD */
   1489 
   1490 	}
   1491 	return (ENOTTY);
   1492 }
   1493 
   1494 int
   1495 pipe_poll(fp, events, p)
   1496 	struct file *fp;
   1497 	int events;
   1498 	struct proc *p;
   1499 {
   1500 	struct pipe *rpipe = (struct pipe *)fp->f_data;
   1501 	struct pipe *wpipe;
   1502 	int revents = 0;
   1503 
   1504 	wpipe = rpipe->pipe_peer;
   1505 	if (events & (POLLIN | POLLRDNORM))
   1506 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1507 #ifndef PIPE_NODIRECT
   1508 		    (rpipe->pipe_state & PIPE_DIRECTW) ||
   1509 #endif
   1510 		    (rpipe->pipe_state & PIPE_EOF))
   1511 			revents |= events & (POLLIN | POLLRDNORM);
   1512 
   1513 	if (events & (POLLOUT | POLLWRNORM))
   1514 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF)
   1515 		    || (
   1516 #ifndef PIPE_NODIRECT
   1517 		     ((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
   1518 #endif
   1519 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1520 			revents |= events & (POLLOUT | POLLWRNORM);
   1521 
   1522 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1523 	    (wpipe == NULL) ||
   1524 	    (wpipe->pipe_state & PIPE_EOF))
   1525 		revents |= POLLHUP;
   1526 
   1527 	if (revents == 0) {
   1528 		if (events & (POLLIN | POLLRDNORM)) {
   1529 			selrecord(p, &rpipe->pipe_sel);
   1530 			rpipe->pipe_state |= PIPE_SEL;
   1531 		}
   1532 
   1533 		if (events & (POLLOUT | POLLWRNORM)) {
   1534 			selrecord(p, &wpipe->pipe_sel);
   1535 			wpipe->pipe_state |= PIPE_SEL;
   1536 		}
   1537 	}
   1538 
   1539 	return (revents);
   1540 }
   1541 
   1542 static int
   1543 pipe_stat(fp, ub, p)
   1544 	struct file *fp;
   1545 	struct stat *ub;
   1546 	struct proc *p;
   1547 {
   1548 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1549 
   1550 	memset((caddr_t)ub, 0, sizeof(*ub));
   1551 	ub->st_mode = S_IFIFO;
   1552 	ub->st_blksize = pipe->pipe_buffer.size;
   1553 	ub->st_size = pipe->pipe_buffer.cnt;
   1554 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1555 #ifdef __FreeBSD__
   1556 	ub->st_atimespec = pipe->pipe_atime;
   1557 	ub->st_mtimespec = pipe->pipe_mtime;
   1558 	ub->st_ctimespec = pipe->pipe_ctime;
   1559 #endif /* FreeBSD */
   1560 #ifdef __NetBSD__
   1561 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec)
   1562 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
   1563 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
   1564 #endif /* NetBSD */
   1565 	ub->st_uid = fp->f_cred->cr_uid;
   1566 	ub->st_gid = fp->f_cred->cr_gid;
   1567 	/*
   1568 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1569 	 * XXX (st_dev, st_ino) should be unique.
   1570 	 */
   1571 	return (0);
   1572 }
   1573 
   1574 /* ARGSUSED */
   1575 static int
   1576 pipe_close(fp, p)
   1577 	struct file *fp;
   1578 	struct proc *p;
   1579 {
   1580 	struct pipe *cpipe = (struct pipe *)fp->f_data;
   1581 
   1582 #ifdef __FreeBSD__
   1583 	fp->f_ops = &badfileops;
   1584 	funsetown(cpipe->pipe_sigio);
   1585 #endif
   1586 	fp->f_data = NULL;
   1587 	pipeclose(cpipe);
   1588 	return (0);
   1589 }
   1590 
   1591 static void
   1592 pipe_free_kmem(cpipe)
   1593 	struct pipe *cpipe;
   1594 {
   1595 
   1596 #ifdef __FreeBSD__
   1597 	mtx_assert(&vm_mtx, MA_OWNED);
   1598 #endif
   1599 	if (cpipe->pipe_buffer.buffer != NULL) {
   1600 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
   1601 			--nbigpipe;
   1602 		amountpipekva -= cpipe->pipe_buffer.size;
   1603 #ifdef __FreeBSD__
   1604 		kmem_free(kernel_map,
   1605 			(vm_offset_t)cpipe->pipe_buffer.buffer,
   1606 			cpipe->pipe_buffer.size);
   1607 #elif defined(__NetBSD__)
   1608 		uvm_km_free(kernel_map,
   1609 			(vaddr_t)cpipe->pipe_buffer.buffer,
   1610 			cpipe->pipe_buffer.size);
   1611 #endif /* NetBSD */
   1612 
   1613 		cpipe->pipe_buffer.buffer = NULL;
   1614 	}
   1615 #ifndef PIPE_NODIRECT
   1616 	if (cpipe->pipe_map.kva != NULL) {
   1617 #ifdef __FreeBSD__
   1618 		amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE;
   1619 		kmem_free(kernel_map,
   1620 			cpipe->pipe_map.kva,
   1621 			cpipe->pipe_buffer.size + PAGE_SIZE);
   1622 #elif defined(__NetBSD__)
   1623 		pipe_loan_free(cpipe);
   1624 #endif /* NetBSD */
   1625 		cpipe->pipe_map.cnt = 0;
   1626 		cpipe->pipe_map.kva = NULL;
   1627 		cpipe->pipe_map.pos = 0;
   1628 		cpipe->pipe_map.npages = 0;
   1629 	}
   1630 #endif /* !PIPE_NODIRECT */
   1631 }
   1632 
   1633 /*
   1634  * shutdown the pipe
   1635  */
   1636 static void
   1637 pipeclose(cpipe)
   1638 	struct pipe *cpipe;
   1639 {
   1640 	struct pipe *ppipe;
   1641 
   1642 	if (!cpipe)
   1643 		return;
   1644 
   1645 	pipeselwakeup(cpipe, cpipe);
   1646 
   1647 	/*
   1648 	 * If the other side is blocked, wake it up saying that
   1649 	 * we want to close it down.
   1650 	 */
   1651 	while (cpipe->pipe_busy) {
   1652 		wakeup(cpipe);
   1653 		cpipe->pipe_state |= PIPE_WANTCLOSE | PIPE_EOF;
   1654 		tsleep(cpipe, PRIBIO, "pipecl", 0);
   1655 	}
   1656 
   1657 	/*
   1658 	 * Disconnect from peer
   1659 	 */
   1660 	if ((ppipe = cpipe->pipe_peer) != NULL) {
   1661 		pipeselwakeup(ppipe, ppipe);
   1662 
   1663 		ppipe->pipe_state |= PIPE_EOF;
   1664 		wakeup(ppipe);
   1665 		ppipe->pipe_peer = NULL;
   1666 	}
   1667 
   1668 	/*
   1669 	 * free resources
   1670 	 */
   1671 #ifdef _FreeBSD__
   1672 	mtx_lock(&vm_mtx);
   1673 	pipe_free_kmem(cpipe);
   1674 	/* XXX: erm, doesn't zalloc already have its own locks and
   1675 	 * not need the giant vm lock?
   1676 	 */
   1677 	zfree(pipe_zone, cpipe);
   1678 	mtx_unlock(&vm_mtx);
   1679 #endif /* FreeBSD */
   1680 
   1681 #ifdef __NetBSD__
   1682 	pipe_free_kmem(cpipe);
   1683 	(void) lockmgr(&cpipe->pipe_lock, LK_DRAIN, NULL);
   1684 	pool_put(&pipe_pool, cpipe);
   1685 #endif
   1686 }
   1687 
   1688 #ifdef __FreeBSD__
   1689 /*ARGSUSED*/
   1690 static int
   1691 pipe_kqfilter(struct file *fp, struct knote *kn)
   1692 {
   1693 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
   1694 
   1695 	switch (kn->kn_filter) {
   1696 	case EVFILT_READ:
   1697 		kn->kn_fop = &pipe_rfiltops;
   1698 		break;
   1699 	case EVFILT_WRITE:
   1700 		kn->kn_fop = &pipe_wfiltops;
   1701 		cpipe = cpipe->pipe_peer;
   1702 		break;
   1703 	default:
   1704 		return (1);
   1705 	}
   1706 	kn->kn_hook = (caddr_t)cpipe;
   1707 
   1708 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
   1709 	return (0);
   1710 }
   1711 
   1712 static void
   1713 filt_pipedetach(struct knote *kn)
   1714 {
   1715 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
   1716 
   1717 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
   1718 }
   1719 
   1720 /*ARGSUSED*/
   1721 static int
   1722 filt_piperead(struct knote *kn, long hint)
   1723 {
   1724 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1725 	struct pipe *wpipe = rpipe->pipe_peer;
   1726 
   1727 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1728 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1729 		kn->kn_data = rpipe->pipe_map.cnt;
   1730 
   1731 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1732 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1733 		kn->kn_flags |= EV_EOF;
   1734 		return (1);
   1735 	}
   1736 	return (kn->kn_data > 0);
   1737 }
   1738 
   1739 /*ARGSUSED*/
   1740 static int
   1741 filt_pipewrite(struct knote *kn, long hint)
   1742 {
   1743 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1744 	struct pipe *wpipe = rpipe->pipe_peer;
   1745 
   1746 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1747 		kn->kn_data = 0;
   1748 		kn->kn_flags |= EV_EOF;
   1749 		return (1);
   1750 	}
   1751 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1752 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1753 		kn->kn_data = 0;
   1754 
   1755 	return (kn->kn_data >= PIPE_BUF);
   1756 }
   1757 #endif /* FreeBSD */
   1758 
   1759 #ifdef __NetBSD__
   1760 static int
   1761 pipe_fcntl(fp, cmd, data, p)
   1762 	struct file *fp;
   1763 	u_int cmd;
   1764 	caddr_t data;
   1765 	struct proc *p;
   1766 {
   1767 	if (cmd == F_SETFL)
   1768 		return (0);
   1769 	else
   1770 		return (EOPNOTSUPP);
   1771 }
   1772 
   1773 /*
   1774  * Handle pipe sysctls.
   1775  */
   1776 int
   1777 sysctl_dopipe(name, namelen, oldp, oldlenp, newp, newlen)
   1778 	int *name;
   1779 	u_int namelen;
   1780 	void *oldp;
   1781 	size_t *oldlenp;
   1782 	void *newp;
   1783 	size_t newlen;
   1784 {
   1785 	/* All sysctl names at this level are terminal. */
   1786 	if (namelen != 1)
   1787 		return (ENOTDIR);		/* overloaded */
   1788 
   1789 	switch (name[0]) {
   1790 	case KERN_PIPE_MAXKVASZ:
   1791 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxpipekva));
   1792 	case KERN_PIPE_LIMITKVA:
   1793 		return (sysctl_int(oldp, oldlenp, newp, newlen, &limitpipekva));
   1794 	case KERN_PIPE_MAXBIGPIPES:
   1795 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxbigpipes));
   1796 	case KERN_PIPE_NBIGPIPES:
   1797 		return (sysctl_rdint(oldp, oldlenp, newp, nbigpipe));
   1798 	case KERN_PIPE_KVASIZE:
   1799 		return (sysctl_rdint(oldp, oldlenp, newp, amountpipekva));
   1800 	default:
   1801 		return (EOPNOTSUPP);
   1802 	}
   1803 	/* NOTREACHED */
   1804 }
   1805 
   1806 /*
   1807  * Initialize pipe structs.
   1808  */
   1809 void
   1810 pipe_init(void)
   1811 {
   1812 	pool_init(&pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
   1813 		0, NULL, NULL, M_PIPE);
   1814 }
   1815 
   1816 #endif /* __NetBSD __ */
   1817