Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.19
      1 /*	$NetBSD: sys_pipe.c,v 1.19 2001/11/12 15:25:24 lukem Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1996 John S. Dyson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice immediately at the beginning of the file, without modification,
     12  *    this list of conditions, and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Absolutely no warranty of function or purpose is made by the author
     17  *    John S. Dyson.
     18  * 4. Modifications may be freely made to this file if the above conditions
     19  *    are met.
     20  *
     21  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.82 2001/06/15 20:45:01 jlemon Exp $
     22  */
     23 
     24 /*
     25  * This file contains a high-performance replacement for the socket-based
     26  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
     27  * all features of sockets, but does do everything that pipes normally
     28  * do.
     29  *
     30  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
     31  * written by Jaromir Dolecek.
     32  */
     33 
     34 /*
     35  * This code has two modes of operation, a small write mode and a large
     36  * write mode.  The small write mode acts like conventional pipes with
     37  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     38  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     39  * and PIPE_SIZE in size, it is fully mapped into the kernel (on FreeBSD,
     40  * those pages are also wired), and the receiving process can copy it directly
     41  * from the pages in the sending process.
     42  *
     43  * If the sending process receives a signal, it is possible that it will
     44  * go away, and certainly its address space can change, because control
     45  * is returned back to the user-mode side.  In that case, the pipe code
     46  * arranges to copy the buffer supplied by the user process on FreeBSD, to
     47  * a pageable kernel buffer, and the receiving process will grab the data
     48  * from the pageable kernel buffer.  Since signals don't happen all that often,
     49  * the copy operation is normally eliminated.
     50  * For NetBSD, the pages are mapped read-only, COW for kernel by uvm_loan(),
     51  * so no explicit handling need to be done, all is handled by standard VM
     52  * facilities.
     53  *
     54  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     55  * happen for small transfers so that the system will not spend all of
     56  * its time context switching.  PIPE_SIZE is constrained by the
     57  * amount of kernel virtual memory.
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.19 2001/11/12 15:25:24 lukem Exp $");
     62 
     63 #include <sys/param.h>
     64 #include <sys/systm.h>
     65 #include <sys/proc.h>
     66 #include <sys/fcntl.h>
     67 #include <sys/file.h>
     68 #include <sys/filedesc.h>
     69 #include <sys/filio.h>
     70 #include <sys/ttycom.h>
     71 #include <sys/stat.h>
     72 #include <sys/poll.h>
     73 #include <sys/signalvar.h>
     74 #include <sys/vnode.h>
     75 #include <sys/uio.h>
     76 #include <sys/lock.h>
     77 #ifdef __FreeBSD__
     78 #include <sys/mutex.h>
     79 #include <sys/selinfo.h>
     80 #include <sys/sysproto.h>
     81 #elif defined(__NetBSD__)
     82 #include <sys/select.h>
     83 #include <sys/malloc.h>
     84 #include <sys/mount.h>
     85 #include <sys/syscallargs.h>
     86 #include <uvm/uvm.h>
     87 #include <sys/sysctl.h>
     88 #include <sys/kernel.h>
     89 #endif /* NetBSD, FreeBSD */
     90 
     91 #include <sys/pipe.h>
     92 
     93 #ifdef __NetBSD__
     94 /*
     95  * Avoid microtime(9), it's slow. We don't guard the read from time(9)
     96  * with splclock(9) since we don't actually need to be THAT sure the access
     97  * is atomic.
     98  */
     99 #define vfs_timestamp(tv)	(*(tv) = time)
    100 #endif
    101 
    102 /*
    103  * Use this define if you want to disable *fancy* VM things.  Expect an
    104  * approx 30% decrease in transfer rate.  This could be useful for
    105  * OpenBSD.
    106  */
    107 /* #define PIPE_NODIRECT */
    108 
    109 /*
    110  * interfaces to the outside world
    111  */
    112 #ifdef __FreeBSD__
    113 static int pipe_read __P((struct file *fp, struct uio *uio,
    114 		struct ucred *cred, int flags, struct proc *p));
    115 static int pipe_write __P((struct file *fp, struct uio *uio,
    116 		struct ucred *cred, int flags, struct proc *p));
    117 static int pipe_close __P((struct file *fp, struct proc *p));
    118 static int pipe_poll __P((struct file *fp, int events, struct ucred *cred,
    119 		struct proc *p));
    120 static int pipe_kqfilter __P((struct file *fp, struct knote *kn));
    121 static int pipe_stat __P((struct file *fp, struct stat *sb, struct proc *p));
    122 static int pipe_ioctl __P((struct file *fp, u_long cmd, caddr_t data, struct proc *p));
    123 
    124 static struct fileops pipeops = {
    125 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
    126 	pipe_stat, pipe_close
    127 };
    128 
    129 static void	filt_pipedetach(struct knote *kn);
    130 static int	filt_piperead(struct knote *kn, long hint);
    131 static int	filt_pipewrite(struct knote *kn, long hint);
    132 
    133 static struct filterops pipe_rfiltops =
    134 	{ 1, NULL, filt_pipedetach, filt_piperead };
    135 static struct filterops pipe_wfiltops =
    136 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
    137 #endif /* FreeBSD */
    138 
    139 #ifdef __NetBSD__
    140 static int pipe_read __P((struct file *fp, off_t *offset, struct uio *uio,
    141 		struct ucred *cred, int flags));
    142 static int pipe_write __P((struct file *fp, off_t *offset, struct uio *uio,
    143 		struct ucred *cred, int flags));
    144 static int pipe_close __P((struct file *fp, struct proc *p));
    145 static int pipe_poll __P((struct file *fp, int events, struct proc *p));
    146 static int pipe_fcntl __P((struct file *fp, u_int com, caddr_t data,
    147 		struct proc *p));
    148 static int pipe_stat __P((struct file *fp, struct stat *sb, struct proc *p));
    149 static int pipe_ioctl __P((struct file *fp, u_long cmd, caddr_t data, struct proc *p));
    150 
    151 static struct fileops pipeops =
    152     { pipe_read, pipe_write, pipe_ioctl, pipe_fcntl, pipe_poll,
    153       pipe_stat, pipe_close };
    154 #endif /* NetBSD */
    155 
    156 /*
    157  * Default pipe buffer size(s), this can be kind-of large now because pipe
    158  * space is pageable.  The pipe code will try to maintain locality of
    159  * reference for performance reasons, so small amounts of outstanding I/O
    160  * will not wipe the cache.
    161  */
    162 #define MINPIPESIZE (PIPE_SIZE/3)
    163 #define MAXPIPESIZE (2*PIPE_SIZE/3)
    164 
    165 /*
    166  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    167  * is there so that on large systems, we don't exhaust it.
    168  */
    169 #define MAXPIPEKVA (8*1024*1024)
    170 static int maxpipekva = MAXPIPEKVA;
    171 
    172 /*
    173  * Limit for direct transfers, we cannot, of course limit
    174  * the amount of kva for pipes in general though.
    175  */
    176 #define LIMITPIPEKVA (16*1024*1024)
    177 static int limitpipekva = LIMITPIPEKVA;
    178 
    179 /*
    180  * Limit the number of "big" pipes
    181  */
    182 #define LIMITBIGPIPES  32
    183 static int maxbigpipes = LIMITBIGPIPES;
    184 static int nbigpipe = 0;
    185 
    186 /*
    187  * Amount of KVA consumed by pipe buffers.
    188  */
    189 static int amountpipekva = 0;
    190 
    191 static void pipeclose __P((struct pipe *));
    192 static void pipe_free_kmem __P((struct pipe *));
    193 static int pipe_create __P((struct pipe **, int));
    194 static __inline int pipelock __P((struct pipe *, int));
    195 static __inline void pipeunlock __P((struct pipe *));
    196 static __inline void pipeselwakeup __P((struct pipe *, struct pipe *));
    197 static int pipespace __P((struct pipe *, int));
    198 
    199 #ifdef __FreeBSD__
    200 #ifndef PIPE_NODIRECT
    201 static int pipe_build_write_buffer __P((struct pipe *wpipe, struct uio *uio));
    202 static void pipe_destroy_write_buffer __P((struct pipe *wpipe));
    203 static int pipe_direct_write __P((struct pipe *wpipe, struct uio *uio));
    204 static void pipe_clone_write_buffer __P((struct pipe *wpipe));
    205 #endif
    206 
    207 static vm_zone_t pipe_zone;
    208 #endif /* FreeBSD */
    209 
    210 #ifdef __NetBSD__
    211 #ifndef PIPE_NODIRECT
    212 static int pipe_direct_write __P((struct pipe *, struct uio *));
    213 static int pipe_loan_alloc __P((struct pipe *, int));
    214 static void pipe_loan_free __P((struct pipe *));
    215 #endif /* PIPE_NODIRECT */
    216 
    217 static struct pool pipe_pool;
    218 #endif /* NetBSD */
    219 
    220 /*
    221  * The pipe system call for the DTYPE_PIPE type of pipes
    222  */
    223 
    224 /* ARGSUSED */
    225 #ifdef __FreeBSD__
    226 int
    227 pipe(p, uap)
    228 	struct proc *p;
    229 	struct pipe_args /* {
    230 		int	dummy;
    231 	} */ *uap;
    232 #elif defined(__NetBSD__)
    233 int
    234 sys_pipe(p, v, retval)
    235 	struct proc *p;
    236 	void *v;
    237 	register_t *retval;
    238 #endif
    239 {
    240 	struct file *rf, *wf;
    241 	struct pipe *rpipe, *wpipe;
    242 	int fd, error;
    243 
    244 #ifdef __FreeBSD__
    245 	if (pipe_zone == NULL)
    246 		pipe_zone = zinit("PIPE", sizeof(struct pipe), 0, 0, 4);
    247 
    248 	rpipe = wpipe = NULL;
    249 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 1)) {
    250 		pipeclose(rpipe);
    251 		pipeclose(wpipe);
    252 		return (ENFILE);
    253 	}
    254 
    255 	error = falloc(p, &rf, &fd);
    256 	if (error) {
    257 		pipeclose(rpipe);
    258 		pipeclose(wpipe);
    259 		return (error);
    260 	}
    261 	fhold(rf);
    262 	p->p_retval[0] = fd;
    263 
    264 	/*
    265 	 * Warning: once we've gotten past allocation of the fd for the
    266 	 * read-side, we can only drop the read side via fdrop() in order
    267 	 * to avoid races against processes which manage to dup() the read
    268 	 * side while we are blocked trying to allocate the write side.
    269 	 */
    270 	rf->f_flag = FREAD | FWRITE;
    271 	rf->f_type = DTYPE_PIPE;
    272 	rf->f_data = (caddr_t)rpipe;
    273 	rf->f_ops = &pipeops;
    274 	error = falloc(p, &wf, &fd);
    275 	if (error) {
    276 		struct filedesc *fdp = p->p_fd;
    277 
    278 		if (fdp->fd_ofiles[p->p_retval[0]] == rf) {
    279 			fdp->fd_ofiles[p->p_retval[0]] = NULL;
    280 			fdrop(rf, p);
    281 		}
    282 		fdrop(rf, p);
    283 		/* rpipe has been closed by fdrop(). */
    284 		pipeclose(wpipe);
    285 		return (error);
    286 	}
    287 	wf->f_flag = FREAD | FWRITE;
    288 	wf->f_type = DTYPE_PIPE;
    289 	wf->f_data = (caddr_t)wpipe;
    290 	wf->f_ops = &pipeops;
    291 	p->p_retval[1] = fd;
    292 
    293 	rpipe->pipe_peer = wpipe;
    294 	wpipe->pipe_peer = rpipe;
    295 	fdrop(rf, p);
    296 #endif /* FreeBSD */
    297 
    298 #ifdef __NetBSD__
    299 	rpipe = wpipe = NULL;
    300 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
    301 		pipeclose(rpipe);
    302 		pipeclose(wpipe);
    303 		return (ENFILE);
    304 	}
    305 
    306 	/*
    307 	 * Note: the file structure returned from falloc() is marked
    308 	 * as 'larval' initially. Unless we mark it as 'mature' by
    309 	 * FILE_SET_MATURE(), any attempt to do anything with it would
    310 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
    311 	 * file descriptor races if we block in the second falloc().
    312 	 */
    313 
    314 	error = falloc(p, &rf, &fd);
    315 	if (error)
    316 		goto free2;
    317 	retval[0] = fd;
    318 	rf->f_flag = FREAD;
    319 	rf->f_type = DTYPE_PIPE;
    320 	rf->f_data = (caddr_t)rpipe;
    321 	rf->f_ops = &pipeops;
    322 
    323 	error = falloc(p, &wf, &fd);
    324 	if (error)
    325 		goto free3;
    326 	retval[1] = fd;
    327 	wf->f_flag = FWRITE;
    328 	wf->f_type = DTYPE_PIPE;
    329 	wf->f_data = (caddr_t)wpipe;
    330 	wf->f_ops = &pipeops;
    331 
    332 	rpipe->pipe_peer = wpipe;
    333 	wpipe->pipe_peer = rpipe;
    334 
    335 	FILE_SET_MATURE(rf);
    336 	FILE_SET_MATURE(wf);
    337 	FILE_UNUSE(rf, p);
    338 	FILE_UNUSE(wf, p);
    339 	return (0);
    340 free3:
    341 	FILE_UNUSE(rf, p);
    342 	ffree(rf);
    343 	fdremove(p->p_fd, retval[0]);
    344 free2:
    345 	pipeclose(wpipe);
    346 	pipeclose(rpipe);
    347 #endif /* NetBSD */
    348 
    349 	return (error);
    350 }
    351 
    352 /*
    353  * Allocate kva for pipe circular buffer, the space is pageable
    354  * This routine will 'realloc' the size of a pipe safely, if it fails
    355  * it will retain the old buffer.
    356  * If it fails it will return ENOMEM.
    357  */
    358 static int
    359 pipespace(cpipe, size)
    360 	struct pipe *cpipe;
    361 	int size;
    362 {
    363 	caddr_t buffer;
    364 #ifdef __FreeBSD__
    365 	struct vm_object *object;
    366 	int npages, error;
    367 
    368 	npages = round_page(size)/PAGE_SIZE;
    369 	/*
    370 	 * Create an object, I don't like the idea of paging to/from
    371 	 * kernel_object.
    372 	 */
    373 	mtx_lock(&vm_mtx);
    374 	object = vm_object_allocate(OBJT_DEFAULT, npages);
    375 	buffer = (caddr_t) vm_map_min(kernel_map);
    376 
    377 	/*
    378 	 * Insert the object into the kernel map, and allocate kva for it.
    379 	 * The map entry is, by default, pageable.
    380 	 */
    381 	error = vm_map_find(kernel_map, object, 0,
    382 		(vm_offset_t *) &buffer, size, 1,
    383 		VM_PROT_ALL, VM_PROT_ALL, 0);
    384 
    385 	if (error != KERN_SUCCESS) {
    386 		vm_object_deallocate(object);
    387 		mtx_unlock(&vm_mtx);
    388 		return (ENOMEM);
    389 	}
    390 #endif /* FreeBSD */
    391 
    392 #ifdef __NetBSD__
    393 	/*
    394 	 * Allocate pageable virtual address space. Physical memory is allocated
    395 	 * on demand.
    396 	 */
    397 	buffer = (caddr_t) uvm_km_valloc(kernel_map, round_page(size));
    398 	if (buffer == NULL)
    399 		return (ENOMEM);
    400 #endif /* NetBSD */
    401 
    402 	/* free old resources if we're resizing */
    403 	pipe_free_kmem(cpipe);
    404 #ifdef __FreeBSD__
    405 	mtx_unlock(&vm_mtx);
    406 	cpipe->pipe_buffer.object = object;
    407 #endif
    408 	cpipe->pipe_buffer.buffer = buffer;
    409 	cpipe->pipe_buffer.size = size;
    410 	cpipe->pipe_buffer.in = 0;
    411 	cpipe->pipe_buffer.out = 0;
    412 	cpipe->pipe_buffer.cnt = 0;
    413 	amountpipekva += cpipe->pipe_buffer.size;
    414 	return (0);
    415 }
    416 
    417 /*
    418  * initialize and allocate VM and memory for pipe
    419  */
    420 static int
    421 pipe_create(cpipep, allockva)
    422 	struct pipe **cpipep;
    423 	int allockva;
    424 {
    425 	struct pipe *cpipe;
    426 	int error;
    427 
    428 #ifdef __FreeBSD__
    429 	*cpipep = zalloc(pipe_zone);
    430 #endif
    431 #ifdef __NetBSD__
    432 	*cpipep = pool_get(&pipe_pool, M_WAITOK);
    433 #endif
    434 	if (*cpipep == NULL)
    435 		return (ENOMEM);
    436 
    437 	cpipe = *cpipep;
    438 
    439 	/* Initialize */
    440 	memset(cpipe, 0, sizeof(*cpipe));
    441 	cpipe->pipe_state = PIPE_SIGNALR;
    442 
    443 	if (allockva && (error = pipespace(cpipe, PIPE_SIZE)))
    444 		return (error);
    445 
    446 	vfs_timestamp(&cpipe->pipe_ctime);
    447 	cpipe->pipe_atime = cpipe->pipe_ctime;
    448 	cpipe->pipe_mtime = cpipe->pipe_ctime;
    449 #ifdef __NetBSD__
    450 	cpipe->pipe_pgid = NO_PID;
    451 	lockinit(&cpipe->pipe_lock, PRIBIO | PCATCH, "pipelk", 0, 0);
    452 #endif
    453 
    454 	return (0);
    455 }
    456 
    457 
    458 /*
    459  * lock a pipe for I/O, blocking other access
    460  */
    461 static __inline int
    462 pipelock(cpipe, catch)
    463 	struct pipe *cpipe;
    464 	int catch;
    465 {
    466 	int error;
    467 
    468 #ifdef __FreeBSD__
    469 	while (cpipe->pipe_state & PIPE_LOCK) {
    470 		cpipe->pipe_state |= PIPE_LWANT;
    471 		error = tsleep(cpipe, catch ? (PRIBIO | PCATCH) : PRIBIO,
    472 		    "pipelk", 0);
    473 		if (error != 0)
    474 			return (error);
    475 	}
    476 	cpipe->pipe_state |= PIPE_LOCK;
    477 	return (0);
    478 #endif
    479 
    480 #ifdef __NetBSD__
    481 	do {
    482 		error = lockmgr(&cpipe->pipe_lock, LK_EXCLUSIVE, NULL);
    483 	} while (!catch && (error == EINTR || error == ERESTART));
    484 	return (error);
    485 #endif
    486 }
    487 
    488 /*
    489  * unlock a pipe I/O lock
    490  */
    491 static __inline void
    492 pipeunlock(cpipe)
    493 	struct pipe *cpipe;
    494 {
    495 #ifdef __FreeBSD__
    496 	cpipe->pipe_state &= ~PIPE_LOCK;
    497 	if (cpipe->pipe_state & PIPE_LWANT) {
    498 		cpipe->pipe_state &= ~PIPE_LWANT;
    499 		wakeup(cpipe);
    500 	}
    501 #endif
    502 
    503 #ifdef __NetBSD__
    504 	lockmgr(&cpipe->pipe_lock, LK_RELEASE, NULL);
    505 #endif
    506 }
    507 
    508 /*
    509  * Select/poll wakup. This also sends SIGIO to peer connected to
    510  * 'sigpipe' side of pipe.
    511  */
    512 static __inline void
    513 pipeselwakeup(selp, sigp)
    514 	struct pipe *selp, *sigp;
    515 {
    516 	if (selp->pipe_state & PIPE_SEL) {
    517 		selp->pipe_state &= ~PIPE_SEL;
    518 		selwakeup(&selp->pipe_sel);
    519 	}
    520 #ifdef __FreeBSD__
    521 	if (sigp && (sigp->pipe_state & PIPE_ASYNC) && sigp->pipe_sigio)
    522 		pgsigio(sigp->pipe_sigio, SIGIO, 0);
    523 	KNOTE(&selp->pipe_sel.si_note, 0);
    524 #endif
    525 
    526 #ifdef __NetBSD__
    527 	if (sigp && (sigp->pipe_state & PIPE_ASYNC)
    528 	    && sigp->pipe_pgid != NO_PID){
    529 		struct proc *p;
    530 
    531 		if (sigp->pipe_pgid < 0)
    532 			gsignal(-sigp->pipe_pgid, SIGIO);
    533 		else if (sigp->pipe_pgid > 0 && (p = pfind(sigp->pipe_pgid)) != 0)
    534 			psignal(p, SIGIO);
    535 	}
    536 #endif /* NetBSD */
    537 }
    538 
    539 /* ARGSUSED */
    540 #ifdef __FreeBSD__
    541 static int
    542 pipe_read(fp, uio, cred, flags, p)
    543 	struct file *fp;
    544 	struct uio *uio;
    545 	struct ucred *cred;
    546 	int flags;
    547 	struct proc *p;
    548 #elif defined(__NetBSD__)
    549 static int
    550 pipe_read(fp, offset, uio, cred, flags)
    551 	struct file *fp;
    552 	off_t *offset;
    553 	struct uio *uio;
    554 	struct ucred *cred;
    555 	int flags;
    556 #endif
    557 {
    558 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    559 	int error;
    560 	size_t nread = 0;
    561 	size_t size;
    562 	size_t ocnt;
    563 
    564 	++rpipe->pipe_busy;
    565 	error = pipelock(rpipe, 1);
    566 	if (error)
    567 		goto unlocked_error;
    568 
    569 	ocnt = rpipe->pipe_buffer.cnt;
    570 
    571 	while (uio->uio_resid) {
    572 		/*
    573 		 * normal pipe buffer receive
    574 		 */
    575 		if (rpipe->pipe_buffer.cnt > 0) {
    576 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
    577 			if (size > rpipe->pipe_buffer.cnt)
    578 				size = rpipe->pipe_buffer.cnt;
    579 			if (size > uio->uio_resid)
    580 				size = uio->uio_resid;
    581 
    582 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
    583 					size, uio);
    584 			if (error)
    585 				break;
    586 
    587 			rpipe->pipe_buffer.out += size;
    588 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
    589 				rpipe->pipe_buffer.out = 0;
    590 
    591 			rpipe->pipe_buffer.cnt -= size;
    592 
    593 			/*
    594 			 * If there is no more to read in the pipe, reset
    595 			 * its pointers to the beginning.  This improves
    596 			 * cache hit stats.
    597 			 */
    598 			if (rpipe->pipe_buffer.cnt == 0) {
    599 				rpipe->pipe_buffer.in = 0;
    600 				rpipe->pipe_buffer.out = 0;
    601 			}
    602 			nread += size;
    603 #ifndef PIPE_NODIRECT
    604 		/*
    605 		 * Direct copy, bypassing a kernel buffer.
    606 		 */
    607 		} else if ((size = rpipe->pipe_map.cnt) &&
    608 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
    609 			caddr_t	va;
    610 			if (size > uio->uio_resid)
    611 				size = uio->uio_resid;
    612 
    613 			va = (caddr_t) rpipe->pipe_map.kva +
    614 			    rpipe->pipe_map.pos;
    615 			error = uiomove(va, size, uio);
    616 			if (error)
    617 				break;
    618 			nread += size;
    619 			rpipe->pipe_map.pos += size;
    620 			rpipe->pipe_map.cnt -= size;
    621 			if (rpipe->pipe_map.cnt == 0) {
    622 				rpipe->pipe_state &= ~PIPE_DIRECTW;
    623 				wakeup(rpipe);
    624 			}
    625 #endif
    626 		} else {
    627 			/*
    628 			 * detect EOF condition
    629 			 * read returns 0 on EOF, no need to set error
    630 			 */
    631 			if (rpipe->pipe_state & PIPE_EOF)
    632 				break;
    633 
    634 			/*
    635 			 * If the "write-side" has been blocked, wake it up now.
    636 			 */
    637 			if (rpipe->pipe_state & PIPE_WANTW) {
    638 				rpipe->pipe_state &= ~PIPE_WANTW;
    639 				wakeup(rpipe);
    640 			}
    641 
    642 			/*
    643 			 * Break if some data was read.
    644 			 */
    645 			if (nread > 0)
    646 				break;
    647 
    648 			/*
    649 			 * don't block on non-blocking I/O
    650 			 */
    651 			if (fp->f_flag & FNONBLOCK) {
    652 				error = EAGAIN;
    653 				break;
    654 			}
    655 
    656 			/*
    657 			 * Unlock the pipe buffer for our remaining processing.
    658 			 * We will either break out with an error or we will
    659 			 * sleep and relock to loop.
    660 			 */
    661 			pipeunlock(rpipe);
    662 
    663 			/*
    664 			 * We want to read more, wake up select/poll.
    665 			 */
    666 			pipeselwakeup(rpipe, rpipe->pipe_peer);
    667 
    668 			rpipe->pipe_state |= PIPE_WANTR;
    669 			error = tsleep(rpipe, PRIBIO | PCATCH, "piperd", 0);
    670 			if (error != 0 || (error = pipelock(rpipe, 1)))
    671 				goto unlocked_error;
    672 		}
    673 	}
    674 	pipeunlock(rpipe);
    675 
    676 	if (error == 0)
    677 		vfs_timestamp(&rpipe->pipe_atime);
    678 unlocked_error:
    679 	--rpipe->pipe_busy;
    680 
    681 	/*
    682 	 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
    683 	 */
    684 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
    685 		rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
    686 		wakeup(rpipe);
    687 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
    688 		/*
    689 		 * Handle write blocking hysteresis.
    690 		 */
    691 		if (rpipe->pipe_state & PIPE_WANTW) {
    692 			rpipe->pipe_state &= ~PIPE_WANTW;
    693 			wakeup(rpipe);
    694 		}
    695 	}
    696 
    697 	/*
    698 	 * If anything was read off the buffer, signal to the writer it's
    699 	 * possible to write more data. Also send signal if we are here for the
    700 	 * first time after last write.
    701 	 */
    702 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF
    703 	    && (ocnt != rpipe->pipe_buffer.cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    704 		pipeselwakeup(rpipe, rpipe->pipe_peer);
    705 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    706 	}
    707 
    708 	return (error);
    709 }
    710 
    711 #ifdef __FreeBSD__
    712 #ifndef PIPE_NODIRECT
    713 /*
    714  * Map the sending processes' buffer into kernel space and wire it.
    715  * This is similar to a physical write operation.
    716  */
    717 static int
    718 pipe_build_write_buffer(wpipe, uio)
    719 	struct pipe *wpipe;
    720 	struct uio *uio;
    721 {
    722 	size_t size;
    723 	int i;
    724 	vm_offset_t addr, endaddr, paddr;
    725 
    726 	size = uio->uio_iov->iov_len;
    727 	if (size > wpipe->pipe_buffer.size)
    728 		size = wpipe->pipe_buffer.size;
    729 
    730 	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
    731 	mtx_lock(&vm_mtx);
    732 	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
    733 	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
    734 		vm_page_t m;
    735 
    736 		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
    737 		    (paddr = pmap_kextract(addr)) == 0) {
    738 			int j;
    739 
    740 			for (j = 0; j < i; j++)
    741 				vm_page_unwire(wpipe->pipe_map.ms[j], 1);
    742 			mtx_unlock(&vm_mtx);
    743 			return (EFAULT);
    744 		}
    745 
    746 		m = PHYS_TO_VM_PAGE(paddr);
    747 		vm_page_wire(m);
    748 		wpipe->pipe_map.ms[i] = m;
    749 	}
    750 
    751 /*
    752  * set up the control block
    753  */
    754 	wpipe->pipe_map.npages = i;
    755 	wpipe->pipe_map.pos =
    756 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
    757 	wpipe->pipe_map.cnt = size;
    758 
    759 /*
    760  * and map the buffer
    761  */
    762 	if (wpipe->pipe_map.kva == 0) {
    763 		/*
    764 		 * We need to allocate space for an extra page because the
    765 		 * address range might (will) span pages at times.
    766 		 */
    767 		wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
    768 			wpipe->pipe_buffer.size + PAGE_SIZE);
    769 		amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE;
    770 	}
    771 	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
    772 		wpipe->pipe_map.npages);
    773 
    774 	mtx_unlock(&vm_mtx);
    775 /*
    776  * and update the uio data
    777  */
    778 
    779 	uio->uio_iov->iov_len -= size;
    780 	uio->uio_iov->iov_base += size;
    781 	if (uio->uio_iov->iov_len == 0)
    782 		uio->uio_iov++;
    783 	uio->uio_resid -= size;
    784 	uio->uio_offset += size;
    785 	return (0);
    786 }
    787 
    788 /*
    789  * unmap and unwire the process buffer
    790  */
    791 static void
    792 pipe_destroy_write_buffer(wpipe)
    793 	struct pipe *wpipe;
    794 {
    795 	int i;
    796 
    797 	mtx_lock(&vm_mtx);
    798 	if (wpipe->pipe_map.kva) {
    799 		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
    800 
    801 		if (amountpipekva > maxpipekva) {
    802 			vm_offset_t kva = wpipe->pipe_map.kva;
    803 			wpipe->pipe_map.kva = 0;
    804 			kmem_free(kernel_map, kva,
    805 				wpipe->pipe_buffer.size + PAGE_SIZE);
    806 			amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
    807 		}
    808 	}
    809 	for (i = 0; i < wpipe->pipe_map.npages; i++)
    810 		vm_page_unwire(wpipe->pipe_map.ms[i], 1);
    811 	mtx_unlock(&vm_mtx);
    812 }
    813 
    814 /*
    815  * In the case of a signal, the writing process might go away.  This
    816  * code copies the data into the circular buffer so that the source
    817  * pages can be freed without loss of data.
    818  */
    819 static void
    820 pipe_clone_write_buffer(wpipe)
    821 	struct pipe *wpipe;
    822 {
    823 	int size;
    824 	int pos;
    825 
    826 	size = wpipe->pipe_map.cnt;
    827 	pos = wpipe->pipe_map.pos;
    828 	memcpy((caddr_t) wpipe->pipe_buffer.buffer,
    829 	    (caddr_t) wpipe->pipe_map.kva + pos, size);
    830 
    831 	wpipe->pipe_buffer.in = size;
    832 	wpipe->pipe_buffer.out = 0;
    833 	wpipe->pipe_buffer.cnt = size;
    834 	wpipe->pipe_state &= ~PIPE_DIRECTW;
    835 
    836 	pipe_destroy_write_buffer(wpipe);
    837 }
    838 
    839 /*
    840  * This implements the pipe buffer write mechanism.  Note that only
    841  * a direct write OR a normal pipe write can be pending at any given time.
    842  * If there are any characters in the pipe buffer, the direct write will
    843  * be deferred until the receiving process grabs all of the bytes from
    844  * the pipe buffer.  Then the direct mapping write is set-up.
    845  */
    846 static int
    847 pipe_direct_write(wpipe, uio)
    848 	struct pipe *wpipe;
    849 	struct uio *uio;
    850 {
    851 	int error;
    852 
    853 retry:
    854 	while (wpipe->pipe_state & PIPE_DIRECTW) {
    855 		if (wpipe->pipe_state & PIPE_WANTR) {
    856 			wpipe->pipe_state &= ~PIPE_WANTR;
    857 			wakeup(wpipe);
    858 		}
    859 		wpipe->pipe_state |= PIPE_WANTW;
    860 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdww", 0);
    861 		if (error)
    862 			goto error1;
    863 		if (wpipe->pipe_state & PIPE_EOF) {
    864 			error = EPIPE;
    865 			goto error1;
    866 		}
    867 	}
    868 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
    869 	if (wpipe->pipe_buffer.cnt > 0) {
    870 		if (wpipe->pipe_state & PIPE_WANTR) {
    871 			wpipe->pipe_state &= ~PIPE_WANTR;
    872 			wakeup(wpipe);
    873 		}
    874 
    875 		wpipe->pipe_state |= PIPE_WANTW;
    876 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0);
    877 		if (error)
    878 			goto error1;
    879 		if (wpipe->pipe_state & PIPE_EOF) {
    880 			error = EPIPE;
    881 			goto error1;
    882 		}
    883 		goto retry;
    884 	}
    885 
    886 	wpipe->pipe_state |= PIPE_DIRECTW;
    887 
    888 	error = pipe_build_write_buffer(wpipe, uio);
    889 	if (error) {
    890 		wpipe->pipe_state &= ~PIPE_DIRECTW;
    891 		goto error1;
    892 	}
    893 
    894 	error = 0;
    895 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
    896 		if (wpipe->pipe_state & PIPE_EOF) {
    897 			pipelock(wpipe, 0);
    898 			pipe_destroy_write_buffer(wpipe);
    899 			pipeunlock(wpipe);
    900 			pipeselwakeup(wpipe, wpipe);
    901 			error = EPIPE;
    902 			goto error1;
    903 		}
    904 		if (wpipe->pipe_state & PIPE_WANTR) {
    905 			wpipe->pipe_state &= ~PIPE_WANTR;
    906 			wakeup(wpipe);
    907 		}
    908 		pipeselwakeup(wpipe, wpipe);
    909 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0);
    910 	}
    911 
    912 	pipelock(wpipe,0);
    913 	if (wpipe->pipe_state & PIPE_DIRECTW) {
    914 		/*
    915 		 * this bit of trickery substitutes a kernel buffer for
    916 		 * the process that might be going away.
    917 		 */
    918 		pipe_clone_write_buffer(wpipe);
    919 	} else {
    920 		pipe_destroy_write_buffer(wpipe);
    921 	}
    922 	pipeunlock(wpipe);
    923 	return (error);
    924 
    925 error1:
    926 	wakeup(wpipe);
    927 	return (error);
    928 }
    929 #endif /* !PIPE_NODIRECT */
    930 #endif /* FreeBSD */
    931 
    932 #ifdef __NetBSD__
    933 #ifndef PIPE_NODIRECT
    934 /*
    935  * Allocate structure for loan transfer.
    936  */
    937 static int
    938 pipe_loan_alloc(wpipe, npages)
    939 	struct pipe *wpipe;
    940 	int npages;
    941 {
    942 	vsize_t len;
    943 
    944 	len = (vsize_t)npages << PAGE_SHIFT;
    945 	wpipe->pipe_map.kva = uvm_km_valloc_wait(kernel_map, len);
    946 	if (wpipe->pipe_map.kva == NULL)
    947 		return (ENOMEM);
    948 
    949 	amountpipekva += len;
    950 	wpipe->pipe_map.npages = npages;
    951 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
    952 	    M_WAITOK);
    953 	return (0);
    954 }
    955 
    956 /*
    957  * Free resources allocated for loan transfer.
    958  */
    959 static void
    960 pipe_loan_free(wpipe)
    961 	struct pipe *wpipe;
    962 {
    963 	vsize_t len;
    964 
    965 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    966 	pmap_kremove(wpipe->pipe_map.kva, len);
    967 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len);
    968 	wpipe->pipe_map.kva = NULL;
    969 	amountpipekva -= len;
    970 	free(wpipe->pipe_map.pgs, M_PIPE);
    971 	wpipe->pipe_map.pgs = NULL;
    972 }
    973 
    974 /*
    975  * NetBSD direct write, using uvm_loan() mechanism.
    976  * This implements the pipe buffer write mechanism.  Note that only
    977  * a direct write OR a normal pipe write can be pending at any given time.
    978  * If there are any characters in the pipe buffer, the direct write will
    979  * be deferred until the receiving process grabs all of the bytes from
    980  * the pipe buffer.  Then the direct mapping write is set-up.
    981  */
    982 static int
    983 pipe_direct_write(wpipe, uio)
    984 	struct pipe *wpipe;
    985 	struct uio *uio;
    986 {
    987 	int error, npages, j;
    988 	struct vm_page **pgs;
    989 	vaddr_t bbase, kva, base, bend;
    990 	vsize_t blen, bcnt;
    991 	voff_t bpos;
    992 
    993 retry:
    994 	while (wpipe->pipe_state & PIPE_DIRECTW) {
    995 		if (wpipe->pipe_state & PIPE_WANTR) {
    996 			wpipe->pipe_state &= ~PIPE_WANTR;
    997 			wakeup(wpipe);
    998 		}
    999 		wpipe->pipe_state |= PIPE_WANTW;
   1000 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdww", 0);
   1001 		if (error)
   1002 			goto error;
   1003 		if (wpipe->pipe_state & PIPE_EOF) {
   1004 			error = EPIPE;
   1005 			goto error;
   1006 		}
   1007 	}
   1008 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
   1009 	if (wpipe->pipe_buffer.cnt > 0) {
   1010 		if (wpipe->pipe_state & PIPE_WANTR) {
   1011 			wpipe->pipe_state &= ~PIPE_WANTR;
   1012 			wakeup(wpipe);
   1013 		}
   1014 
   1015 		wpipe->pipe_state |= PIPE_WANTW;
   1016 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0);
   1017 		if (error)
   1018 			goto error;
   1019 		if (wpipe->pipe_state & PIPE_EOF) {
   1020 			error = EPIPE;
   1021 			goto error;
   1022 		}
   1023 		goto retry;
   1024 	}
   1025 
   1026 	/*
   1027 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
   1028 	 * not aligned to PAGE_SIZE.
   1029 	 */
   1030 	bbase = (vaddr_t)uio->uio_iov->iov_base;
   1031 	base = trunc_page(bbase);
   1032 	bend = round_page(bbase + uio->uio_iov->iov_len);
   1033 	blen = bend - base;
   1034 	bpos = bbase - base;
   1035 
   1036 	if (blen > PIPE_DIRECT_CHUNK) {
   1037 		blen = PIPE_DIRECT_CHUNK;
   1038 		bend = base + blen;
   1039 		bcnt = PIPE_DIRECT_CHUNK - bpos;
   1040 	} else {
   1041 		bcnt = uio->uio_iov->iov_len;
   1042 	}
   1043 	npages = blen >> PAGE_SHIFT;
   1044 
   1045 	wpipe->pipe_map.pos = bpos;
   1046 	wpipe->pipe_map.cnt = bcnt;
   1047 
   1048 	/*
   1049 	 * Free the old kva if we need more pages than we have
   1050 	 * allocated.
   1051 	 */
   1052 	if (wpipe->pipe_map.kva && npages > wpipe->pipe_map.npages)
   1053 		pipe_loan_free(wpipe);
   1054 
   1055 	/* Allocate new kva. */
   1056 	if (wpipe->pipe_map.kva == NULL) {
   1057 		error = pipe_loan_alloc(wpipe, npages);
   1058 		if (error) {
   1059 			goto error;
   1060 		}
   1061 	}
   1062 
   1063 	/* Loan the write buffer memory from writer process */
   1064 	pgs = wpipe->pipe_map.pgs;
   1065 	error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
   1066 	    pgs, UVM_LOAN_TOPAGE);
   1067 	if (error) {
   1068 		pgs = NULL;
   1069 		goto cleanup;
   1070 	}
   1071 
   1072 	/* Enter the loaned pages to kva */
   1073 	kva = wpipe->pipe_map.kva;
   1074 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
   1075 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
   1076 	}
   1077 	pmap_update(pmap_kernel());
   1078 
   1079 	wpipe->pipe_state |= PIPE_DIRECTW;
   1080 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
   1081 		if (wpipe->pipe_state & PIPE_EOF) {
   1082 			error = EPIPE;
   1083 			break;
   1084 		}
   1085 		if (wpipe->pipe_state & PIPE_WANTR) {
   1086 			wpipe->pipe_state &= ~PIPE_WANTR;
   1087 			wakeup(wpipe);
   1088 		}
   1089 		pipeselwakeup(wpipe, wpipe);
   1090 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0);
   1091 	}
   1092 
   1093 	if (error)
   1094 		wpipe->pipe_state &= ~PIPE_DIRECTW;
   1095 
   1096 cleanup:
   1097 	pipelock(wpipe, 0);
   1098 	if (pgs != NULL)
   1099 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
   1100 	if (error || amountpipekva > maxpipekva)
   1101 		pipe_loan_free(wpipe);
   1102 	pipeunlock(wpipe);
   1103 
   1104 	if (error) {
   1105 		pipeselwakeup(wpipe, wpipe);
   1106 
   1107 		/*
   1108 		 * If nothing was read from what we offered, return error
   1109 		 * straight on. Otherwise update uio resid first. Caller
   1110 		 * will deal with the error condition, returning short
   1111 		 * write, error, or restarting the write(2) as appropriate.
   1112 		 */
   1113 		if (wpipe->pipe_map.cnt == bcnt) {
   1114 error:
   1115 			wakeup(wpipe);
   1116 			return (error);
   1117 		}
   1118 
   1119 		bcnt -= wpipe->pipe_map.cnt;
   1120 	}
   1121 
   1122 	uio->uio_resid -= bcnt;
   1123 	/* uio_offset not updated, not set/used for write(2) */
   1124 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
   1125 	uio->uio_iov->iov_len -= bcnt;
   1126 	if (uio->uio_iov->iov_len == 0) {
   1127 		uio->uio_iov++;
   1128 		uio->uio_iovcnt--;
   1129 	}
   1130 
   1131 	return (error);
   1132 }
   1133 #endif /* !PIPE_NODIRECT */
   1134 #endif /* NetBSD */
   1135 
   1136 #ifdef __FreeBSD__
   1137 static int
   1138 pipe_write(fp, uio, cred, flags, p)
   1139 	struct file *fp;
   1140 	off_t *offset;
   1141 	struct uio *uio;
   1142 	struct ucred *cred;
   1143 	int flags;
   1144 	struct proc *p;
   1145 #elif defined(__NetBSD__)
   1146 static int
   1147 pipe_write(fp, offset, uio, cred, flags)
   1148 	struct file *fp;
   1149 	off_t *offset;
   1150 	struct uio *uio;
   1151 	struct ucred *cred;
   1152 	int flags;
   1153 #endif
   1154 {
   1155 	int error = 0;
   1156 	struct pipe *wpipe, *rpipe;
   1157 
   1158 	rpipe = (struct pipe *) fp->f_data;
   1159 	wpipe = rpipe->pipe_peer;
   1160 
   1161 	/*
   1162 	 * detect loss of pipe read side, issue SIGPIPE if lost.
   1163 	 */
   1164 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF))
   1165 		return (EPIPE);
   1166 
   1167 	++wpipe->pipe_busy;
   1168 
   1169 	/*
   1170 	 * If it is advantageous to resize the pipe buffer, do
   1171 	 * so.
   1172 	 */
   1173 	if ((uio->uio_resid > PIPE_SIZE) &&
   1174 		(nbigpipe < maxbigpipes) &&
   1175 #ifndef PIPE_NODIRECT
   1176 		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1177 #endif
   1178 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
   1179 		(wpipe->pipe_buffer.cnt == 0)) {
   1180 
   1181 		if ((error = pipelock(wpipe,1)) == 0) {
   1182 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
   1183 				nbigpipe++;
   1184 			pipeunlock(wpipe);
   1185 		} else {
   1186 			/*
   1187 			 * If an error occurred, unbusy and return, waking up
   1188 			 * any waiting readers.
   1189 			 */
   1190 			--wpipe->pipe_busy;
   1191 			if (wpipe->pipe_busy == 0
   1192 			    && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1193 				wpipe->pipe_state &=
   1194 				    ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1195 				wakeup(wpipe);
   1196 			}
   1197 
   1198 			return (error);
   1199 		}
   1200 	}
   1201 
   1202 #ifdef __FreeBSD__
   1203 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
   1204 #endif
   1205 
   1206 	while (uio->uio_resid) {
   1207 		int space;
   1208 
   1209 #ifndef PIPE_NODIRECT
   1210 		/*
   1211 		 * If the transfer is large, we can gain performance if
   1212 		 * we do process-to-process copies directly.
   1213 		 * If the write is non-blocking, we don't use the
   1214 		 * direct write mechanism.
   1215 		 *
   1216 		 * The direct write mechanism will detect the reader going
   1217 		 * away on us.
   1218 		 */
   1219 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
   1220 		    (fp->f_flag & FNONBLOCK) == 0 &&
   1221 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
   1222 			error = pipe_direct_write(wpipe, uio);
   1223 
   1224 			/*
   1225 			 * Break out if error occured, unless it's ENOMEM.
   1226 			 * ENOMEM means we failed to allocate some resources
   1227 			 * for direct write, so we just fallback to ordinary
   1228 			 * write. If the direct write was successful,
   1229 			 * process rest of data via ordinary write.
   1230 			 */
   1231 			if (!error)
   1232 				continue;
   1233 
   1234 			if (error != ENOMEM)
   1235 				break;
   1236 		}
   1237 #endif /* PIPE_NODIRECT */
   1238 
   1239 		/*
   1240 		 * Pipe buffered writes cannot be coincidental with
   1241 		 * direct writes.  We wait until the currently executing
   1242 		 * direct write is completed before we start filling the
   1243 		 * pipe buffer.  We break out if a signal occurs or the
   1244 		 * reader goes away.
   1245 		 */
   1246 	retrywrite:
   1247 		while (wpipe->pipe_state & PIPE_DIRECTW) {
   1248 			if (wpipe->pipe_state & PIPE_WANTR) {
   1249 				wpipe->pipe_state &= ~PIPE_WANTR;
   1250 				wakeup(wpipe);
   1251 			}
   1252 			error = tsleep(wpipe, PRIBIO | PCATCH, "pipbww", 0);
   1253 			if (wpipe->pipe_state & PIPE_EOF)
   1254 				break;
   1255 			if (error)
   1256 				break;
   1257 		}
   1258 		if (wpipe->pipe_state & PIPE_EOF) {
   1259 			error = EPIPE;
   1260 			break;
   1261 		}
   1262 
   1263 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1264 
   1265 		/* Writes of size <= PIPE_BUF must be atomic. */
   1266 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
   1267 			space = 0;
   1268 
   1269 		if (space > 0) {
   1270 			int size;	/* Transfer size */
   1271 			int segsize;	/* first segment to transfer */
   1272 
   1273 			if ((error = pipelock(wpipe,1)) != 0)
   1274 				break;
   1275 
   1276 			/*
   1277 			 * It is possible for a direct write to
   1278 			 * slip in on us... handle it here...
   1279 			 */
   1280 			if (wpipe->pipe_state & PIPE_DIRECTW) {
   1281 				pipeunlock(wpipe);
   1282 				goto retrywrite;
   1283 			}
   1284 			/*
   1285 			 * If a process blocked in uiomove, our
   1286 			 * value for space might be bad.
   1287 			 *
   1288 			 * XXX will we be ok if the reader has gone
   1289 			 * away here?
   1290 			 */
   1291 			if (space > wpipe->pipe_buffer.size -
   1292 				    wpipe->pipe_buffer.cnt) {
   1293 				pipeunlock(wpipe);
   1294 				goto retrywrite;
   1295 			}
   1296 
   1297 			/*
   1298 			 * Transfer size is minimum of uio transfer
   1299 			 * and free space in pipe buffer.
   1300 			 */
   1301 			if (space > uio->uio_resid)
   1302 				size = uio->uio_resid;
   1303 			else
   1304 				size = space;
   1305 			/*
   1306 			 * First segment to transfer is minimum of
   1307 			 * transfer size and contiguous space in
   1308 			 * pipe buffer.  If first segment to transfer
   1309 			 * is less than the transfer size, we've got
   1310 			 * a wraparound in the buffer.
   1311 			 */
   1312 			segsize = wpipe->pipe_buffer.size -
   1313 				wpipe->pipe_buffer.in;
   1314 			if (segsize > size)
   1315 				segsize = size;
   1316 
   1317 			/* Transfer first segment */
   1318 
   1319 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
   1320 						segsize, uio);
   1321 
   1322 			if (error == 0 && segsize < size) {
   1323 				/*
   1324 				 * Transfer remaining part now, to
   1325 				 * support atomic writes.  Wraparound
   1326 				 * happened.
   1327 				 */
   1328 #ifdef DEBUG
   1329 				if (wpipe->pipe_buffer.in + segsize !=
   1330 				    wpipe->pipe_buffer.size)
   1331 					panic("Expected pipe buffer wraparound disappeared");
   1332 #endif
   1333 
   1334 				error = uiomove(&wpipe->pipe_buffer.buffer[0],
   1335 						size - segsize, uio);
   1336 			}
   1337 			if (error == 0) {
   1338 				wpipe->pipe_buffer.in += size;
   1339 				if (wpipe->pipe_buffer.in >=
   1340 				    wpipe->pipe_buffer.size) {
   1341 #ifdef DEBUG
   1342 					if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
   1343 						panic("Expected wraparound bad");
   1344 #endif
   1345 					wpipe->pipe_buffer.in = size - segsize;
   1346 				}
   1347 
   1348 				wpipe->pipe_buffer.cnt += size;
   1349 #ifdef DEBUG
   1350 				if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
   1351 					panic("Pipe buffer overflow");
   1352 #endif
   1353 			}
   1354 			pipeunlock(wpipe);
   1355 			if (error)
   1356 				break;
   1357 		} else {
   1358 			/*
   1359 			 * If the "read-side" has been blocked, wake it up now.
   1360 			 */
   1361 			if (wpipe->pipe_state & PIPE_WANTR) {
   1362 				wpipe->pipe_state &= ~PIPE_WANTR;
   1363 				wakeup(wpipe);
   1364 			}
   1365 
   1366 			/*
   1367 			 * don't block on non-blocking I/O
   1368 			 */
   1369 			if (fp->f_flag & FNONBLOCK) {
   1370 				error = EAGAIN;
   1371 				break;
   1372 			}
   1373 
   1374 			/*
   1375 			 * We have no more space and have something to offer,
   1376 			 * wake up select/poll.
   1377 			 */
   1378 			pipeselwakeup(wpipe, wpipe);
   1379 
   1380 			wpipe->pipe_state |= PIPE_WANTW;
   1381 			error = tsleep(wpipe, PRIBIO | PCATCH, "pipewr", 0);
   1382 			if (error != 0)
   1383 				break;
   1384 			/*
   1385 			 * If read side wants to go away, we just issue a signal
   1386 			 * to ourselves.
   1387 			 */
   1388 			if (wpipe->pipe_state & PIPE_EOF) {
   1389 				error = EPIPE;
   1390 				break;
   1391 			}
   1392 		}
   1393 	}
   1394 
   1395 	--wpipe->pipe_busy;
   1396 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1397 		wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1398 		wakeup(wpipe);
   1399 	} else if (wpipe->pipe_buffer.cnt > 0) {
   1400 		/*
   1401 		 * If we have put any characters in the buffer, we wake up
   1402 		 * the reader.
   1403 		 */
   1404 		if (wpipe->pipe_state & PIPE_WANTR) {
   1405 			wpipe->pipe_state &= ~PIPE_WANTR;
   1406 			wakeup(wpipe);
   1407 		}
   1408 	}
   1409 
   1410 	/*
   1411 	 * Don't return EPIPE if I/O was successful
   1412 	 */
   1413 	if ((error == EPIPE) && (wpipe->pipe_buffer.cnt == 0)
   1414 	    && (uio->uio_resid == 0))
   1415 		error = 0;
   1416 
   1417 	if (error == 0)
   1418 		vfs_timestamp(&wpipe->pipe_mtime);
   1419 
   1420 	/*
   1421 	 * We have something to offer, wake up select/poll.
   1422 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1423 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1424 	 */
   1425 	if (wpipe->pipe_buffer.cnt)
   1426 		pipeselwakeup(wpipe, wpipe);
   1427 
   1428 	/*
   1429 	 * Arrange for next read(2) to do a signal.
   1430 	 */
   1431 	wpipe->pipe_state |= PIPE_SIGNALR;
   1432 
   1433 	return (error);
   1434 }
   1435 
   1436 /*
   1437  * we implement a very minimal set of ioctls for compatibility with sockets.
   1438  */
   1439 int
   1440 pipe_ioctl(fp, cmd, data, p)
   1441 	struct file *fp;
   1442 	u_long cmd;
   1443 	caddr_t data;
   1444 	struct proc *p;
   1445 {
   1446 	struct pipe *mpipe = (struct pipe *)fp->f_data;
   1447 
   1448 	switch (cmd) {
   1449 
   1450 	case FIONBIO:
   1451 		return (0);
   1452 
   1453 	case FIOASYNC:
   1454 		if (*(int *)data) {
   1455 			mpipe->pipe_state |= PIPE_ASYNC;
   1456 		} else {
   1457 			mpipe->pipe_state &= ~PIPE_ASYNC;
   1458 		}
   1459 		return (0);
   1460 
   1461 	case FIONREAD:
   1462 #ifndef PIPE_NODIRECT
   1463 		if (mpipe->pipe_state & PIPE_DIRECTW)
   1464 			*(int *)data = mpipe->pipe_map.cnt;
   1465 		else
   1466 #endif
   1467 			*(int *)data = mpipe->pipe_buffer.cnt;
   1468 		return (0);
   1469 
   1470 #ifdef __FreeBSD__
   1471 	case FIOSETOWN:
   1472 		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
   1473 
   1474 	case FIOGETOWN:
   1475 		*(int *)data = fgetown(mpipe->pipe_sigio);
   1476 		return (0);
   1477 
   1478 	/* This is deprecated, FIOSETOWN should be used instead. */
   1479 	case TIOCSPGRP:
   1480 		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
   1481 
   1482 	/* This is deprecated, FIOGETOWN should be used instead. */
   1483 	case TIOCGPGRP:
   1484 		*(int *)data = -fgetown(mpipe->pipe_sigio);
   1485 		return (0);
   1486 #endif /* FreeBSD */
   1487 #ifdef __NetBSD__
   1488 	case TIOCSPGRP:
   1489 		mpipe->pipe_pgid = *(int *)data;
   1490 		return (0);
   1491 
   1492 	case TIOCGPGRP:
   1493 		*(int *)data = mpipe->pipe_pgid;
   1494 		return (0);
   1495 #endif /* NetBSD */
   1496 
   1497 	}
   1498 	return (ENOTTY);
   1499 }
   1500 
   1501 int
   1502 pipe_poll(fp, events, p)
   1503 	struct file *fp;
   1504 	int events;
   1505 	struct proc *p;
   1506 {
   1507 	struct pipe *rpipe = (struct pipe *)fp->f_data;
   1508 	struct pipe *wpipe;
   1509 	int revents = 0;
   1510 
   1511 	wpipe = rpipe->pipe_peer;
   1512 	if (events & (POLLIN | POLLRDNORM))
   1513 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1514 #ifndef PIPE_NODIRECT
   1515 		    (rpipe->pipe_state & PIPE_DIRECTW) ||
   1516 #endif
   1517 		    (rpipe->pipe_state & PIPE_EOF))
   1518 			revents |= events & (POLLIN | POLLRDNORM);
   1519 
   1520 	if (events & (POLLOUT | POLLWRNORM))
   1521 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF)
   1522 		    || (
   1523 #ifndef PIPE_NODIRECT
   1524 		     ((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
   1525 #endif
   1526 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1527 			revents |= events & (POLLOUT | POLLWRNORM);
   1528 
   1529 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1530 	    (wpipe == NULL) ||
   1531 	    (wpipe->pipe_state & PIPE_EOF))
   1532 		revents |= POLLHUP;
   1533 
   1534 	if (revents == 0) {
   1535 		if (events & (POLLIN | POLLRDNORM)) {
   1536 			selrecord(p, &rpipe->pipe_sel);
   1537 			rpipe->pipe_state |= PIPE_SEL;
   1538 		}
   1539 
   1540 		if (events & (POLLOUT | POLLWRNORM)) {
   1541 			selrecord(p, &wpipe->pipe_sel);
   1542 			wpipe->pipe_state |= PIPE_SEL;
   1543 		}
   1544 	}
   1545 
   1546 	return (revents);
   1547 }
   1548 
   1549 static int
   1550 pipe_stat(fp, ub, p)
   1551 	struct file *fp;
   1552 	struct stat *ub;
   1553 	struct proc *p;
   1554 {
   1555 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1556 
   1557 	memset((caddr_t)ub, 0, sizeof(*ub));
   1558 	ub->st_mode = S_IFIFO;
   1559 	ub->st_blksize = pipe->pipe_buffer.size;
   1560 	ub->st_size = pipe->pipe_buffer.cnt;
   1561 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1562 #ifdef __FreeBSD__
   1563 	ub->st_atimespec = pipe->pipe_atime;
   1564 	ub->st_mtimespec = pipe->pipe_mtime;
   1565 	ub->st_ctimespec = pipe->pipe_ctime;
   1566 #endif /* FreeBSD */
   1567 #ifdef __NetBSD__
   1568 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec)
   1569 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
   1570 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
   1571 #endif /* NetBSD */
   1572 	ub->st_uid = fp->f_cred->cr_uid;
   1573 	ub->st_gid = fp->f_cred->cr_gid;
   1574 	/*
   1575 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1576 	 * XXX (st_dev, st_ino) should be unique.
   1577 	 */
   1578 	return (0);
   1579 }
   1580 
   1581 /* ARGSUSED */
   1582 static int
   1583 pipe_close(fp, p)
   1584 	struct file *fp;
   1585 	struct proc *p;
   1586 {
   1587 	struct pipe *cpipe = (struct pipe *)fp->f_data;
   1588 
   1589 #ifdef __FreeBSD__
   1590 	fp->f_ops = &badfileops;
   1591 	funsetown(cpipe->pipe_sigio);
   1592 #endif
   1593 	fp->f_data = NULL;
   1594 	pipeclose(cpipe);
   1595 	return (0);
   1596 }
   1597 
   1598 static void
   1599 pipe_free_kmem(cpipe)
   1600 	struct pipe *cpipe;
   1601 {
   1602 
   1603 #ifdef __FreeBSD__
   1604 	mtx_assert(&vm_mtx, MA_OWNED);
   1605 #endif
   1606 	if (cpipe->pipe_buffer.buffer != NULL) {
   1607 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
   1608 			--nbigpipe;
   1609 		amountpipekva -= cpipe->pipe_buffer.size;
   1610 #ifdef __FreeBSD__
   1611 		kmem_free(kernel_map,
   1612 			(vm_offset_t)cpipe->pipe_buffer.buffer,
   1613 			cpipe->pipe_buffer.size);
   1614 #elif defined(__NetBSD__)
   1615 		uvm_km_free(kernel_map,
   1616 			(vaddr_t)cpipe->pipe_buffer.buffer,
   1617 			cpipe->pipe_buffer.size);
   1618 #endif /* NetBSD */
   1619 		cpipe->pipe_buffer.buffer = NULL;
   1620 	}
   1621 #ifndef PIPE_NODIRECT
   1622 	if (cpipe->pipe_map.kva != NULL) {
   1623 #ifdef __FreeBSD__
   1624 		amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE;
   1625 		kmem_free(kernel_map,
   1626 			cpipe->pipe_map.kva,
   1627 			cpipe->pipe_buffer.size + PAGE_SIZE);
   1628 #elif defined(__NetBSD__)
   1629 		pipe_loan_free(cpipe);
   1630 #endif /* NetBSD */
   1631 		cpipe->pipe_map.cnt = 0;
   1632 		cpipe->pipe_map.kva = NULL;
   1633 		cpipe->pipe_map.pos = 0;
   1634 		cpipe->pipe_map.npages = 0;
   1635 	}
   1636 #endif /* !PIPE_NODIRECT */
   1637 }
   1638 
   1639 /*
   1640  * shutdown the pipe
   1641  */
   1642 static void
   1643 pipeclose(cpipe)
   1644 	struct pipe *cpipe;
   1645 {
   1646 	struct pipe *ppipe;
   1647 
   1648 	if (!cpipe)
   1649 		return;
   1650 
   1651 	pipeselwakeup(cpipe, cpipe);
   1652 
   1653 	/*
   1654 	 * If the other side is blocked, wake it up saying that
   1655 	 * we want to close it down.
   1656 	 */
   1657 	while (cpipe->pipe_busy) {
   1658 		wakeup(cpipe);
   1659 		cpipe->pipe_state |= PIPE_WANTCLOSE | PIPE_EOF;
   1660 		tsleep(cpipe, PRIBIO, "pipecl", 0);
   1661 	}
   1662 
   1663 	/*
   1664 	 * Disconnect from peer
   1665 	 */
   1666 	if ((ppipe = cpipe->pipe_peer) != NULL) {
   1667 		pipeselwakeup(ppipe, ppipe);
   1668 
   1669 		ppipe->pipe_state |= PIPE_EOF;
   1670 		wakeup(ppipe);
   1671 		ppipe->pipe_peer = NULL;
   1672 	}
   1673 
   1674 	/*
   1675 	 * free resources
   1676 	 */
   1677 #ifdef _FreeBSD__
   1678 	mtx_lock(&vm_mtx);
   1679 	pipe_free_kmem(cpipe);
   1680 	/* XXX: erm, doesn't zalloc already have its own locks and
   1681 	 * not need the giant vm lock?
   1682 	 */
   1683 	zfree(pipe_zone, cpipe);
   1684 	mtx_unlock(&vm_mtx);
   1685 #endif /* FreeBSD */
   1686 
   1687 #ifdef __NetBSD__
   1688 	pipe_free_kmem(cpipe);
   1689 	(void) lockmgr(&cpipe->pipe_lock, LK_DRAIN, NULL);
   1690 	pool_put(&pipe_pool, cpipe);
   1691 #endif
   1692 }
   1693 
   1694 #ifdef __FreeBSD__
   1695 /*ARGSUSED*/
   1696 static int
   1697 pipe_kqfilter(struct file *fp, struct knote *kn)
   1698 {
   1699 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
   1700 
   1701 	switch (kn->kn_filter) {
   1702 	case EVFILT_READ:
   1703 		kn->kn_fop = &pipe_rfiltops;
   1704 		break;
   1705 	case EVFILT_WRITE:
   1706 		kn->kn_fop = &pipe_wfiltops;
   1707 		cpipe = cpipe->pipe_peer;
   1708 		break;
   1709 	default:
   1710 		return (1);
   1711 	}
   1712 	kn->kn_hook = (caddr_t)cpipe;
   1713 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
   1714 	return (0);
   1715 }
   1716 
   1717 static void
   1718 filt_pipedetach(struct knote *kn)
   1719 {
   1720 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
   1721 
   1722 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
   1723 }
   1724 
   1725 /*ARGSUSED*/
   1726 static int
   1727 filt_piperead(struct knote *kn, long hint)
   1728 {
   1729 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1730 	struct pipe *wpipe = rpipe->pipe_peer;
   1731 
   1732 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1733 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1734 		kn->kn_data = rpipe->pipe_map.cnt;
   1735 
   1736 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1737 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1738 		kn->kn_flags |= EV_EOF;
   1739 		return (1);
   1740 	}
   1741 	return (kn->kn_data > 0);
   1742 }
   1743 
   1744 /*ARGSUSED*/
   1745 static int
   1746 filt_pipewrite(struct knote *kn, long hint)
   1747 {
   1748 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1749 	struct pipe *wpipe = rpipe->pipe_peer;
   1750 
   1751 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1752 		kn->kn_data = 0;
   1753 		kn->kn_flags |= EV_EOF;
   1754 		return (1);
   1755 	}
   1756 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1757 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1758 		kn->kn_data = 0;
   1759 
   1760 	return (kn->kn_data >= PIPE_BUF);
   1761 }
   1762 #endif /* FreeBSD */
   1763 
   1764 #ifdef __NetBSD__
   1765 static int
   1766 pipe_fcntl(fp, cmd, data, p)
   1767 	struct file *fp;
   1768 	u_int cmd;
   1769 	caddr_t data;
   1770 	struct proc *p;
   1771 {
   1772 	if (cmd == F_SETFL)
   1773 		return (0);
   1774 	else
   1775 		return (EOPNOTSUPP);
   1776 }
   1777 
   1778 /*
   1779  * Handle pipe sysctls.
   1780  */
   1781 int
   1782 sysctl_dopipe(name, namelen, oldp, oldlenp, newp, newlen)
   1783 	int *name;
   1784 	u_int namelen;
   1785 	void *oldp;
   1786 	size_t *oldlenp;
   1787 	void *newp;
   1788 	size_t newlen;
   1789 {
   1790 	/* All sysctl names at this level are terminal. */
   1791 	if (namelen != 1)
   1792 		return (ENOTDIR);		/* overloaded */
   1793 
   1794 	switch (name[0]) {
   1795 	case KERN_PIPE_MAXKVASZ:
   1796 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxpipekva));
   1797 	case KERN_PIPE_LIMITKVA:
   1798 		return (sysctl_int(oldp, oldlenp, newp, newlen, &limitpipekva));
   1799 	case KERN_PIPE_MAXBIGPIPES:
   1800 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxbigpipes));
   1801 	case KERN_PIPE_NBIGPIPES:
   1802 		return (sysctl_rdint(oldp, oldlenp, newp, nbigpipe));
   1803 	case KERN_PIPE_KVASIZE:
   1804 		return (sysctl_rdint(oldp, oldlenp, newp, amountpipekva));
   1805 	default:
   1806 		return (EOPNOTSUPP);
   1807 	}
   1808 	/* NOTREACHED */
   1809 }
   1810 
   1811 /*
   1812  * Initialize pipe structs.
   1813  */
   1814 void
   1815 pipe_init(void)
   1816 {
   1817 	pool_init(&pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
   1818 		0, NULL, NULL, M_PIPE);
   1819 }
   1820 
   1821 #endif /* __NetBSD __ */
   1822