sys_pipe.c revision 1.26 1 /* $NetBSD: sys_pipe.c,v 1.26 2002/08/25 23:16:39 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1996 John S. Dyson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice immediately at the beginning of the file, without modification,
12 * this list of conditions, and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Absolutely no warranty of function or purpose is made by the author
17 * John S. Dyson.
18 * 4. Modifications may be freely made to this file if the above conditions
19 * are met.
20 *
21 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
22 */
23
24 /*
25 * This file contains a high-performance replacement for the socket-based
26 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
27 * all features of sockets, but does do everything that pipes normally
28 * do.
29 *
30 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
31 * written by Jaromir Dolecek.
32 */
33
34 /*
35 * This code has two modes of operation, a small write mode and a large
36 * write mode. The small write mode acts like conventional pipes with
37 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
38 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
39 * and PIPE_SIZE in size, it is fully mapped into the kernel (on FreeBSD,
40 * those pages are also wired), and the receiving process can copy it directly
41 * from the pages in the sending process.
42 *
43 * If the sending process receives a signal, it is possible that it will
44 * go away, and certainly its address space can change, because control
45 * is returned back to the user-mode side. In that case, the pipe code
46 * arranges to copy the buffer supplied by the user process on FreeBSD, to
47 * a pageable kernel buffer, and the receiving process will grab the data
48 * from the pageable kernel buffer. Since signals don't happen all that often,
49 * the copy operation is normally eliminated.
50 * For NetBSD, the pages are mapped read-only, COW for kernel by uvm_loan(),
51 * so no explicit handling need to be done, all is handled by standard VM
52 * facilities.
53 *
54 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
55 * happen for small transfers so that the system will not spend all of
56 * its time context switching. PIPE_SIZE is constrained by the
57 * amount of kernel virtual memory.
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.26 2002/08/25 23:16:39 thorpej Exp $");
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/proc.h>
66 #include <sys/fcntl.h>
67 #include <sys/file.h>
68 #include <sys/filedesc.h>
69 #include <sys/filio.h>
70 #include <sys/kernel.h>
71 #include <sys/lock.h>
72 #include <sys/ttycom.h>
73 #include <sys/stat.h>
74 #include <sys/malloc.h>
75 #include <sys/poll.h>
76 #include <sys/signalvar.h>
77 #include <sys/vnode.h>
78 #include <sys/uio.h>
79 #include <sys/lock.h>
80 #ifdef __FreeBSD__
81 #include <sys/mutex.h>
82 #endif
83 #ifdef __NetBSD__
84 #include <sys/select.h>
85 #include <sys/mount.h>
86 #include <sys/syscallargs.h>
87 #include <uvm/uvm.h>
88 #include <sys/sysctl.h>
89 #include <sys/kernel.h>
90 #endif /* NetBSD, FreeBSD */
91
92 #include <sys/pipe.h>
93
94 #ifdef __NetBSD__
95 /*
96 * Avoid microtime(9), it's slow. We don't guard the read from time(9)
97 * with splclock(9) since we don't actually need to be THAT sure the access
98 * is atomic.
99 */
100 #define vfs_timestamp(tv) (*(tv) = time)
101 #endif
102
103 /*
104 * Use this define if you want to disable *fancy* VM things. Expect an
105 * approx 30% decrease in transfer rate. This could be useful for
106 * OpenBSD.
107 */
108 /* #define PIPE_NODIRECT */
109
110 /*
111 * interfaces to the outside world
112 */
113 #ifdef __FreeBSD__
114 static int pipe_read(struct file *fp, struct uio *uio,
115 struct ucred *cred, int flags, struct thread *td);
116 static int pipe_write(struct file *fp, struct uio *uio,
117 struct ucred *cred, int flags, struct thread *td);
118 static int pipe_close(struct file *fp, struct thread *td);
119 static int pipe_poll(struct file *fp, int events, struct ucred *cred,
120 struct thread *td);
121 static int pipe_kqfilter(struct file *fp, struct knote *kn);
122 static int pipe_stat(struct file *fp, struct stat *sb, struct thread *td);
123 static int pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct thread *td);
124
125 static struct fileops pipeops = {
126 pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
127 pipe_stat, pipe_close
128 };
129
130 static void filt_pipedetach(struct knote *kn);
131 static int filt_piperead(struct knote *kn, long hint);
132 static int filt_pipewrite(struct knote *kn, long hint);
133
134 static struct filterops pipe_rfiltops =
135 { 1, NULL, filt_pipedetach, filt_piperead };
136 static struct filterops pipe_wfiltops =
137 { 1, NULL, filt_pipedetach, filt_pipewrite };
138
139 #define PIPE_GET_GIANT(pipe) \
140 do { \
141 PIPE_UNLOCK(wpipe); \
142 mtx_lock(&Giant); \
143 } while (0)
144
145 #define PIPE_DROP_GIANT(pipe) \
146 do { \
147 mtx_unlock(&Giant); \
148 PIPE_LOCK(wpipe); \
149 } while (0)
150
151 #endif /* FreeBSD */
152
153 #ifdef __NetBSD__
154 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
155 struct ucred *cred, int flags);
156 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
157 struct ucred *cred, int flags);
158 static int pipe_close(struct file *fp, struct proc *p);
159 static int pipe_poll(struct file *fp, int events, struct proc *p);
160 static int pipe_fcntl(struct file *fp, u_int com, caddr_t data,
161 struct proc *p);
162 static int pipe_stat(struct file *fp, struct stat *sb, struct proc *p);
163 static int pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct proc *p);
164
165 static struct fileops pipeops =
166 { pipe_read, pipe_write, pipe_ioctl, pipe_fcntl, pipe_poll,
167 pipe_stat, pipe_close };
168
169 /* XXXSMP perhaps use spinlocks & KERNEL_PROC_(UN)LOCK() ? just clear now */
170 #define PIPE_GET_GIANT(pipe)
171 #define PIPE_DROP_GIANT(pipe)
172 #define GIANT_REQUIRED
173
174 #endif /* NetBSD */
175
176 /*
177 * Default pipe buffer size(s), this can be kind-of large now because pipe
178 * space is pageable. The pipe code will try to maintain locality of
179 * reference for performance reasons, so small amounts of outstanding I/O
180 * will not wipe the cache.
181 */
182 #define MINPIPESIZE (PIPE_SIZE/3)
183 #define MAXPIPESIZE (2*PIPE_SIZE/3)
184
185 /*
186 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
187 * is there so that on large systems, we don't exhaust it.
188 */
189 #define MAXPIPEKVA (8*1024*1024)
190 static int maxpipekva = MAXPIPEKVA;
191
192 /*
193 * Limit for direct transfers, we cannot, of course limit
194 * the amount of kva for pipes in general though.
195 */
196 #define LIMITPIPEKVA (16*1024*1024)
197 static int limitpipekva = LIMITPIPEKVA;
198
199 /*
200 * Limit the number of "big" pipes
201 */
202 #define LIMITBIGPIPES 32
203 static int maxbigpipes = LIMITBIGPIPES;
204 static int nbigpipe = 0;
205
206 /*
207 * Amount of KVA consumed by pipe buffers.
208 */
209 static int amountpipekva = 0;
210
211 static void pipeclose(struct pipe *cpipe);
212 static void pipe_free_kmem(struct pipe *cpipe);
213 static int pipe_create(struct pipe **cpipep, int allockva);
214 static __inline int pipelock(struct pipe *cpipe, int catch);
215 static __inline void pipeunlock(struct pipe *cpipe);
216 static __inline void pipeselwakeup(struct pipe *cpipe, struct pipe *sigp);
217 #ifndef PIPE_NODIRECT
218 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
219 #endif
220 static int pipespace(struct pipe *cpipe, int size);
221
222 #ifdef __NetBSD__
223 #ifndef PIPE_NODIRECT
224 static int pipe_loan_alloc(struct pipe *, int);
225 static void pipe_loan_free(struct pipe *);
226 #endif /* PIPE_NODIRECT */
227
228 static struct pool pipe_pool;
229 #endif /* NetBSD */
230
231 #ifdef __FreeBSD__
232 static vm_zone_t pipe_zone;
233
234 static void pipeinit(void *dummy __unused);
235 #ifndef PIPE_NODIRECT
236 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
237 static void pipe_destroy_write_buffer(struct pipe *wpipe);
238 static void pipe_clone_write_buffer(struct pipe *wpipe);
239 #endif
240
241 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
242
243 static void
244 pipeinit(void *dummy __unused)
245 {
246
247 pipe_zone = zinit("PIPE", sizeof(struct pipe), 0, 0, 4);
248 }
249 #endif /* FreeBSD */
250
251 /*
252 * The pipe system call for the DTYPE_PIPE type of pipes
253 */
254
255 /* ARGSUSED */
256 #ifdef __FreeBSD__
257 int
258 pipe(td, uap)
259 struct thread *td;
260 struct pipe_args /* {
261 int dummy;
262 } */ *uap;
263 #elif defined(__NetBSD__)
264 int
265 sys_pipe(p, v, retval)
266 struct proc *p;
267 void *v;
268 register_t *retval;
269 #endif
270 {
271 struct file *rf, *wf;
272 struct pipe *rpipe, *wpipe;
273 int fd, error;
274 #ifdef __FreeBSD__
275 struct mtx *pmtx;
276
277 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
278
279 pmtx = malloc(sizeof(*pmtx), M_TEMP, M_WAITOK | M_ZERO);
280
281 rpipe = wpipe = NULL;
282 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 1)) {
283 pipeclose(rpipe);
284 pipeclose(wpipe);
285 free(pmtx, M_TEMP);
286 return (ENFILE);
287 }
288
289 error = falloc(td, &rf, &fd);
290 if (error) {
291 pipeclose(rpipe);
292 pipeclose(wpipe);
293 free(pmtx, M_TEMP);
294 return (error);
295 }
296 fhold(rf);
297 td->td_retval[0] = fd;
298
299 /*
300 * Warning: once we've gotten past allocation of the fd for the
301 * read-side, we can only drop the read side via fdrop() in order
302 * to avoid races against processes which manage to dup() the read
303 * side while we are blocked trying to allocate the write side.
304 */
305 FILE_LOCK(rf);
306 rf->f_flag = FREAD | FWRITE;
307 rf->f_type = DTYPE_PIPE;
308 rf->f_data = (caddr_t)rpipe;
309 rf->f_ops = &pipeops;
310 FILE_UNLOCK(rf);
311 error = falloc(td, &wf, &fd);
312 if (error) {
313 struct filedesc *fdp = td->td_proc->p_fd;
314 FILEDESC_LOCK(fdp);
315 if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
316 fdp->fd_ofiles[td->td_retval[0]] = NULL;
317 FILEDESC_UNLOCK(fdp);
318 fdrop(rf, td);
319 } else
320 FILEDESC_UNLOCK(fdp);
321 fdrop(rf, td);
322 /* rpipe has been closed by fdrop(). */
323 pipeclose(wpipe);
324 free(pmtx, M_TEMP);
325 return (error);
326 }
327 FILE_LOCK(wf);
328 wf->f_flag = FREAD | FWRITE;
329 wf->f_type = DTYPE_PIPE;
330 wf->f_data = (caddr_t)wpipe;
331 wf->f_ops = &pipeops;
332 p->p_retval[1] = fd;
333 rpipe->pipe_peer = wpipe;
334 wpipe->pipe_peer = rpipe;
335 mtx_init(pmtx, "pipe mutex", MTX_DEF);
336 rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
337 fdrop(rf, td);
338 #endif /* FreeBSD */
339
340 #ifdef __NetBSD__
341 rpipe = wpipe = NULL;
342 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
343 pipeclose(rpipe);
344 pipeclose(wpipe);
345 return (ENFILE);
346 }
347
348 /*
349 * Note: the file structure returned from falloc() is marked
350 * as 'larval' initially. Unless we mark it as 'mature' by
351 * FILE_SET_MATURE(), any attempt to do anything with it would
352 * return EBADF, including e.g. dup(2) or close(2). This avoids
353 * file descriptor races if we block in the second falloc().
354 */
355
356 error = falloc(p, &rf, &fd);
357 if (error)
358 goto free2;
359 retval[0] = fd;
360 rf->f_flag = FREAD;
361 rf->f_type = DTYPE_PIPE;
362 rf->f_data = (caddr_t)rpipe;
363 rf->f_ops = &pipeops;
364
365 error = falloc(p, &wf, &fd);
366 if (error)
367 goto free3;
368 retval[1] = fd;
369 wf->f_flag = FWRITE;
370 wf->f_type = DTYPE_PIPE;
371 wf->f_data = (caddr_t)wpipe;
372 wf->f_ops = &pipeops;
373
374 rpipe->pipe_peer = wpipe;
375 wpipe->pipe_peer = rpipe;
376
377 FILE_SET_MATURE(rf);
378 FILE_SET_MATURE(wf);
379 FILE_UNUSE(rf, p);
380 FILE_UNUSE(wf, p);
381 return (0);
382 free3:
383 FILE_UNUSE(rf, p);
384 ffree(rf);
385 fdremove(p->p_fd, retval[0]);
386 free2:
387 pipeclose(wpipe);
388 pipeclose(rpipe);
389 #endif /* NetBSD */
390
391 return (error);
392 }
393
394 /*
395 * Allocate kva for pipe circular buffer, the space is pageable
396 * This routine will 'realloc' the size of a pipe safely, if it fails
397 * it will retain the old buffer.
398 * If it fails it will return ENOMEM.
399 */
400 static int
401 pipespace(cpipe, size)
402 struct pipe *cpipe;
403 int size;
404 {
405 caddr_t buffer;
406 #ifdef __FreeBSD__
407 struct vm_object *object;
408 int npages, error;
409
410 GIANT_REQUIRED;
411 KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
412 ("pipespace: pipe mutex locked"));
413
414 npages = round_page(size)/PAGE_SIZE;
415 /*
416 * Create an object, I don't like the idea of paging to/from
417 * kernel_object.
418 */
419 object = vm_object_allocate(OBJT_DEFAULT, npages);
420 buffer = (caddr_t) vm_map_min(kernel_map);
421
422 /*
423 * Insert the object into the kernel map, and allocate kva for it.
424 * The map entry is, by default, pageable.
425 */
426 error = vm_map_find(kernel_map, object, 0,
427 (vm_offset_t *) &buffer, size, 1,
428 VM_PROT_ALL, VM_PROT_ALL, 0);
429
430 if (error != KERN_SUCCESS) {
431 vm_object_deallocate(object);
432 return (ENOMEM);
433 }
434 #endif /* FreeBSD */
435
436 #ifdef __NetBSD__
437 /*
438 * Allocate pageable virtual address space. Physical memory is allocated
439 * on demand.
440 */
441 buffer = (caddr_t) uvm_km_valloc(kernel_map, round_page(size));
442 if (buffer == NULL)
443 return (ENOMEM);
444 #endif /* NetBSD */
445
446 /* free old resources if we're resizing */
447 pipe_free_kmem(cpipe);
448 #ifdef __FreeBSD__
449 cpipe->pipe_buffer.object = object;
450 #endif
451 cpipe->pipe_buffer.buffer = buffer;
452 cpipe->pipe_buffer.size = size;
453 cpipe->pipe_buffer.in = 0;
454 cpipe->pipe_buffer.out = 0;
455 cpipe->pipe_buffer.cnt = 0;
456 amountpipekva += cpipe->pipe_buffer.size;
457 return (0);
458 }
459
460 /*
461 * initialize and allocate VM and memory for pipe
462 */
463 static int
464 pipe_create(cpipep, allockva)
465 struct pipe **cpipep;
466 int allockva;
467 {
468 struct pipe *cpipe;
469 int error;
470
471 #ifdef __FreeBSD__
472 *cpipep = zalloc(pipe_zone);
473 #endif
474 #ifdef __NetBSD__
475 *cpipep = pool_get(&pipe_pool, M_WAITOK);
476 #endif
477 if (*cpipep == NULL)
478 return (ENOMEM);
479
480 cpipe = *cpipep;
481
482 /* Initialize */
483 memset(cpipe, 0, sizeof(*cpipe));
484 cpipe->pipe_state = PIPE_SIGNALR;
485
486 #ifdef __FreeBSD__
487 cpipe->pipe_mtxp = NULL; /* avoid pipespace assertion */
488 #endif
489 if (allockva && (error = pipespace(cpipe, PIPE_SIZE)))
490 return (error);
491
492 vfs_timestamp(&cpipe->pipe_ctime);
493 cpipe->pipe_atime = cpipe->pipe_ctime;
494 cpipe->pipe_mtime = cpipe->pipe_ctime;
495 #ifdef __NetBSD__
496 cpipe->pipe_pgid = NO_PID;
497 lockinit(&cpipe->pipe_lock, PRIBIO | PCATCH, "pipelk", 0, 0);
498 #endif
499
500 return (0);
501 }
502
503
504 /*
505 * lock a pipe for I/O, blocking other access
506 */
507 static __inline int
508 pipelock(cpipe, catch)
509 struct pipe *cpipe;
510 int catch;
511 {
512 int error;
513
514 #ifdef __FreeBSD__
515 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
516 while (cpipe->pipe_state & PIPE_LOCKFL) {
517 cpipe->pipe_state |= PIPE_LWANT;
518 error = msleep(cpipe, PIPE_MTX(cpipe),
519 catch ? (PRIBIO | PCATCH) : PRIBIO,
520 "pipelk", 0);
521 if (error != 0)
522 return (error);
523 }
524 cpipe->pipe_state |= PIPE_LOCKFL;
525 return (0);
526 #endif
527
528 #ifdef __NetBSD__
529 do {
530 error = lockmgr(&cpipe->pipe_lock, LK_EXCLUSIVE, NULL);
531 } while (!catch && (error == EINTR || error == ERESTART));
532 return (error);
533 #endif
534 }
535
536 /*
537 * unlock a pipe I/O lock
538 */
539 static __inline void
540 pipeunlock(cpipe)
541 struct pipe *cpipe;
542 {
543
544 #ifdef __FreeBSD__
545 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
546 cpipe->pipe_state &= ~PIPE_LOCKFL;
547 if (cpipe->pipe_state & PIPE_LWANT) {
548 cpipe->pipe_state &= ~PIPE_LWANT;
549 wakeup(cpipe);
550 }
551 #endif
552
553 #ifdef __NetBSD__
554 lockmgr(&cpipe->pipe_lock, LK_RELEASE, NULL);
555 #endif
556 }
557
558 /*
559 * Select/poll wakup. This also sends SIGIO to peer connected to
560 * 'sigpipe' side of pipe.
561 */
562 static __inline void
563 pipeselwakeup(selp, sigp)
564 struct pipe *selp, *sigp;
565 {
566 if (selp->pipe_state & PIPE_SEL) {
567 selp->pipe_state &= ~PIPE_SEL;
568 selwakeup(&selp->pipe_sel);
569 }
570 #ifdef __FreeBSD__
571 if (sigp && (sigp->pipe_state & PIPE_ASYNC) && sigp->pipe_sigio)
572 pgsigio(sigp->pipe_sigio, SIGIO, 0);
573 KNOTE(&selp->pipe_sel.si_note, 0);
574 #endif
575
576 #ifdef __NetBSD__
577 if (sigp && (sigp->pipe_state & PIPE_ASYNC)
578 && sigp->pipe_pgid != NO_PID){
579 struct proc *p;
580
581 if (sigp->pipe_pgid < 0)
582 gsignal(-sigp->pipe_pgid, SIGIO);
583 else if (sigp->pipe_pgid > 0 && (p = pfind(sigp->pipe_pgid)) != 0)
584 psignal(p, SIGIO);
585 }
586 #endif /* NetBSD */
587 }
588
589 /* ARGSUSED */
590 #ifdef __FreeBSD__
591 static int
592 pipe_read(fp, uio, cred, flags, td)
593 struct file *fp;
594 struct uio *uio;
595 struct ucred *cred;
596 struct thread *td;
597 int flags;
598 struct proc *p;
599 #elif defined(__NetBSD__)
600 static int
601 pipe_read(fp, offset, uio, cred, flags)
602 struct file *fp;
603 off_t *offset;
604 struct uio *uio;
605 struct ucred *cred;
606 int flags;
607 #endif
608 {
609 struct pipe *rpipe = (struct pipe *) fp->f_data;
610 int error;
611 size_t nread = 0;
612 size_t size;
613 size_t ocnt;
614
615 PIPE_LOCK(rpipe);
616 ++rpipe->pipe_busy;
617 error = pipelock(rpipe, 1);
618 if (error)
619 goto unlocked_error;
620
621 ocnt = rpipe->pipe_buffer.cnt;
622
623 while (uio->uio_resid) {
624 /*
625 * normal pipe buffer receive
626 */
627 if (rpipe->pipe_buffer.cnt > 0) {
628 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
629 if (size > rpipe->pipe_buffer.cnt)
630 size = rpipe->pipe_buffer.cnt;
631 if (size > uio->uio_resid)
632 size = uio->uio_resid;
633
634 PIPE_UNLOCK(rpipe);
635 error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
636 size, uio);
637 PIPE_LOCK(rpipe);
638 if (error)
639 break;
640
641 rpipe->pipe_buffer.out += size;
642 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
643 rpipe->pipe_buffer.out = 0;
644
645 rpipe->pipe_buffer.cnt -= size;
646
647 /*
648 * If there is no more to read in the pipe, reset
649 * its pointers to the beginning. This improves
650 * cache hit stats.
651 */
652 if (rpipe->pipe_buffer.cnt == 0) {
653 rpipe->pipe_buffer.in = 0;
654 rpipe->pipe_buffer.out = 0;
655 }
656 nread += size;
657 #ifndef PIPE_NODIRECT
658 /*
659 * Direct copy, bypassing a kernel buffer.
660 */
661 } else if ((size = rpipe->pipe_map.cnt) &&
662 (rpipe->pipe_state & PIPE_DIRECTW)) {
663 caddr_t va;
664 if (size > uio->uio_resid)
665 size = uio->uio_resid;
666
667 va = (caddr_t) rpipe->pipe_map.kva +
668 rpipe->pipe_map.pos;
669 PIPE_UNLOCK(rpipe);
670 error = uiomove(va, size, uio);
671 PIPE_LOCK(rpipe);
672 if (error)
673 break;
674 nread += size;
675 rpipe->pipe_map.pos += size;
676 rpipe->pipe_map.cnt -= size;
677 if (rpipe->pipe_map.cnt == 0) {
678 rpipe->pipe_state &= ~PIPE_DIRECTW;
679 wakeup(rpipe);
680 }
681 #endif
682 } else {
683 /*
684 * detect EOF condition
685 * read returns 0 on EOF, no need to set error
686 */
687 if (rpipe->pipe_state & PIPE_EOF)
688 break;
689
690 /*
691 * If the "write-side" has been blocked, wake it up now.
692 */
693 if (rpipe->pipe_state & PIPE_WANTW) {
694 rpipe->pipe_state &= ~PIPE_WANTW;
695 wakeup(rpipe);
696 }
697
698 /*
699 * Break if some data was read.
700 */
701 if (nread > 0)
702 break;
703
704 /*
705 * don't block on non-blocking I/O
706 */
707 if (fp->f_flag & FNONBLOCK) {
708 error = EAGAIN;
709 break;
710 }
711
712 /*
713 * Unlock the pipe buffer for our remaining processing.
714 * We will either break out with an error or we will
715 * sleep and relock to loop.
716 */
717 pipeunlock(rpipe);
718
719 /*
720 * We want to read more, wake up select/poll.
721 */
722 pipeselwakeup(rpipe, rpipe->pipe_peer);
723
724 rpipe->pipe_state |= PIPE_WANTR;
725 #ifdef __FreeBSD__
726 error = msleep(rpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
727 "piperd", 0);
728 #else
729 error = tsleep(rpipe, PRIBIO | PCATCH, "piperd", 0);
730 #endif
731 if (error != 0 || (error = pipelock(rpipe, 1)))
732 goto unlocked_error;
733 }
734 }
735 pipeunlock(rpipe);
736
737 /* XXX: should probably do this before getting any locks. */
738 if (error == 0)
739 vfs_timestamp(&rpipe->pipe_atime);
740 unlocked_error:
741 --rpipe->pipe_busy;
742
743 /*
744 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
745 */
746 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
747 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
748 wakeup(rpipe);
749 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
750 /*
751 * Handle write blocking hysteresis.
752 */
753 if (rpipe->pipe_state & PIPE_WANTW) {
754 rpipe->pipe_state &= ~PIPE_WANTW;
755 wakeup(rpipe);
756 }
757 }
758
759 /*
760 * If anything was read off the buffer, signal to the writer it's
761 * possible to write more data. Also send signal if we are here for the
762 * first time after last write.
763 */
764 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF
765 && (ocnt != rpipe->pipe_buffer.cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
766 pipeselwakeup(rpipe, rpipe->pipe_peer);
767 rpipe->pipe_state &= ~PIPE_SIGNALR;
768 }
769
770 PIPE_UNLOCK(rpipe);
771 return (error);
772 }
773
774 #ifdef __FreeBSD__
775 #ifndef PIPE_NODIRECT
776 /*
777 * Map the sending processes' buffer into kernel space and wire it.
778 * This is similar to a physical write operation.
779 */
780 static int
781 pipe_build_write_buffer(wpipe, uio)
782 struct pipe *wpipe;
783 struct uio *uio;
784 {
785 size_t size;
786 int i;
787 vm_offset_t addr, endaddr, paddr;
788
789 GIANT_REQUIRED;
790 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
791
792 size = uio->uio_iov->iov_len;
793 if (size > wpipe->pipe_buffer.size)
794 size = wpipe->pipe_buffer.size;
795
796 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
797 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
798 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
799 vm_page_t m;
800
801 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
802 (paddr = pmap_kextract(addr)) == 0) {
803 int j;
804
805 for (j = 0; j < i; j++)
806 vm_page_unwire(wpipe->pipe_map.ms[j], 1);
807 return (EFAULT);
808 }
809
810 m = PHYS_TO_VM_PAGE(paddr);
811 vm_page_wire(m);
812 wpipe->pipe_map.ms[i] = m;
813 }
814
815 /*
816 * set up the control block
817 */
818 wpipe->pipe_map.npages = i;
819 wpipe->pipe_map.pos =
820 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
821 wpipe->pipe_map.cnt = size;
822
823 /*
824 * and map the buffer
825 */
826 if (wpipe->pipe_map.kva == 0) {
827 /*
828 * We need to allocate space for an extra page because the
829 * address range might (will) span pages at times.
830 */
831 wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
832 wpipe->pipe_buffer.size + PAGE_SIZE);
833 amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE;
834 }
835 pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
836 wpipe->pipe_map.npages);
837
838 /*
839 * and update the uio data
840 */
841
842 uio->uio_iov->iov_len -= size;
843 uio->uio_iov->iov_base += size;
844 if (uio->uio_iov->iov_len == 0)
845 uio->uio_iov++;
846 uio->uio_resid -= size;
847 uio->uio_offset += size;
848 return (0);
849 }
850
851 /*
852 * unmap and unwire the process buffer
853 */
854 static void
855 pipe_destroy_write_buffer(wpipe)
856 struct pipe *wpipe;
857 {
858 int i;
859
860 GIANT_REQUIRED;
861 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
862
863 if (wpipe->pipe_map.kva) {
864 pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
865
866 if (amountpipekva > maxpipekva) {
867 vm_offset_t kva = wpipe->pipe_map.kva;
868 wpipe->pipe_map.kva = 0;
869 kmem_free(kernel_map, kva,
870 wpipe->pipe_buffer.size + PAGE_SIZE);
871 amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
872 }
873 }
874 for (i = 0; i < wpipe->pipe_map.npages; i++)
875 vm_page_unwire(wpipe->pipe_map.ms[i], 1);
876 wpipe->pipe_map.npages = 0;
877 }
878
879 /*
880 * In the case of a signal, the writing process might go away. This
881 * code copies the data into the circular buffer so that the source
882 * pages can be freed without loss of data.
883 */
884 static void
885 pipe_clone_write_buffer(wpipe)
886 struct pipe *wpipe;
887 {
888 int size;
889 int pos;
890
891 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
892 size = wpipe->pipe_map.cnt;
893 pos = wpipe->pipe_map.pos;
894 memcpy((caddr_t) wpipe->pipe_buffer.buffer,
895 (caddr_t) wpipe->pipe_map.kva + pos, size);
896
897 wpipe->pipe_buffer.in = size;
898 wpipe->pipe_buffer.out = 0;
899 wpipe->pipe_buffer.cnt = size;
900 wpipe->pipe_state &= ~PIPE_DIRECTW;
901
902 PIPE_GET_GIANT(wpipe);
903 pipe_destroy_write_buffer(wpipe);
904 PIPE_DROP_GIANT(wpipe);
905 }
906
907 /*
908 * This implements the pipe buffer write mechanism. Note that only
909 * a direct write OR a normal pipe write can be pending at any given time.
910 * If there are any characters in the pipe buffer, the direct write will
911 * be deferred until the receiving process grabs all of the bytes from
912 * the pipe buffer. Then the direct mapping write is set-up.
913 */
914 static int
915 pipe_direct_write(wpipe, uio)
916 struct pipe *wpipe;
917 struct uio *uio;
918 {
919 int error;
920
921 retry:
922 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
923 while (wpipe->pipe_state & PIPE_DIRECTW) {
924 if (wpipe->pipe_state & PIPE_WANTR) {
925 wpipe->pipe_state &= ~PIPE_WANTR;
926 wakeup(wpipe);
927 }
928 wpipe->pipe_state |= PIPE_WANTW;
929 error = msleep(wpipe, PIPE_MTX(wpipe),
930 PRIBIO | PCATCH, "pipdww", 0);
931 if (error)
932 goto error1;
933 if (wpipe->pipe_state & PIPE_EOF) {
934 error = EPIPE;
935 goto error1;
936 }
937 }
938 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
939 if (wpipe->pipe_buffer.cnt > 0) {
940 if (wpipe->pipe_state & PIPE_WANTR) {
941 wpipe->pipe_state &= ~PIPE_WANTR;
942 wakeup(wpipe);
943 }
944
945 wpipe->pipe_state |= PIPE_WANTW;
946 error = msleep(wpipe, PIPE_MTX(wpipe),
947 PRIBIO | PCATCH, "pipdwc", 0);
948 if (error)
949 goto error1;
950 if (wpipe->pipe_state & PIPE_EOF) {
951 error = EPIPE;
952 goto error1;
953 }
954 goto retry;
955 }
956
957 wpipe->pipe_state |= PIPE_DIRECTW;
958
959 PIPE_GET_GIANT(wpipe);
960 error = pipe_build_write_buffer(wpipe, uio);
961 PIPE_DROP_GIANT(wpipe);
962 if (error) {
963 wpipe->pipe_state &= ~PIPE_DIRECTW;
964 goto error1;
965 }
966
967 error = 0;
968 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
969 if (wpipe->pipe_state & PIPE_EOF) {
970 pipelock(wpipe, 0);
971 PIPE_GET_GIANT(wpipe);
972 pipe_destroy_write_buffer(wpipe);
973 PIPE_DROP_GIANT(wpipe);
974 pipeunlock(wpipe);
975 pipeselwakeup(wpipe, wpipe);
976 error = EPIPE;
977 goto error1;
978 }
979 if (wpipe->pipe_state & PIPE_WANTR) {
980 wpipe->pipe_state &= ~PIPE_WANTR;
981 wakeup(wpipe);
982 }
983 pipeselwakeup(wpipe, wpipe);
984 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
985 "pipdwt", 0);
986 }
987
988 pipelock(wpipe,0);
989 if (wpipe->pipe_state & PIPE_DIRECTW) {
990 /*
991 * this bit of trickery substitutes a kernel buffer for
992 * the process that might be going away.
993 */
994 pipe_clone_write_buffer(wpipe);
995 } else {
996 PIPE_GET_GIANT(wpipe);
997 pipe_destroy_write_buffer(wpipe);
998 PIPE_DROP_GIANT(wpipe);
999 }
1000 pipeunlock(wpipe);
1001 return (error);
1002
1003 error1:
1004 wakeup(wpipe);
1005 return (error);
1006 }
1007 #endif /* !PIPE_NODIRECT */
1008 #endif /* FreeBSD */
1009
1010 #ifdef __NetBSD__
1011 #ifndef PIPE_NODIRECT
1012 /*
1013 * Allocate structure for loan transfer.
1014 */
1015 static int
1016 pipe_loan_alloc(wpipe, npages)
1017 struct pipe *wpipe;
1018 int npages;
1019 {
1020 vsize_t len;
1021
1022 len = (vsize_t)npages << PAGE_SHIFT;
1023 wpipe->pipe_map.kva = uvm_km_valloc_wait(kernel_map, len);
1024 if (wpipe->pipe_map.kva == 0)
1025 return (ENOMEM);
1026
1027 amountpipekva += len;
1028 wpipe->pipe_map.npages = npages;
1029 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
1030 M_WAITOK);
1031 return (0);
1032 }
1033
1034 /*
1035 * Free resources allocated for loan transfer.
1036 */
1037 static void
1038 pipe_loan_free(wpipe)
1039 struct pipe *wpipe;
1040 {
1041 vsize_t len;
1042
1043 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
1044 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len);
1045 wpipe->pipe_map.kva = 0;
1046 amountpipekva -= len;
1047 free(wpipe->pipe_map.pgs, M_PIPE);
1048 wpipe->pipe_map.pgs = NULL;
1049 }
1050
1051 /*
1052 * NetBSD direct write, using uvm_loan() mechanism.
1053 * This implements the pipe buffer write mechanism. Note that only
1054 * a direct write OR a normal pipe write can be pending at any given time.
1055 * If there are any characters in the pipe buffer, the direct write will
1056 * be deferred until the receiving process grabs all of the bytes from
1057 * the pipe buffer. Then the direct mapping write is set-up.
1058 */
1059 static int
1060 pipe_direct_write(wpipe, uio)
1061 struct pipe *wpipe;
1062 struct uio *uio;
1063 {
1064 int error, npages, j;
1065 struct vm_page **pgs;
1066 vaddr_t bbase, kva, base, bend;
1067 vsize_t blen, bcnt;
1068 voff_t bpos;
1069
1070 retry:
1071 while (wpipe->pipe_state & PIPE_DIRECTW) {
1072 if (wpipe->pipe_state & PIPE_WANTR) {
1073 wpipe->pipe_state &= ~PIPE_WANTR;
1074 wakeup(wpipe);
1075 }
1076 wpipe->pipe_state |= PIPE_WANTW;
1077 error = tsleep(wpipe, PRIBIO | PCATCH, "pipdww", 0);
1078 if (error)
1079 goto error;
1080 if (wpipe->pipe_state & PIPE_EOF) {
1081 error = EPIPE;
1082 goto error;
1083 }
1084 }
1085 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
1086 if (wpipe->pipe_buffer.cnt > 0) {
1087 if (wpipe->pipe_state & PIPE_WANTR) {
1088 wpipe->pipe_state &= ~PIPE_WANTR;
1089 wakeup(wpipe);
1090 }
1091
1092 wpipe->pipe_state |= PIPE_WANTW;
1093 error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0);
1094 if (error)
1095 goto error;
1096 if (wpipe->pipe_state & PIPE_EOF) {
1097 error = EPIPE;
1098 goto error;
1099 }
1100 goto retry;
1101 }
1102
1103 /*
1104 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
1105 * not aligned to PAGE_SIZE.
1106 */
1107 bbase = (vaddr_t)uio->uio_iov->iov_base;
1108 base = trunc_page(bbase);
1109 bend = round_page(bbase + uio->uio_iov->iov_len);
1110 blen = bend - base;
1111 bpos = bbase - base;
1112
1113 if (blen > PIPE_DIRECT_CHUNK) {
1114 blen = PIPE_DIRECT_CHUNK;
1115 bend = base + blen;
1116 bcnt = PIPE_DIRECT_CHUNK - bpos;
1117 } else {
1118 bcnt = uio->uio_iov->iov_len;
1119 }
1120 npages = blen >> PAGE_SHIFT;
1121
1122 wpipe->pipe_map.pos = bpos;
1123 wpipe->pipe_map.cnt = bcnt;
1124
1125 /*
1126 * Free the old kva if we need more pages than we have
1127 * allocated.
1128 */
1129 if (wpipe->pipe_map.kva && npages > wpipe->pipe_map.npages)
1130 pipe_loan_free(wpipe);
1131
1132 /* Allocate new kva. */
1133 if (wpipe->pipe_map.kva == 0) {
1134 error = pipe_loan_alloc(wpipe, npages);
1135 if (error) {
1136 goto error;
1137 }
1138 }
1139
1140 /* Loan the write buffer memory from writer process */
1141 pgs = wpipe->pipe_map.pgs;
1142 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
1143 pgs, UVM_LOAN_TOPAGE);
1144 if (error) {
1145 pgs = NULL;
1146 goto cleanup;
1147 }
1148
1149 /* Enter the loaned pages to kva */
1150 kva = wpipe->pipe_map.kva;
1151 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
1152 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
1153 }
1154 pmap_update(pmap_kernel());
1155
1156 wpipe->pipe_state |= PIPE_DIRECTW;
1157 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
1158 if (wpipe->pipe_state & PIPE_EOF) {
1159 error = EPIPE;
1160 break;
1161 }
1162 if (wpipe->pipe_state & PIPE_WANTR) {
1163 wpipe->pipe_state &= ~PIPE_WANTR;
1164 wakeup(wpipe);
1165 }
1166 pipeselwakeup(wpipe, wpipe);
1167 error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0);
1168 }
1169
1170 if (error)
1171 wpipe->pipe_state &= ~PIPE_DIRECTW;
1172
1173 cleanup:
1174 pipelock(wpipe, 0);
1175 if (pgs != NULL) {
1176 pmap_kremove(wpipe->pipe_map.kva, blen);
1177 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
1178 }
1179 if (error || amountpipekva > maxpipekva)
1180 pipe_loan_free(wpipe);
1181 pipeunlock(wpipe);
1182
1183 if (error) {
1184 pipeselwakeup(wpipe, wpipe);
1185
1186 /*
1187 * If nothing was read from what we offered, return error
1188 * straight on. Otherwise update uio resid first. Caller
1189 * will deal with the error condition, returning short
1190 * write, error, or restarting the write(2) as appropriate.
1191 */
1192 if (wpipe->pipe_map.cnt == bcnt) {
1193 error:
1194 wakeup(wpipe);
1195 return (error);
1196 }
1197
1198 bcnt -= wpipe->pipe_map.cnt;
1199 }
1200
1201 uio->uio_resid -= bcnt;
1202 /* uio_offset not updated, not set/used for write(2) */
1203 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
1204 uio->uio_iov->iov_len -= bcnt;
1205 if (uio->uio_iov->iov_len == 0) {
1206 uio->uio_iov++;
1207 uio->uio_iovcnt--;
1208 }
1209
1210 return (error);
1211 }
1212 #endif /* !PIPE_NODIRECT */
1213 #endif /* NetBSD */
1214
1215 #ifdef __FreeBSD__
1216 static int
1217 pipe_write(fp, uio, cred, flags, td)
1218 struct file *fp;
1219 off_t *offset;
1220 struct uio *uio;
1221 struct ucred *cred;
1222 int flags;
1223 struct thread *td;
1224 #elif defined(__NetBSD__)
1225 static int
1226 pipe_write(fp, offset, uio, cred, flags)
1227 struct file *fp;
1228 off_t *offset;
1229 struct uio *uio;
1230 struct ucred *cred;
1231 int flags;
1232 #endif
1233 {
1234 int error = 0;
1235 struct pipe *wpipe, *rpipe;
1236
1237 rpipe = (struct pipe *) fp->f_data;
1238 wpipe = rpipe->pipe_peer;
1239
1240 PIPE_LOCK(rpipe);
1241 /*
1242 * detect loss of pipe read side, issue SIGPIPE if lost.
1243 */
1244 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1245 PIPE_UNLOCK(rpipe);
1246 return (EPIPE);
1247 }
1248
1249 ++wpipe->pipe_busy;
1250
1251 /*
1252 * If it is advantageous to resize the pipe buffer, do
1253 * so.
1254 */
1255 if ((uio->uio_resid > PIPE_SIZE) &&
1256 (nbigpipe < maxbigpipes) &&
1257 #ifndef PIPE_NODIRECT
1258 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1259 #endif
1260 (wpipe->pipe_buffer.size <= PIPE_SIZE) &&
1261 (wpipe->pipe_buffer.cnt == 0)) {
1262
1263 if ((error = pipelock(wpipe,1)) == 0) {
1264 PIPE_GET_GIANT(rpipe);
1265 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
1266 nbigpipe++;
1267 PIPE_DROP_GIANT(rpipe);
1268 pipeunlock(wpipe);
1269 } else {
1270 /*
1271 * If an error occurred, unbusy and return, waking up
1272 * any waiting readers.
1273 */
1274 --wpipe->pipe_busy;
1275 if (wpipe->pipe_busy == 0
1276 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1277 wpipe->pipe_state &=
1278 ~(PIPE_WANTCLOSE | PIPE_WANTR);
1279 wakeup(wpipe);
1280 }
1281
1282 return (error);
1283 }
1284 }
1285
1286 #ifdef __FreeBSD__
1287 /*
1288 * If an early error occured unbusy and return, waking up any pending
1289 * readers.
1290 */
1291 if (error) {
1292 --wpipe->pipe_busy;
1293 if ((wpipe->pipe_busy == 0) &&
1294 (wpipe->pipe_state & PIPE_WANT)) {
1295 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1296 wakeup(wpipe);
1297 }
1298 PIPE_UNLOCK(rpipe);
1299 return(error);
1300 }
1301
1302 KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
1303 #endif
1304
1305 while (uio->uio_resid) {
1306 size_t space;
1307
1308 #ifndef PIPE_NODIRECT
1309 /*
1310 * If the transfer is large, we can gain performance if
1311 * we do process-to-process copies directly.
1312 * If the write is non-blocking, we don't use the
1313 * direct write mechanism.
1314 *
1315 * The direct write mechanism will detect the reader going
1316 * away on us.
1317 */
1318 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
1319 (fp->f_flag & FNONBLOCK) == 0 &&
1320 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
1321 error = pipe_direct_write(wpipe, uio);
1322
1323 /*
1324 * Break out if error occured, unless it's ENOMEM.
1325 * ENOMEM means we failed to allocate some resources
1326 * for direct write, so we just fallback to ordinary
1327 * write. If the direct write was successful,
1328 * process rest of data via ordinary write.
1329 */
1330 if (!error)
1331 continue;
1332
1333 if (error != ENOMEM)
1334 break;
1335 }
1336 #endif /* PIPE_NODIRECT */
1337
1338 /*
1339 * Pipe buffered writes cannot be coincidental with
1340 * direct writes. We wait until the currently executing
1341 * direct write is completed before we start filling the
1342 * pipe buffer. We break out if a signal occurs or the
1343 * reader goes away.
1344 */
1345 retrywrite:
1346 while (wpipe->pipe_state & PIPE_DIRECTW) {
1347 if (wpipe->pipe_state & PIPE_WANTR) {
1348 wpipe->pipe_state &= ~PIPE_WANTR;
1349 wakeup(wpipe);
1350 }
1351 #ifdef __FreeBSD__
1352 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1353 "pipbww", 0);
1354 #else
1355 error = tsleep(wpipe, PRIBIO | PCATCH, "pipbww", 0);
1356 #endif
1357 if (wpipe->pipe_state & PIPE_EOF)
1358 break;
1359 if (error)
1360 break;
1361 }
1362 if (wpipe->pipe_state & PIPE_EOF) {
1363 error = EPIPE;
1364 break;
1365 }
1366
1367 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1368
1369 /* Writes of size <= PIPE_BUF must be atomic. */
1370 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
1371 space = 0;
1372
1373 if (space > 0) {
1374 int size; /* Transfer size */
1375 int segsize; /* first segment to transfer */
1376
1377 if ((error = pipelock(wpipe,1)) != 0)
1378 break;
1379
1380 /*
1381 * It is possible for a direct write to
1382 * slip in on us... handle it here...
1383 */
1384 if (wpipe->pipe_state & PIPE_DIRECTW) {
1385 pipeunlock(wpipe);
1386 goto retrywrite;
1387 }
1388 /*
1389 * If a process blocked in uiomove, our
1390 * value for space might be bad.
1391 *
1392 * XXX will we be ok if the reader has gone
1393 * away here?
1394 */
1395 if (space > wpipe->pipe_buffer.size -
1396 wpipe->pipe_buffer.cnt) {
1397 pipeunlock(wpipe);
1398 goto retrywrite;
1399 }
1400
1401 /*
1402 * Transfer size is minimum of uio transfer
1403 * and free space in pipe buffer.
1404 */
1405 if (space > uio->uio_resid)
1406 size = uio->uio_resid;
1407 else
1408 size = space;
1409 /*
1410 * First segment to transfer is minimum of
1411 * transfer size and contiguous space in
1412 * pipe buffer. If first segment to transfer
1413 * is less than the transfer size, we've got
1414 * a wraparound in the buffer.
1415 */
1416 segsize = wpipe->pipe_buffer.size -
1417 wpipe->pipe_buffer.in;
1418 if (segsize > size)
1419 segsize = size;
1420
1421 /* Transfer first segment */
1422
1423 PIPE_UNLOCK(rpipe);
1424 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1425 segsize, uio);
1426 PIPE_LOCK(rpipe);
1427
1428 if (error == 0 && segsize < size) {
1429 /*
1430 * Transfer remaining part now, to
1431 * support atomic writes. Wraparound
1432 * happened.
1433 */
1434 #ifdef DEBUG
1435 if (wpipe->pipe_buffer.in + segsize !=
1436 wpipe->pipe_buffer.size)
1437 panic("Expected pipe buffer wraparound disappeared");
1438 #endif
1439
1440 PIPE_UNLOCK(rpipe);
1441 error = uiomove(&wpipe->pipe_buffer.buffer[0],
1442 size - segsize, uio);
1443 PIPE_LOCK(rpipe);
1444 }
1445 if (error == 0) {
1446 wpipe->pipe_buffer.in += size;
1447 if (wpipe->pipe_buffer.in >=
1448 wpipe->pipe_buffer.size) {
1449 #ifdef DEBUG
1450 if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1451 panic("Expected wraparound bad");
1452 #endif
1453 wpipe->pipe_buffer.in = size - segsize;
1454 }
1455
1456 wpipe->pipe_buffer.cnt += size;
1457 #ifdef DEBUG
1458 if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1459 panic("Pipe buffer overflow");
1460 #endif
1461 }
1462 pipeunlock(wpipe);
1463 if (error)
1464 break;
1465 } else {
1466 /*
1467 * If the "read-side" has been blocked, wake it up now.
1468 */
1469 if (wpipe->pipe_state & PIPE_WANTR) {
1470 wpipe->pipe_state &= ~PIPE_WANTR;
1471 wakeup(wpipe);
1472 }
1473
1474 /*
1475 * don't block on non-blocking I/O
1476 */
1477 if (fp->f_flag & FNONBLOCK) {
1478 error = EAGAIN;
1479 break;
1480 }
1481
1482 /*
1483 * We have no more space and have something to offer,
1484 * wake up select/poll.
1485 */
1486 pipeselwakeup(wpipe, wpipe);
1487
1488 wpipe->pipe_state |= PIPE_WANTW;
1489 #ifdef __FreeBSD__
1490 error = msleep(wpipe, PIPE_MTX(rpipe),
1491 PRIBIO | PCATCH, "pipewr", 0);
1492 #else
1493 error = tsleep(wpipe, PRIBIO | PCATCH, "pipewr", 0);
1494 #endif
1495 if (error != 0)
1496 break;
1497 /*
1498 * If read side wants to go away, we just issue a signal
1499 * to ourselves.
1500 */
1501 if (wpipe->pipe_state & PIPE_EOF) {
1502 error = EPIPE;
1503 break;
1504 }
1505 }
1506 }
1507
1508 --wpipe->pipe_busy;
1509 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1510 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1511 wakeup(wpipe);
1512 } else if (wpipe->pipe_buffer.cnt > 0) {
1513 /*
1514 * If we have put any characters in the buffer, we wake up
1515 * the reader.
1516 */
1517 if (wpipe->pipe_state & PIPE_WANTR) {
1518 wpipe->pipe_state &= ~PIPE_WANTR;
1519 wakeup(wpipe);
1520 }
1521 }
1522
1523 /*
1524 * Don't return EPIPE if I/O was successful
1525 */
1526 if ((error == EPIPE) && (wpipe->pipe_buffer.cnt == 0)
1527 && (uio->uio_resid == 0))
1528 error = 0;
1529
1530 if (error == 0)
1531 vfs_timestamp(&wpipe->pipe_mtime);
1532
1533 /*
1534 * We have something to offer, wake up select/poll.
1535 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1536 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1537 */
1538 if (wpipe->pipe_buffer.cnt)
1539 pipeselwakeup(wpipe, wpipe);
1540
1541 /*
1542 * Arrange for next read(2) to do a signal.
1543 */
1544 wpipe->pipe_state |= PIPE_SIGNALR;
1545
1546 PIPE_UNLOCK(rpipe);
1547 return (error);
1548 }
1549
1550 /*
1551 * we implement a very minimal set of ioctls for compatibility with sockets.
1552 */
1553 int
1554 #ifdef __FreeBSD__
1555 pipe_ioctl(fp, cmd, data, td)
1556 struct file *fp;
1557 u_long cmd;
1558 caddr_t data;
1559 struct thread *td;
1560 #else
1561 pipe_ioctl(fp, cmd, data, p)
1562 struct file *fp;
1563 u_long cmd;
1564 caddr_t data;
1565 struct proc *p;
1566 #endif
1567 {
1568 struct pipe *mpipe = (struct pipe *)fp->f_data;
1569
1570 switch (cmd) {
1571
1572 case FIONBIO:
1573 return (0);
1574
1575 case FIOASYNC:
1576 PIPE_LOCK(mpipe);
1577 if (*(int *)data) {
1578 mpipe->pipe_state |= PIPE_ASYNC;
1579 } else {
1580 mpipe->pipe_state &= ~PIPE_ASYNC;
1581 }
1582 PIPE_UNLOCK(mpipe);
1583 return (0);
1584
1585 case FIONREAD:
1586 PIPE_LOCK(mpipe);
1587 #ifndef PIPE_NODIRECT
1588 if (mpipe->pipe_state & PIPE_DIRECTW)
1589 *(int *)data = mpipe->pipe_map.cnt;
1590 else
1591 #endif
1592 *(int *)data = mpipe->pipe_buffer.cnt;
1593 PIPE_UNLOCK(mpipe);
1594 return (0);
1595
1596 #ifdef __FreeBSD__
1597 case FIOSETOWN:
1598 return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1599
1600 case FIOGETOWN:
1601 *(int *)data = fgetown(mpipe->pipe_sigio);
1602 return (0);
1603
1604 /* This is deprecated, FIOSETOWN should be used instead. */
1605 case TIOCSPGRP:
1606 return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1607
1608 /* This is deprecated, FIOGETOWN should be used instead. */
1609 case TIOCGPGRP:
1610 *(int *)data = -fgetown(mpipe->pipe_sigio);
1611 return (0);
1612 #endif /* FreeBSD */
1613 #ifdef __NetBSD__
1614 case TIOCSPGRP:
1615 mpipe->pipe_pgid = *(int *)data;
1616 return (0);
1617
1618 case TIOCGPGRP:
1619 *(int *)data = mpipe->pipe_pgid;
1620 return (0);
1621 #endif /* NetBSD */
1622
1623 }
1624 return (EPASSTHROUGH);
1625 }
1626
1627 int
1628 #ifdef __FreeBSD__
1629 pipe_poll(fp, events, cred, td)
1630 struct file *fp;
1631 int events;
1632 struct ucred *cred;
1633 struct thread *td;
1634 #elif defined(__NetBSD__)
1635 pipe_poll(fp, events, td)
1636 struct file *fp;
1637 int events;
1638 struct proc *td;
1639 #endif
1640 {
1641 struct pipe *rpipe = (struct pipe *)fp->f_data;
1642 struct pipe *wpipe;
1643 int revents = 0;
1644
1645 wpipe = rpipe->pipe_peer;
1646 PIPE_LOCK(rpipe);
1647 if (events & (POLLIN | POLLRDNORM))
1648 if ((rpipe->pipe_buffer.cnt > 0) ||
1649 #ifndef PIPE_NODIRECT
1650 (rpipe->pipe_state & PIPE_DIRECTW) ||
1651 #endif
1652 (rpipe->pipe_state & PIPE_EOF))
1653 revents |= events & (POLLIN | POLLRDNORM);
1654
1655 if (events & (POLLOUT | POLLWRNORM))
1656 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF)
1657 || (
1658 #ifndef PIPE_NODIRECT
1659 ((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1660 #endif
1661 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1662 revents |= events & (POLLOUT | POLLWRNORM);
1663
1664 if ((rpipe->pipe_state & PIPE_EOF) ||
1665 (wpipe == NULL) ||
1666 (wpipe->pipe_state & PIPE_EOF))
1667 revents |= POLLHUP;
1668
1669 if (revents == 0) {
1670 if (events & (POLLIN | POLLRDNORM)) {
1671 selrecord(td, &rpipe->pipe_sel);
1672 rpipe->pipe_state |= PIPE_SEL;
1673 }
1674
1675 if (events & (POLLOUT | POLLWRNORM)) {
1676 selrecord(td, &wpipe->pipe_sel);
1677 wpipe->pipe_state |= PIPE_SEL;
1678 }
1679 }
1680 PIPE_UNLOCK(rpipe);
1681
1682 return (revents);
1683 }
1684
1685 static int
1686 #ifdef __FreeBSD__
1687 pipe_stat(fp, ub, td)
1688 struct file *fp;
1689 struct stat *ub;
1690 struct thread *td;
1691 #else
1692 pipe_stat(fp, ub, td)
1693 struct file *fp;
1694 struct stat *ub;
1695 struct proc *td;
1696 #endif
1697 {
1698 struct pipe *pipe = (struct pipe *)fp->f_data;
1699
1700 memset((caddr_t)ub, 0, sizeof(*ub));
1701 ub->st_mode = S_IFIFO;
1702 ub->st_blksize = pipe->pipe_buffer.size;
1703 ub->st_size = pipe->pipe_buffer.cnt;
1704 ub->st_blocks = (ub->st_size) ? 1 : 0;
1705 #ifdef __FreeBSD__
1706 ub->st_atimespec = pipe->pipe_atime;
1707 ub->st_mtimespec = pipe->pipe_mtime;
1708 ub->st_ctimespec = pipe->pipe_ctime;
1709 #endif /* FreeBSD */
1710 #ifdef __NetBSD__
1711 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec)
1712 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1713 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1714 #endif /* NetBSD */
1715 ub->st_uid = fp->f_cred->cr_uid;
1716 ub->st_gid = fp->f_cred->cr_gid;
1717 /*
1718 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1719 * XXX (st_dev, st_ino) should be unique.
1720 */
1721 return (0);
1722 }
1723
1724 /* ARGSUSED */
1725 static int
1726 #ifdef __FreeBSD__
1727 pipe_close(fp, td)
1728 struct file *fp;
1729 struct thread *td;
1730 #else
1731 pipe_close(fp, td)
1732 struct file *fp;
1733 struct proc *td;
1734 #endif
1735 {
1736 struct pipe *cpipe = (struct pipe *)fp->f_data;
1737
1738 #ifdef __FreeBSD__
1739 fp->f_ops = &badfileops;
1740 funsetown(cpipe->pipe_sigio);
1741 #endif
1742 fp->f_data = NULL;
1743 pipeclose(cpipe);
1744 return (0);
1745 }
1746
1747 static void
1748 pipe_free_kmem(cpipe)
1749 struct pipe *cpipe;
1750 {
1751
1752 #ifdef __FreeBSD__
1753
1754 GIANT_REQUIRED;
1755 KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
1756 ("pipespace: pipe mutex locked"));
1757 #endif
1758
1759 if (cpipe->pipe_buffer.buffer != NULL) {
1760 if (cpipe->pipe_buffer.size > PIPE_SIZE)
1761 --nbigpipe;
1762 amountpipekva -= cpipe->pipe_buffer.size;
1763 #ifdef __FreeBSD__
1764 kmem_free(kernel_map,
1765 (vm_offset_t)cpipe->pipe_buffer.buffer,
1766 cpipe->pipe_buffer.size);
1767 #elif defined(__NetBSD__)
1768 uvm_km_free(kernel_map,
1769 (vaddr_t)cpipe->pipe_buffer.buffer,
1770 cpipe->pipe_buffer.size);
1771 #endif /* NetBSD */
1772 cpipe->pipe_buffer.buffer = NULL;
1773 }
1774 #ifndef PIPE_NODIRECT
1775 if (cpipe->pipe_map.kva != 0) {
1776 #ifdef __FreeBSD__
1777 amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE;
1778 kmem_free(kernel_map,
1779 cpipe->pipe_map.kva,
1780 cpipe->pipe_buffer.size + PAGE_SIZE);
1781 #elif defined(__NetBSD__)
1782 pipe_loan_free(cpipe);
1783 #endif /* NetBSD */
1784 cpipe->pipe_map.cnt = 0;
1785 cpipe->pipe_map.kva = 0;
1786 cpipe->pipe_map.pos = 0;
1787 cpipe->pipe_map.npages = 0;
1788 }
1789 #endif /* !PIPE_NODIRECT */
1790 }
1791
1792 /*
1793 * shutdown the pipe
1794 */
1795 static void
1796 pipeclose(cpipe)
1797 struct pipe *cpipe;
1798 {
1799 struct pipe *ppipe;
1800 #ifdef __FreeBSD__
1801 int hadpeer = 0;
1802 #endif
1803
1804 if (cpipe == NULL)
1805 return;
1806
1807 /* partially created pipes won't have a valid mutex. */
1808 if (PIPE_MTX(cpipe) != NULL)
1809 PIPE_LOCK(cpipe);
1810
1811 pipeselwakeup(cpipe, cpipe);
1812
1813 /*
1814 * If the other side is blocked, wake it up saying that
1815 * we want to close it down.
1816 */
1817 while (cpipe->pipe_busy) {
1818 wakeup(cpipe);
1819 cpipe->pipe_state |= PIPE_WANTCLOSE | PIPE_EOF;
1820 #ifdef __FreeBSD__
1821 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1822 #else
1823 tsleep(cpipe, PRIBIO, "pipecl", 0);
1824 #endif
1825 }
1826
1827 /*
1828 * Disconnect from peer
1829 */
1830 if ((ppipe = cpipe->pipe_peer) != NULL) {
1831 #ifdef __FreeBSD__
1832 hadpeer++;
1833 #endif
1834 pipeselwakeup(ppipe, ppipe);
1835
1836 ppipe->pipe_state |= PIPE_EOF;
1837 wakeup(ppipe);
1838 #ifdef __FreeBSD__
1839 KNOTE(&ppipe->pipe_sel.si_note, 0);
1840 #endif
1841 ppipe->pipe_peer = NULL;
1842 }
1843 /*
1844 * free resources
1845 */
1846 #ifdef __FreeBSD__
1847 if (PIPE_MTX(cpipe) != NULL) {
1848 PIPE_UNLOCK(cpipe);
1849 if (!hadpeer) {
1850 mtx_destroy(PIPE_MTX(cpipe));
1851 free(PIPE_MTX(cpipe), M_TEMP);
1852 }
1853 }
1854 mtx_lock(&Giant);
1855 pipe_free_kmem(cpipe);
1856 zfree(pipe_zone, cpipe);
1857 mtx_unlock(&Giant);
1858 #endif
1859
1860 #ifdef __NetBSD__
1861 if (PIPE_MTX(cpipe) != NULL)
1862 PIPE_UNLOCK(cpipe);
1863
1864 pipe_free_kmem(cpipe);
1865 (void) lockmgr(&cpipe->pipe_lock, LK_DRAIN, NULL);
1866 pool_put(&pipe_pool, cpipe);
1867 #endif
1868 }
1869
1870 #ifdef __FreeBSD__
1871 /*ARGSUSED*/
1872 static int
1873 pipe_kqfilter(struct file *fp, struct knote *kn)
1874 {
1875 struct pipe *cpipe;
1876
1877 cpipe = (struct pipe *)kn->kn_fp->f_data;
1878 switch (kn->kn_filter) {
1879 case EVFILT_READ:
1880 kn->kn_fop = &pipe_rfiltops;
1881 break;
1882 case EVFILT_WRITE:
1883 kn->kn_fop = &pipe_wfiltops;
1884 cpipe = cpipe->pipe_peer;
1885 break;
1886 default:
1887 return (1);
1888 }
1889 kn->kn_hook = (caddr_t)cpipe;
1890
1891 PIPE_LOCK(cpipe);
1892 SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1893 PIPE_UNLOCK(cpipe);
1894 return (0);
1895 }
1896
1897 static void
1898 filt_pipedetach(struct knote *kn)
1899 {
1900 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1901
1902 PIPE_LOCK(cpipe);
1903 SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1904 PIPE_UNLOCK(cpipe);
1905 }
1906
1907 /*ARGSUSED*/
1908 static int
1909 filt_piperead(struct knote *kn, long hint)
1910 {
1911 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1912 struct pipe *wpipe = rpipe->pipe_peer;
1913
1914 PIPE_LOCK(rpipe);
1915 kn->kn_data = rpipe->pipe_buffer.cnt;
1916 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1917 kn->kn_data = rpipe->pipe_map.cnt;
1918
1919 if ((rpipe->pipe_state & PIPE_EOF) ||
1920 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1921 kn->kn_flags |= EV_EOF;
1922 PIPE_UNLOCK(rpipe);
1923 return (1);
1924 }
1925 PIPE_UNLOCK(rpipe);
1926 return (kn->kn_data > 0);
1927 }
1928
1929 /*ARGSUSED*/
1930 static int
1931 filt_pipewrite(struct knote *kn, long hint)
1932 {
1933 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1934 struct pipe *wpipe = rpipe->pipe_peer;
1935
1936 PIPE_LOCK(rpipe);
1937 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1938 kn->kn_data = 0;
1939 kn->kn_flags |= EV_EOF;
1940 PIPE_UNLOCK(rpipe);
1941 return (1);
1942 }
1943 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1944 if (wpipe->pipe_state & PIPE_DIRECTW)
1945 kn->kn_data = 0;
1946
1947 PIPE_UNLOCK(rpipe);
1948 return (kn->kn_data >= PIPE_BUF);
1949 }
1950 #endif /* FreeBSD */
1951
1952 #ifdef __NetBSD__
1953 static int
1954 pipe_fcntl(fp, cmd, data, p)
1955 struct file *fp;
1956 u_int cmd;
1957 caddr_t data;
1958 struct proc *p;
1959 {
1960 if (cmd == F_SETFL)
1961 return (0);
1962 else
1963 return (EOPNOTSUPP);
1964 }
1965
1966 /*
1967 * Handle pipe sysctls.
1968 */
1969 int
1970 sysctl_dopipe(name, namelen, oldp, oldlenp, newp, newlen)
1971 int *name;
1972 u_int namelen;
1973 void *oldp;
1974 size_t *oldlenp;
1975 void *newp;
1976 size_t newlen;
1977 {
1978 /* All sysctl names at this level are terminal. */
1979 if (namelen != 1)
1980 return (ENOTDIR); /* overloaded */
1981
1982 switch (name[0]) {
1983 case KERN_PIPE_MAXKVASZ:
1984 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxpipekva));
1985 case KERN_PIPE_LIMITKVA:
1986 return (sysctl_int(oldp, oldlenp, newp, newlen, &limitpipekva));
1987 case KERN_PIPE_MAXBIGPIPES:
1988 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxbigpipes));
1989 case KERN_PIPE_NBIGPIPES:
1990 return (sysctl_rdint(oldp, oldlenp, newp, nbigpipe));
1991 case KERN_PIPE_KVASIZE:
1992 return (sysctl_rdint(oldp, oldlenp, newp, amountpipekva));
1993 default:
1994 return (EOPNOTSUPP);
1995 }
1996 /* NOTREACHED */
1997 }
1998
1999 /*
2000 * Initialize pipe structs.
2001 */
2002 void
2003 pipe_init(void)
2004 {
2005 pool_init(&pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl", NULL);
2006 }
2007
2008 #endif /* __NetBSD __ */
2009