Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.33
      1 /*	$NetBSD: sys_pipe.c,v 1.33 2003/01/18 10:06:34 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1996 John S. Dyson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice immediately at the beginning of the file, without modification,
     12  *    this list of conditions, and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Absolutely no warranty of function or purpose is made by the author
     17  *    John S. Dyson.
     18  * 4. Modifications may be freely made to this file if the above conditions
     19  *    are met.
     20  *
     21  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
     22  */
     23 
     24 /*
     25  * This file contains a high-performance replacement for the socket-based
     26  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
     27  * all features of sockets, but does do everything that pipes normally
     28  * do.
     29  *
     30  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
     31  * written by Jaromir Dolecek.
     32  */
     33 
     34 /*
     35  * This code has two modes of operation, a small write mode and a large
     36  * write mode.  The small write mode acts like conventional pipes with
     37  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     38  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     39  * and PIPE_SIZE in size, it is fully mapped into the kernel (on FreeBSD,
     40  * those pages are also wired), and the receiving process can copy it directly
     41  * from the pages in the sending process.
     42  *
     43  * If the sending process receives a signal, it is possible that it will
     44  * go away, and certainly its address space can change, because control
     45  * is returned back to the user-mode side.  In that case, the pipe code
     46  * arranges to copy the buffer supplied by the user process on FreeBSD, to
     47  * a pageable kernel buffer, and the receiving process will grab the data
     48  * from the pageable kernel buffer.  Since signals don't happen all that often,
     49  * the copy operation is normally eliminated.
     50  * For NetBSD, the pages are mapped read-only, COW for kernel by uvm_loan(),
     51  * so no explicit handling need to be done, all is handled by standard VM
     52  * facilities.
     53  *
     54  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     55  * happen for small transfers so that the system will not spend all of
     56  * its time context switching.  PIPE_SIZE is constrained by the
     57  * amount of kernel virtual memory.
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.33 2003/01/18 10:06:34 thorpej Exp $");
     62 
     63 #include <sys/param.h>
     64 #include <sys/systm.h>
     65 #include <sys/proc.h>
     66 #include <sys/fcntl.h>
     67 #include <sys/file.h>
     68 #include <sys/filedesc.h>
     69 #include <sys/filio.h>
     70 #include <sys/kernel.h>
     71 #include <sys/lock.h>
     72 #include <sys/ttycom.h>
     73 #include <sys/stat.h>
     74 #include <sys/malloc.h>
     75 #include <sys/poll.h>
     76 #include <sys/signalvar.h>
     77 #include <sys/vnode.h>
     78 #include <sys/uio.h>
     79 #include <sys/lock.h>
     80 #ifdef __FreeBSD__
     81 #include <sys/mutex.h>
     82 #endif
     83 #ifdef __NetBSD__
     84 #include <sys/select.h>
     85 #include <sys/mount.h>
     86 #include <sys/sa.h>
     87 #include <sys/syscallargs.h>
     88 #include <uvm/uvm.h>
     89 #include <sys/sysctl.h>
     90 #include <sys/kernel.h>
     91 #endif /* NetBSD, FreeBSD */
     92 
     93 #include <sys/pipe.h>
     94 
     95 #ifdef __NetBSD__
     96 /*
     97  * Avoid microtime(9), it's slow. We don't guard the read from time(9)
     98  * with splclock(9) since we don't actually need to be THAT sure the access
     99  * is atomic.
    100  */
    101 #define vfs_timestamp(tv)	(*(tv) = time)
    102 
    103 /* we call it sel_klist */
    104 #define	sel_note		sel_klist
    105 
    106 #endif
    107 
    108 /*
    109  * Use this define if you want to disable *fancy* VM things.  Expect an
    110  * approx 30% decrease in transfer rate.  This could be useful for
    111  * OpenBSD.
    112  */
    113 /* #define PIPE_NODIRECT */
    114 
    115 /*
    116  * interfaces to the outside world
    117  */
    118 #ifdef __FreeBSD__
    119 static int pipe_read(struct file *fp, struct uio *uio,
    120 		struct ucred *cred, int flags, struct thread *td);
    121 static int pipe_write(struct file *fp, struct uio *uio,
    122 		struct ucred *cred, int flags, struct thread *td);
    123 static int pipe_close(struct file *fp, struct thread *td);
    124 static int pipe_poll(struct file *fp, int events, struct ucred *cred,
    125 		struct thread *td);
    126 static int pipe_kqfilter(struct file *fp, struct knote *kn);
    127 static int pipe_stat(struct file *fp, struct stat *sb, struct thread *td);
    128 static int pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct thread *td);
    129 
    130 static struct fileops pipeops = {
    131 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
    132 	pipe_stat, pipe_close
    133 };
    134 
    135 #define PIPE_GET_GIANT(pipe)							\
    136 	do {								\
    137 		PIPE_UNLOCK(wpipe);					\
    138 		mtx_lock(&Giant);					\
    139 	} while (/*CONSTCOND*/ 0)
    140 
    141 #define PIPE_DROP_GIANT(pipe)						\
    142 	do {								\
    143 		mtx_unlock(&Giant);					\
    144 		PIPE_LOCK(wpipe);					\
    145 	} while (/*CONSTCOND*/ 0)
    146 
    147 #endif /* FreeBSD */
    148 
    149 #ifdef __NetBSD__
    150 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
    151 		struct ucred *cred, int flags);
    152 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
    153 		struct ucred *cred, int flags);
    154 static int pipe_close(struct file *fp, struct proc *p);
    155 static int pipe_poll(struct file *fp, int events, struct proc *p);
    156 static int pipe_fcntl(struct file *fp, u_int com, caddr_t data,
    157 		struct proc *p);
    158 static int pipe_kqfilter(struct file *fp, struct knote *kn);
    159 static int pipe_stat(struct file *fp, struct stat *sb, struct proc *p);
    160 static int pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct proc *p);
    161 
    162 static struct fileops pipeops =
    163     { pipe_read, pipe_write, pipe_ioctl, pipe_fcntl, pipe_poll,
    164       pipe_stat, pipe_close, pipe_kqfilter };
    165 
    166 /* XXXSMP perhaps use spinlocks & KERNEL_PROC_(UN)LOCK() ? just clear now */
    167 #define PIPE_GET_GIANT(pipe)
    168 #define PIPE_DROP_GIANT(pipe)
    169 #define GIANT_REQUIRED
    170 
    171 #endif /* NetBSD */
    172 
    173 /*
    174  * Default pipe buffer size(s), this can be kind-of large now because pipe
    175  * space is pageable.  The pipe code will try to maintain locality of
    176  * reference for performance reasons, so small amounts of outstanding I/O
    177  * will not wipe the cache.
    178  */
    179 #define MINPIPESIZE (PIPE_SIZE/3)
    180 #define MAXPIPESIZE (2*PIPE_SIZE/3)
    181 
    182 /*
    183  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    184  * is there so that on large systems, we don't exhaust it.
    185  */
    186 #define MAXPIPEKVA (8*1024*1024)
    187 static int maxpipekva = MAXPIPEKVA;
    188 
    189 /*
    190  * Limit for direct transfers, we cannot, of course limit
    191  * the amount of kva for pipes in general though.
    192  */
    193 #define LIMITPIPEKVA (16*1024*1024)
    194 static int limitpipekva = LIMITPIPEKVA;
    195 
    196 /*
    197  * Limit the number of "big" pipes
    198  */
    199 #define LIMITBIGPIPES  32
    200 static int maxbigpipes = LIMITBIGPIPES;
    201 static int nbigpipe = 0;
    202 
    203 /*
    204  * Amount of KVA consumed by pipe buffers.
    205  */
    206 static int amountpipekva = 0;
    207 
    208 static void pipeclose(struct pipe *cpipe);
    209 static void pipe_free_kmem(struct pipe *cpipe);
    210 static int pipe_create(struct pipe **cpipep, int allockva);
    211 static __inline int pipelock(struct pipe *cpipe, int catch);
    212 static __inline void pipeunlock(struct pipe *cpipe);
    213 static __inline void pipeselwakeup(struct pipe *cpipe, struct pipe *sigp);
    214 #ifndef PIPE_NODIRECT
    215 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
    216 #endif
    217 static int pipespace(struct pipe *cpipe, int size);
    218 
    219 #ifdef __NetBSD__
    220 #ifndef PIPE_NODIRECT
    221 static int pipe_loan_alloc(struct pipe *, int);
    222 static void pipe_loan_free(struct pipe *);
    223 #endif /* PIPE_NODIRECT */
    224 
    225 static struct pool pipe_pool;
    226 #endif /* NetBSD */
    227 
    228 #ifdef __FreeBSD__
    229 static vm_zone_t pipe_zone;
    230 
    231 static void pipeinit(void *dummy __unused);
    232 #ifndef PIPE_NODIRECT
    233 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
    234 static void pipe_destroy_write_buffer(struct pipe *wpipe);
    235 static void pipe_clone_write_buffer(struct pipe *wpipe);
    236 #endif
    237 
    238 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
    239 
    240 static void
    241 pipeinit(void *dummy __unused)
    242 {
    243 
    244 	pipe_zone = zinit("PIPE", sizeof(struct pipe), 0, 0, 4);
    245 }
    246 #endif /* FreeBSD */
    247 
    248 /*
    249  * The pipe system call for the DTYPE_PIPE type of pipes
    250  */
    251 
    252 /* ARGSUSED */
    253 #ifdef __FreeBSD__
    254 int
    255 pipe(td, uap)
    256 	struct thread *td;
    257 	struct pipe_args /* {
    258 		int	dummy;
    259 	} */ *uap;
    260 #elif defined(__NetBSD__)
    261 int
    262 sys_pipe(l, v, retval)
    263 	struct lwp *l;
    264 	void *v;
    265 	register_t *retval;
    266 #endif
    267 {
    268 	struct file *rf, *wf;
    269 	struct pipe *rpipe, *wpipe;
    270 	int fd, error;
    271 	struct proc *p;
    272 #ifdef __FreeBSD__
    273 	struct mtx *pmtx;
    274 
    275 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
    276 
    277 	pmtx = malloc(sizeof(*pmtx), M_TEMP, M_WAITOK | M_ZERO);
    278 
    279 	rpipe = wpipe = NULL;
    280 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 1)) {
    281 		pipeclose(rpipe);
    282 		pipeclose(wpipe);
    283 		free(pmtx, M_TEMP);
    284 		return (ENFILE);
    285 	}
    286 
    287 	error = falloc(td, &rf, &fd);
    288 	if (error) {
    289 		pipeclose(rpipe);
    290 		pipeclose(wpipe);
    291 		free(pmtx, M_TEMP);
    292 		return (error);
    293 	}
    294 	fhold(rf);
    295 	td->td_retval[0] = fd;
    296 
    297 	/*
    298 	 * Warning: once we've gotten past allocation of the fd for the
    299 	 * read-side, we can only drop the read side via fdrop() in order
    300 	 * to avoid races against processes which manage to dup() the read
    301 	 * side while we are blocked trying to allocate the write side.
    302 	 */
    303 	FILE_LOCK(rf);
    304 	rf->f_flag = FREAD | FWRITE;
    305 	rf->f_type = DTYPE_PIPE;
    306 	rf->f_data = (caddr_t)rpipe;
    307 	rf->f_ops = &pipeops;
    308 	FILE_UNLOCK(rf);
    309 	error = falloc(td, &wf, &fd);
    310 	if (error) {
    311 		struct filedesc *fdp = td->td_proc->p_fd;
    312 		FILEDESC_LOCK(fdp);
    313 		if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
    314 			fdp->fd_ofiles[td->td_retval[0]] = NULL;
    315 			FILEDESC_UNLOCK(fdp);
    316 			fdrop(rf, td);
    317 		} else
    318 			FILEDESC_UNLOCK(fdp);
    319 		fdrop(rf, td);
    320 		/* rpipe has been closed by fdrop(). */
    321 		pipeclose(wpipe);
    322 		free(pmtx, M_TEMP);
    323 		return (error);
    324 	}
    325 	FILE_LOCK(wf);
    326 	wf->f_flag = FREAD | FWRITE;
    327 	wf->f_type = DTYPE_PIPE;
    328 	wf->f_data = (caddr_t)wpipe;
    329 	wf->f_ops = &pipeops;
    330 	p->p_retval[1] = fd;
    331 	rpipe->pipe_peer = wpipe;
    332 	wpipe->pipe_peer = rpipe;
    333 	mtx_init(pmtx, "pipe mutex", MTX_DEF);
    334 	rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
    335 	fdrop(rf, td);
    336 #endif /* FreeBSD */
    337 
    338 #ifdef __NetBSD__
    339 	p = l->l_proc;
    340 	rpipe = wpipe = NULL;
    341 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
    342 		pipeclose(rpipe);
    343 		pipeclose(wpipe);
    344 		return (ENFILE);
    345 	}
    346 
    347 	/*
    348 	 * Note: the file structure returned from falloc() is marked
    349 	 * as 'larval' initially. Unless we mark it as 'mature' by
    350 	 * FILE_SET_MATURE(), any attempt to do anything with it would
    351 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
    352 	 * file descriptor races if we block in the second falloc().
    353 	 */
    354 
    355 	error = falloc(p, &rf, &fd);
    356 	if (error)
    357 		goto free2;
    358 	retval[0] = fd;
    359 	rf->f_flag = FREAD;
    360 	rf->f_type = DTYPE_PIPE;
    361 	rf->f_data = (caddr_t)rpipe;
    362 	rf->f_ops = &pipeops;
    363 
    364 	error = falloc(p, &wf, &fd);
    365 	if (error)
    366 		goto free3;
    367 	retval[1] = fd;
    368 	wf->f_flag = FWRITE;
    369 	wf->f_type = DTYPE_PIPE;
    370 	wf->f_data = (caddr_t)wpipe;
    371 	wf->f_ops = &pipeops;
    372 
    373 	rpipe->pipe_peer = wpipe;
    374 	wpipe->pipe_peer = rpipe;
    375 
    376 	FILE_SET_MATURE(rf);
    377 	FILE_SET_MATURE(wf);
    378 	FILE_UNUSE(rf, p);
    379 	FILE_UNUSE(wf, p);
    380 	return (0);
    381 free3:
    382 	FILE_UNUSE(rf, p);
    383 	ffree(rf);
    384 	fdremove(p->p_fd, retval[0]);
    385 free2:
    386 	pipeclose(wpipe);
    387 	pipeclose(rpipe);
    388 #endif /* NetBSD */
    389 
    390 	return (error);
    391 }
    392 
    393 /*
    394  * Allocate kva for pipe circular buffer, the space is pageable
    395  * This routine will 'realloc' the size of a pipe safely, if it fails
    396  * it will retain the old buffer.
    397  * If it fails it will return ENOMEM.
    398  */
    399 static int
    400 pipespace(cpipe, size)
    401 	struct pipe *cpipe;
    402 	int size;
    403 {
    404 	caddr_t buffer;
    405 #ifdef __FreeBSD__
    406 	struct vm_object *object;
    407 	int npages, error;
    408 
    409 	GIANT_REQUIRED;
    410 	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
    411 	       ("pipespace: pipe mutex locked"));
    412 
    413 	npages = round_page(size)/PAGE_SIZE;
    414 	/*
    415 	 * Create an object, I don't like the idea of paging to/from
    416 	 * kernel_object.
    417 	 */
    418 	object = vm_object_allocate(OBJT_DEFAULT, npages);
    419 	buffer = (caddr_t) vm_map_min(kernel_map);
    420 
    421 	/*
    422 	 * Insert the object into the kernel map, and allocate kva for it.
    423 	 * The map entry is, by default, pageable.
    424 	 */
    425 	error = vm_map_find(kernel_map, object, 0,
    426 		(vm_offset_t *) &buffer, size, 1,
    427 		VM_PROT_ALL, VM_PROT_ALL, 0);
    428 
    429 	if (error != KERN_SUCCESS) {
    430 		vm_object_deallocate(object);
    431 		return (ENOMEM);
    432 	}
    433 #endif /* FreeBSD */
    434 
    435 #ifdef __NetBSD__
    436 	/*
    437 	 * Allocate pageable virtual address space. Physical memory is allocated
    438 	 * on demand.
    439 	 */
    440 	buffer = (caddr_t) uvm_km_valloc(kernel_map, round_page(size));
    441 	if (buffer == NULL)
    442 		return (ENOMEM);
    443 #endif /* NetBSD */
    444 
    445 	/* free old resources if we're resizing */
    446 	pipe_free_kmem(cpipe);
    447 #ifdef __FreeBSD__
    448 	cpipe->pipe_buffer.object = object;
    449 #endif
    450 	cpipe->pipe_buffer.buffer = buffer;
    451 	cpipe->pipe_buffer.size = size;
    452 	cpipe->pipe_buffer.in = 0;
    453 	cpipe->pipe_buffer.out = 0;
    454 	cpipe->pipe_buffer.cnt = 0;
    455 	amountpipekva += cpipe->pipe_buffer.size;
    456 	return (0);
    457 }
    458 
    459 /*
    460  * initialize and allocate VM and memory for pipe
    461  */
    462 static int
    463 pipe_create(cpipep, allockva)
    464 	struct pipe **cpipep;
    465 	int allockva;
    466 {
    467 	struct pipe *cpipe;
    468 	int error;
    469 
    470 #ifdef __FreeBSD__
    471 	*cpipep = zalloc(pipe_zone);
    472 #endif
    473 #ifdef __NetBSD__
    474 	*cpipep = pool_get(&pipe_pool, M_WAITOK);
    475 #endif
    476 	if (*cpipep == NULL)
    477 		return (ENOMEM);
    478 
    479 	cpipe = *cpipep;
    480 
    481 	/* Initialize */
    482 	memset(cpipe, 0, sizeof(*cpipe));
    483 	cpipe->pipe_state = PIPE_SIGNALR;
    484 
    485 #ifdef __FreeBSD__
    486 	cpipe->pipe_mtxp = NULL;	/* avoid pipespace assertion */
    487 #endif
    488 	if (allockva && (error = pipespace(cpipe, PIPE_SIZE)))
    489 		return (error);
    490 
    491 	vfs_timestamp(&cpipe->pipe_ctime);
    492 	cpipe->pipe_atime = cpipe->pipe_ctime;
    493 	cpipe->pipe_mtime = cpipe->pipe_ctime;
    494 #ifdef __NetBSD__
    495 	cpipe->pipe_pgid = NO_PID;
    496 	lockinit(&cpipe->pipe_lock, PRIBIO | PCATCH, "pipelk", 0, 0);
    497 #endif
    498 
    499 	return (0);
    500 }
    501 
    502 
    503 /*
    504  * lock a pipe for I/O, blocking other access
    505  */
    506 static __inline int
    507 pipelock(cpipe, catch)
    508 	struct pipe *cpipe;
    509 	int catch;
    510 {
    511 	int error;
    512 
    513 #ifdef __FreeBSD__
    514 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
    515 	while (cpipe->pipe_state & PIPE_LOCKFL) {
    516 		cpipe->pipe_state |= PIPE_LWANT;
    517 		error = msleep(cpipe, PIPE_MTX(cpipe),
    518 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
    519 		    "pipelk", 0);
    520 		if (error != 0)
    521 			return (error);
    522 	}
    523 	cpipe->pipe_state |= PIPE_LOCKFL;
    524 	return (0);
    525 #endif
    526 
    527 #ifdef __NetBSD__
    528 	do {
    529 		error = lockmgr(&cpipe->pipe_lock, LK_EXCLUSIVE, NULL);
    530 	} while (!catch && (error == EINTR || error == ERESTART));
    531 	return (error);
    532 #endif
    533 }
    534 
    535 /*
    536  * unlock a pipe I/O lock
    537  */
    538 static __inline void
    539 pipeunlock(cpipe)
    540 	struct pipe *cpipe;
    541 {
    542 
    543 #ifdef __FreeBSD__
    544 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
    545 	cpipe->pipe_state &= ~PIPE_LOCKFL;
    546 	if (cpipe->pipe_state & PIPE_LWANT) {
    547 		cpipe->pipe_state &= ~PIPE_LWANT;
    548 		wakeup(cpipe);
    549 	}
    550 #endif
    551 
    552 #ifdef __NetBSD__
    553 	lockmgr(&cpipe->pipe_lock, LK_RELEASE, NULL);
    554 #endif
    555 }
    556 
    557 /*
    558  * Select/poll wakup. This also sends SIGIO to peer connected to
    559  * 'sigpipe' side of pipe.
    560  */
    561 static __inline void
    562 pipeselwakeup(selp, sigp)
    563 	struct pipe *selp, *sigp;
    564 {
    565 
    566 #ifdef __FreeBSD__
    567 	if (selp->pipe_state & PIPE_SEL) {
    568 		selp->pipe_state &= ~PIPE_SEL;
    569 		selwakeup(&selp->pipe_sel);
    570 	}
    571 	if (sigp && (sigp->pipe_state & PIPE_ASYNC) && sigp->pipe_sigio)
    572 		pgsigio(sigp->pipe_sigio, SIGIO, 0);
    573 	KNOTE(&selp->pipe_sel.sel_note, 0);
    574 #endif
    575 
    576 #ifdef __NetBSD__
    577 	selnotify(&selp->pipe_sel, 0);
    578 	if (sigp && (sigp->pipe_state & PIPE_ASYNC) &&
    579 	    sigp->pipe_pgid != NO_PID) {
    580 		struct proc *p;
    581 
    582 		if (sigp->pipe_pgid < 0)
    583 			gsignal(-sigp->pipe_pgid, SIGIO);
    584 		else if (sigp->pipe_pgid > 0 && (p = pfind(sigp->pipe_pgid)) != 0)
    585 			psignal(p, SIGIO);
    586 	}
    587 #endif /* NetBSD */
    588 }
    589 
    590 /* ARGSUSED */
    591 #ifdef __FreeBSD__
    592 static int
    593 pipe_read(fp, uio, cred, flags, td)
    594 	struct file *fp;
    595 	struct uio *uio;
    596 	struct ucred *cred;
    597 	struct thread *td;
    598 	int flags;
    599 	struct proc *p;
    600 #elif defined(__NetBSD__)
    601 static int
    602 pipe_read(fp, offset, uio, cred, flags)
    603 	struct file *fp;
    604 	off_t *offset;
    605 	struct uio *uio;
    606 	struct ucred *cred;
    607 	int flags;
    608 #endif
    609 {
    610 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    611 	int error;
    612 	size_t nread = 0;
    613 	size_t size;
    614 	size_t ocnt;
    615 
    616 	PIPE_LOCK(rpipe);
    617 	++rpipe->pipe_busy;
    618 	ocnt = rpipe->pipe_buffer.cnt;
    619 
    620 	error = pipelock(rpipe, 1);
    621 	if (error)
    622 		goto unlocked_error;
    623 
    624 	while (uio->uio_resid) {
    625 		/*
    626 		 * normal pipe buffer receive
    627 		 */
    628 		if (rpipe->pipe_buffer.cnt > 0) {
    629 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
    630 			if (size > rpipe->pipe_buffer.cnt)
    631 				size = rpipe->pipe_buffer.cnt;
    632 			if (size > uio->uio_resid)
    633 				size = uio->uio_resid;
    634 
    635 			PIPE_UNLOCK(rpipe);
    636 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
    637 					size, uio);
    638 			PIPE_LOCK(rpipe);
    639 			if (error)
    640 				break;
    641 
    642 			rpipe->pipe_buffer.out += size;
    643 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
    644 				rpipe->pipe_buffer.out = 0;
    645 
    646 			rpipe->pipe_buffer.cnt -= size;
    647 
    648 			/*
    649 			 * If there is no more to read in the pipe, reset
    650 			 * its pointers to the beginning.  This improves
    651 			 * cache hit stats.
    652 			 */
    653 			if (rpipe->pipe_buffer.cnt == 0) {
    654 				rpipe->pipe_buffer.in = 0;
    655 				rpipe->pipe_buffer.out = 0;
    656 			}
    657 			nread += size;
    658 #ifndef PIPE_NODIRECT
    659 		/*
    660 		 * Direct copy, bypassing a kernel buffer.
    661 		 */
    662 		} else if ((size = rpipe->pipe_map.cnt) &&
    663 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
    664 			caddr_t	va;
    665 			if (size > uio->uio_resid)
    666 				size = uio->uio_resid;
    667 
    668 			va = (caddr_t) rpipe->pipe_map.kva +
    669 			    rpipe->pipe_map.pos;
    670 			PIPE_UNLOCK(rpipe);
    671 			error = uiomove(va, size, uio);
    672 			PIPE_LOCK(rpipe);
    673 			if (error)
    674 				break;
    675 			nread += size;
    676 			rpipe->pipe_map.pos += size;
    677 			rpipe->pipe_map.cnt -= size;
    678 			if (rpipe->pipe_map.cnt == 0) {
    679 				rpipe->pipe_state &= ~PIPE_DIRECTW;
    680 				wakeup(rpipe);
    681 			}
    682 #endif
    683 		} else {
    684 			/*
    685 			 * detect EOF condition
    686 			 * read returns 0 on EOF, no need to set error
    687 			 */
    688 			if (rpipe->pipe_state & PIPE_EOF)
    689 				break;
    690 
    691 			/*
    692 			 * If the "write-side" has been blocked, wake it up now.
    693 			 */
    694 			if (rpipe->pipe_state & PIPE_WANTW) {
    695 				rpipe->pipe_state &= ~PIPE_WANTW;
    696 				wakeup(rpipe);
    697 			}
    698 
    699 			/*
    700 			 * Break if some data was read.
    701 			 */
    702 			if (nread > 0)
    703 				break;
    704 
    705 			/*
    706 			 * don't block on non-blocking I/O
    707 			 */
    708 			if (fp->f_flag & FNONBLOCK) {
    709 				error = EAGAIN;
    710 				break;
    711 			}
    712 
    713 			/*
    714 			 * Unlock the pipe buffer for our remaining processing.
    715 			 * We will either break out with an error or we will
    716 			 * sleep and relock to loop.
    717 			 */
    718 			pipeunlock(rpipe);
    719 
    720 			/*
    721 			 * We want to read more, wake up select/poll.
    722 			 */
    723 			pipeselwakeup(rpipe, rpipe->pipe_peer);
    724 
    725 			rpipe->pipe_state |= PIPE_WANTR;
    726 #ifdef __FreeBSD__
    727 			error = msleep(rpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
    728 				    "piperd", 0);
    729 #else
    730 			error = tsleep(rpipe, PRIBIO | PCATCH, "piperd", 0);
    731 #endif
    732 			if (error != 0 || (error = pipelock(rpipe, 1)))
    733 				goto unlocked_error;
    734 		}
    735 	}
    736 	pipeunlock(rpipe);
    737 
    738 	/* XXX: should probably do this before getting any locks. */
    739 	if (error == 0)
    740 		vfs_timestamp(&rpipe->pipe_atime);
    741 unlocked_error:
    742 	--rpipe->pipe_busy;
    743 
    744 	/*
    745 	 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
    746 	 */
    747 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
    748 		rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
    749 		wakeup(rpipe);
    750 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
    751 		/*
    752 		 * Handle write blocking hysteresis.
    753 		 */
    754 		if (rpipe->pipe_state & PIPE_WANTW) {
    755 			rpipe->pipe_state &= ~PIPE_WANTW;
    756 			wakeup(rpipe);
    757 		}
    758 	}
    759 
    760 	/*
    761 	 * If anything was read off the buffer, signal to the writer it's
    762 	 * possible to write more data. Also send signal if we are here for the
    763 	 * first time after last write.
    764 	 */
    765 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF
    766 	    && (ocnt != rpipe->pipe_buffer.cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    767 		pipeselwakeup(rpipe, rpipe->pipe_peer);
    768 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    769 	}
    770 
    771 	PIPE_UNLOCK(rpipe);
    772 	return (error);
    773 }
    774 
    775 #ifdef __FreeBSD__
    776 #ifndef PIPE_NODIRECT
    777 /*
    778  * Map the sending processes' buffer into kernel space and wire it.
    779  * This is similar to a physical write operation.
    780  */
    781 static int
    782 pipe_build_write_buffer(wpipe, uio)
    783 	struct pipe *wpipe;
    784 	struct uio *uio;
    785 {
    786 	size_t size;
    787 	int i;
    788 	vm_offset_t addr, endaddr, paddr;
    789 
    790 	GIANT_REQUIRED;
    791 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
    792 
    793 	size = uio->uio_iov->iov_len;
    794 	if (size > wpipe->pipe_buffer.size)
    795 		size = wpipe->pipe_buffer.size;
    796 
    797 	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
    798 	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
    799 	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
    800 		vm_page_t m;
    801 
    802 		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
    803 		    (paddr = pmap_kextract(addr)) == 0) {
    804 			int j;
    805 
    806 			for (j = 0; j < i; j++)
    807 				vm_page_unwire(wpipe->pipe_map.ms[j], 1);
    808 			return (EFAULT);
    809 		}
    810 
    811 		m = PHYS_TO_VM_PAGE(paddr);
    812 		vm_page_wire(m);
    813 		wpipe->pipe_map.ms[i] = m;
    814 	}
    815 
    816 /*
    817  * set up the control block
    818  */
    819 	wpipe->pipe_map.npages = i;
    820 	wpipe->pipe_map.pos =
    821 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
    822 	wpipe->pipe_map.cnt = size;
    823 
    824 /*
    825  * and map the buffer
    826  */
    827 	if (wpipe->pipe_map.kva == 0) {
    828 		/*
    829 		 * We need to allocate space for an extra page because the
    830 		 * address range might (will) span pages at times.
    831 		 */
    832 		wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
    833 			wpipe->pipe_buffer.size + PAGE_SIZE);
    834 		amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE;
    835 	}
    836 	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
    837 		wpipe->pipe_map.npages);
    838 
    839 /*
    840  * and update the uio data
    841  */
    842 
    843 	uio->uio_iov->iov_len -= size;
    844 	uio->uio_iov->iov_base += size;
    845 	if (uio->uio_iov->iov_len == 0)
    846 		uio->uio_iov++;
    847 	uio->uio_resid -= size;
    848 	uio->uio_offset += size;
    849 	return (0);
    850 }
    851 
    852 /*
    853  * unmap and unwire the process buffer
    854  */
    855 static void
    856 pipe_destroy_write_buffer(wpipe)
    857 	struct pipe *wpipe;
    858 {
    859 	int i;
    860 
    861 	GIANT_REQUIRED;
    862 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
    863 
    864 	if (wpipe->pipe_map.kva) {
    865 		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
    866 
    867 		if (amountpipekva > maxpipekva) {
    868 			vm_offset_t kva = wpipe->pipe_map.kva;
    869 			wpipe->pipe_map.kva = 0;
    870 			kmem_free(kernel_map, kva,
    871 				wpipe->pipe_buffer.size + PAGE_SIZE);
    872 			amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
    873 		}
    874 	}
    875 	for (i = 0; i < wpipe->pipe_map.npages; i++)
    876 		vm_page_unwire(wpipe->pipe_map.ms[i], 1);
    877 	wpipe->pipe_map.npages = 0;
    878 }
    879 
    880 /*
    881  * In the case of a signal, the writing process might go away.  This
    882  * code copies the data into the circular buffer so that the source
    883  * pages can be freed without loss of data.
    884  */
    885 static void
    886 pipe_clone_write_buffer(wpipe)
    887 	struct pipe *wpipe;
    888 {
    889 	int size;
    890 	int pos;
    891 
    892 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
    893 	size = wpipe->pipe_map.cnt;
    894 	pos = wpipe->pipe_map.pos;
    895 	memcpy((caddr_t) wpipe->pipe_buffer.buffer,
    896 	    (caddr_t) wpipe->pipe_map.kva + pos, size);
    897 
    898 	wpipe->pipe_buffer.in = size;
    899 	wpipe->pipe_buffer.out = 0;
    900 	wpipe->pipe_buffer.cnt = size;
    901 	wpipe->pipe_state &= ~PIPE_DIRECTW;
    902 
    903 	PIPE_GET_GIANT(wpipe);
    904 	pipe_destroy_write_buffer(wpipe);
    905 	PIPE_DROP_GIANT(wpipe);
    906 }
    907 
    908 /*
    909  * This implements the pipe buffer write mechanism.  Note that only
    910  * a direct write OR a normal pipe write can be pending at any given time.
    911  * If there are any characters in the pipe buffer, the direct write will
    912  * be deferred until the receiving process grabs all of the bytes from
    913  * the pipe buffer.  Then the direct mapping write is set-up.
    914  */
    915 static int
    916 pipe_direct_write(wpipe, uio)
    917 	struct pipe *wpipe;
    918 	struct uio *uio;
    919 {
    920 	int error;
    921 
    922 retry:
    923 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
    924 	while (wpipe->pipe_state & PIPE_DIRECTW) {
    925 		if (wpipe->pipe_state & PIPE_WANTR) {
    926 			wpipe->pipe_state &= ~PIPE_WANTR;
    927 			wakeup(wpipe);
    928 		}
    929 		wpipe->pipe_state |= PIPE_WANTW;
    930 		error = msleep(wpipe, PIPE_MTX(wpipe),
    931 		    PRIBIO | PCATCH, "pipdww", 0);
    932 		if (error)
    933 			goto error1;
    934 		if (wpipe->pipe_state & PIPE_EOF) {
    935 			error = EPIPE;
    936 			goto error1;
    937 		}
    938 	}
    939 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
    940 	if (wpipe->pipe_buffer.cnt > 0) {
    941 		if (wpipe->pipe_state & PIPE_WANTR) {
    942 			wpipe->pipe_state &= ~PIPE_WANTR;
    943 			wakeup(wpipe);
    944 		}
    945 
    946 		wpipe->pipe_state |= PIPE_WANTW;
    947 		error = msleep(wpipe, PIPE_MTX(wpipe),
    948 		    PRIBIO | PCATCH, "pipdwc", 0);
    949 		if (error)
    950 			goto error1;
    951 		if (wpipe->pipe_state & PIPE_EOF) {
    952 			error = EPIPE;
    953 			goto error1;
    954 		}
    955 		goto retry;
    956 	}
    957 
    958 	wpipe->pipe_state |= PIPE_DIRECTW;
    959 
    960 	PIPE_GET_GIANT(wpipe);
    961 	error = pipe_build_write_buffer(wpipe, uio);
    962 	PIPE_DROP_GIANT(wpipe);
    963 	if (error) {
    964 		wpipe->pipe_state &= ~PIPE_DIRECTW;
    965 		goto error1;
    966 	}
    967 
    968 	error = 0;
    969 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
    970 		if (wpipe->pipe_state & PIPE_EOF) {
    971 			pipelock(wpipe, 0);
    972 			PIPE_GET_GIANT(wpipe);
    973 			pipe_destroy_write_buffer(wpipe);
    974 			PIPE_DROP_GIANT(wpipe);
    975 			pipeunlock(wpipe);
    976 			pipeselwakeup(wpipe, wpipe);
    977 			error = EPIPE;
    978 			goto error1;
    979 		}
    980 		if (wpipe->pipe_state & PIPE_WANTR) {
    981 			wpipe->pipe_state &= ~PIPE_WANTR;
    982 			wakeup(wpipe);
    983 		}
    984 		pipeselwakeup(wpipe, wpipe);
    985 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
    986 		    "pipdwt", 0);
    987 	}
    988 
    989 	pipelock(wpipe,0);
    990 	if (wpipe->pipe_state & PIPE_DIRECTW) {
    991 		/*
    992 		 * this bit of trickery substitutes a kernel buffer for
    993 		 * the process that might be going away.
    994 		 */
    995 		pipe_clone_write_buffer(wpipe);
    996 	} else {
    997 		PIPE_GET_GIANT(wpipe);
    998 		pipe_destroy_write_buffer(wpipe);
    999 		PIPE_DROP_GIANT(wpipe);
   1000 	}
   1001 	pipeunlock(wpipe);
   1002 	return (error);
   1003 
   1004 error1:
   1005 	wakeup(wpipe);
   1006 	return (error);
   1007 }
   1008 #endif /* !PIPE_NODIRECT */
   1009 #endif /* FreeBSD */
   1010 
   1011 #ifdef __NetBSD__
   1012 #ifndef PIPE_NODIRECT
   1013 /*
   1014  * Allocate structure for loan transfer.
   1015  */
   1016 static int
   1017 pipe_loan_alloc(wpipe, npages)
   1018 	struct pipe *wpipe;
   1019 	int npages;
   1020 {
   1021 	vsize_t len;
   1022 
   1023 	len = (vsize_t)npages << PAGE_SHIFT;
   1024 	wpipe->pipe_map.kva = uvm_km_valloc_wait(kernel_map, len);
   1025 	if (wpipe->pipe_map.kva == 0)
   1026 		return (ENOMEM);
   1027 
   1028 	amountpipekva += len;
   1029 	wpipe->pipe_map.npages = npages;
   1030 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
   1031 	    M_WAITOK);
   1032 	return (0);
   1033 }
   1034 
   1035 /*
   1036  * Free resources allocated for loan transfer.
   1037  */
   1038 static void
   1039 pipe_loan_free(wpipe)
   1040 	struct pipe *wpipe;
   1041 {
   1042 	vsize_t len;
   1043 
   1044 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
   1045 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len);
   1046 	wpipe->pipe_map.kva = 0;
   1047 	amountpipekva -= len;
   1048 	free(wpipe->pipe_map.pgs, M_PIPE);
   1049 	wpipe->pipe_map.pgs = NULL;
   1050 }
   1051 
   1052 /*
   1053  * NetBSD direct write, using uvm_loan() mechanism.
   1054  * This implements the pipe buffer write mechanism.  Note that only
   1055  * a direct write OR a normal pipe write can be pending at any given time.
   1056  * If there are any characters in the pipe buffer, the direct write will
   1057  * be deferred until the receiving process grabs all of the bytes from
   1058  * the pipe buffer.  Then the direct mapping write is set-up.
   1059  */
   1060 static int
   1061 pipe_direct_write(wpipe, uio)
   1062 	struct pipe *wpipe;
   1063 	struct uio *uio;
   1064 {
   1065 	int error, npages, j;
   1066 	struct vm_page **pgs;
   1067 	vaddr_t bbase, kva, base, bend;
   1068 	vsize_t blen, bcnt;
   1069 	voff_t bpos;
   1070 
   1071 retry:
   1072 	while (wpipe->pipe_state & PIPE_DIRECTW) {
   1073 		if (wpipe->pipe_state & PIPE_WANTR) {
   1074 			wpipe->pipe_state &= ~PIPE_WANTR;
   1075 			wakeup(wpipe);
   1076 		}
   1077 		wpipe->pipe_state |= PIPE_WANTW;
   1078 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdww", 0);
   1079 		if (error)
   1080 			goto error;
   1081 		if (wpipe->pipe_state & PIPE_EOF) {
   1082 			error = EPIPE;
   1083 			goto error;
   1084 		}
   1085 	}
   1086 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
   1087 	if (wpipe->pipe_buffer.cnt > 0) {
   1088 		if (wpipe->pipe_state & PIPE_WANTR) {
   1089 			wpipe->pipe_state &= ~PIPE_WANTR;
   1090 			wakeup(wpipe);
   1091 		}
   1092 
   1093 		wpipe->pipe_state |= PIPE_WANTW;
   1094 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0);
   1095 		if (error)
   1096 			goto error;
   1097 		if (wpipe->pipe_state & PIPE_EOF) {
   1098 			error = EPIPE;
   1099 			goto error;
   1100 		}
   1101 		goto retry;
   1102 	}
   1103 
   1104 	/*
   1105 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
   1106 	 * not aligned to PAGE_SIZE.
   1107 	 */
   1108 	bbase = (vaddr_t)uio->uio_iov->iov_base;
   1109 	base = trunc_page(bbase);
   1110 	bend = round_page(bbase + uio->uio_iov->iov_len);
   1111 	blen = bend - base;
   1112 	bpos = bbase - base;
   1113 
   1114 	if (blen > PIPE_DIRECT_CHUNK) {
   1115 		blen = PIPE_DIRECT_CHUNK;
   1116 		bend = base + blen;
   1117 		bcnt = PIPE_DIRECT_CHUNK - bpos;
   1118 	} else {
   1119 		bcnt = uio->uio_iov->iov_len;
   1120 	}
   1121 	npages = blen >> PAGE_SHIFT;
   1122 
   1123 	wpipe->pipe_map.pos = bpos;
   1124 	wpipe->pipe_map.cnt = bcnt;
   1125 
   1126 	/*
   1127 	 * Free the old kva if we need more pages than we have
   1128 	 * allocated.
   1129 	 */
   1130 	if (wpipe->pipe_map.kva && npages > wpipe->pipe_map.npages)
   1131 		pipe_loan_free(wpipe);
   1132 
   1133 	/* Allocate new kva. */
   1134 	if (wpipe->pipe_map.kva == 0) {
   1135 		error = pipe_loan_alloc(wpipe, npages);
   1136 		if (error) {
   1137 			goto error;
   1138 		}
   1139 	}
   1140 
   1141 	/* Loan the write buffer memory from writer process */
   1142 	pgs = wpipe->pipe_map.pgs;
   1143 	error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
   1144 	    pgs, UVM_LOAN_TOPAGE);
   1145 	if (error) {
   1146 		pgs = NULL;
   1147 		goto cleanup;
   1148 	}
   1149 
   1150 	/* Enter the loaned pages to kva */
   1151 	kva = wpipe->pipe_map.kva;
   1152 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
   1153 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
   1154 	}
   1155 	pmap_update(pmap_kernel());
   1156 
   1157 	wpipe->pipe_state |= PIPE_DIRECTW;
   1158 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
   1159 		if (wpipe->pipe_state & PIPE_EOF) {
   1160 			error = EPIPE;
   1161 			break;
   1162 		}
   1163 		if (wpipe->pipe_state & PIPE_WANTR) {
   1164 			wpipe->pipe_state &= ~PIPE_WANTR;
   1165 			wakeup(wpipe);
   1166 		}
   1167 		pipeselwakeup(wpipe, wpipe);
   1168 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0);
   1169 	}
   1170 
   1171 	if (error)
   1172 		wpipe->pipe_state &= ~PIPE_DIRECTW;
   1173 
   1174 cleanup:
   1175 	pipelock(wpipe, 0);
   1176 	if (pgs != NULL) {
   1177 		pmap_kremove(wpipe->pipe_map.kva, blen);
   1178 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
   1179 	}
   1180 	if (error || amountpipekva > maxpipekva)
   1181 		pipe_loan_free(wpipe);
   1182 	pipeunlock(wpipe);
   1183 
   1184 	if (error) {
   1185 		pipeselwakeup(wpipe, wpipe);
   1186 
   1187 		/*
   1188 		 * If nothing was read from what we offered, return error
   1189 		 * straight on. Otherwise update uio resid first. Caller
   1190 		 * will deal with the error condition, returning short
   1191 		 * write, error, or restarting the write(2) as appropriate.
   1192 		 */
   1193 		if (wpipe->pipe_map.cnt == bcnt) {
   1194 error:
   1195 			wakeup(wpipe);
   1196 			return (error);
   1197 		}
   1198 
   1199 		bcnt -= wpipe->pipe_map.cnt;
   1200 	}
   1201 
   1202 	uio->uio_resid -= bcnt;
   1203 	/* uio_offset not updated, not set/used for write(2) */
   1204 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
   1205 	uio->uio_iov->iov_len -= bcnt;
   1206 	if (uio->uio_iov->iov_len == 0) {
   1207 		uio->uio_iov++;
   1208 		uio->uio_iovcnt--;
   1209 	}
   1210 
   1211 	return (error);
   1212 }
   1213 #endif /* !PIPE_NODIRECT */
   1214 #endif /* NetBSD */
   1215 
   1216 #ifdef __FreeBSD__
   1217 static int
   1218 pipe_write(fp, uio, cred, flags, td)
   1219 	struct file *fp;
   1220 	off_t *offset;
   1221 	struct uio *uio;
   1222 	struct ucred *cred;
   1223 	int flags;
   1224 	struct thread *td;
   1225 #elif defined(__NetBSD__)
   1226 static int
   1227 pipe_write(fp, offset, uio, cred, flags)
   1228 	struct file *fp;
   1229 	off_t *offset;
   1230 	struct uio *uio;
   1231 	struct ucred *cred;
   1232 	int flags;
   1233 #endif
   1234 {
   1235 	int error = 0;
   1236 	struct pipe *wpipe, *rpipe;
   1237 
   1238 	rpipe = (struct pipe *) fp->f_data;
   1239 	wpipe = rpipe->pipe_peer;
   1240 
   1241 	PIPE_LOCK(rpipe);
   1242 	/*
   1243 	 * detect loss of pipe read side, issue SIGPIPE if lost.
   1244 	 */
   1245 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1246 		PIPE_UNLOCK(rpipe);
   1247 		return (EPIPE);
   1248 	}
   1249 
   1250 	++wpipe->pipe_busy;
   1251 
   1252 	/*
   1253 	 * If it is advantageous to resize the pipe buffer, do
   1254 	 * so.
   1255 	 */
   1256 	if ((uio->uio_resid > PIPE_SIZE) &&
   1257 		(nbigpipe < maxbigpipes) &&
   1258 #ifndef PIPE_NODIRECT
   1259 		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1260 #endif
   1261 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
   1262 		(wpipe->pipe_buffer.cnt == 0)) {
   1263 
   1264 		if ((error = pipelock(wpipe,1)) == 0) {
   1265 			PIPE_GET_GIANT(rpipe);
   1266 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
   1267 				nbigpipe++;
   1268 			PIPE_DROP_GIANT(rpipe);
   1269 			pipeunlock(wpipe);
   1270 		} else {
   1271 			/*
   1272 			 * If an error occurred, unbusy and return, waking up
   1273 			 * any waiting readers.
   1274 			 */
   1275 			--wpipe->pipe_busy;
   1276 			if (wpipe->pipe_busy == 0
   1277 			    && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1278 				wpipe->pipe_state &=
   1279 				    ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1280 				wakeup(wpipe);
   1281 			}
   1282 
   1283 			return (error);
   1284 		}
   1285 	}
   1286 
   1287 #ifdef __FreeBSD__
   1288 	/*
   1289 	 * If an early error occured unbusy and return, waking up any pending
   1290 	 * readers.
   1291 	 */
   1292 	if (error) {
   1293 		--wpipe->pipe_busy;
   1294 		if ((wpipe->pipe_busy == 0) &&
   1295 		    (wpipe->pipe_state & PIPE_WANT)) {
   1296 			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
   1297 			wakeup(wpipe);
   1298 		}
   1299 		PIPE_UNLOCK(rpipe);
   1300 		return(error);
   1301 	}
   1302 
   1303 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
   1304 #endif
   1305 
   1306 	while (uio->uio_resid) {
   1307 		size_t space;
   1308 
   1309 #ifndef PIPE_NODIRECT
   1310 		/*
   1311 		 * If the transfer is large, we can gain performance if
   1312 		 * we do process-to-process copies directly.
   1313 		 * If the write is non-blocking, we don't use the
   1314 		 * direct write mechanism.
   1315 		 *
   1316 		 * The direct write mechanism will detect the reader going
   1317 		 * away on us.
   1318 		 */
   1319 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
   1320 		    (fp->f_flag & FNONBLOCK) == 0 &&
   1321 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
   1322 			error = pipe_direct_write(wpipe, uio);
   1323 
   1324 			/*
   1325 			 * Break out if error occured, unless it's ENOMEM.
   1326 			 * ENOMEM means we failed to allocate some resources
   1327 			 * for direct write, so we just fallback to ordinary
   1328 			 * write. If the direct write was successful,
   1329 			 * process rest of data via ordinary write.
   1330 			 */
   1331 			if (!error)
   1332 				continue;
   1333 
   1334 			if (error != ENOMEM)
   1335 				break;
   1336 		}
   1337 #endif /* PIPE_NODIRECT */
   1338 
   1339 		/*
   1340 		 * Pipe buffered writes cannot be coincidental with
   1341 		 * direct writes.  We wait until the currently executing
   1342 		 * direct write is completed before we start filling the
   1343 		 * pipe buffer.  We break out if a signal occurs or the
   1344 		 * reader goes away.
   1345 		 */
   1346 	retrywrite:
   1347 		while (wpipe->pipe_state & PIPE_DIRECTW) {
   1348 			if (wpipe->pipe_state & PIPE_WANTR) {
   1349 				wpipe->pipe_state &= ~PIPE_WANTR;
   1350 				wakeup(wpipe);
   1351 			}
   1352 #ifdef __FreeBSD__
   1353 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
   1354 			    "pipbww", 0);
   1355 #else
   1356 			error = tsleep(wpipe, PRIBIO | PCATCH, "pipbww", 0);
   1357 #endif
   1358 			if (wpipe->pipe_state & PIPE_EOF)
   1359 				break;
   1360 			if (error)
   1361 				break;
   1362 		}
   1363 		if (wpipe->pipe_state & PIPE_EOF) {
   1364 			error = EPIPE;
   1365 			break;
   1366 		}
   1367 
   1368 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1369 
   1370 		/* Writes of size <= PIPE_BUF must be atomic. */
   1371 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
   1372 			space = 0;
   1373 
   1374 		if (space > 0) {
   1375 			int size;	/* Transfer size */
   1376 			int segsize;	/* first segment to transfer */
   1377 
   1378 			if ((error = pipelock(wpipe,1)) != 0)
   1379 				break;
   1380 
   1381 			/*
   1382 			 * It is possible for a direct write to
   1383 			 * slip in on us... handle it here...
   1384 			 */
   1385 			if (wpipe->pipe_state & PIPE_DIRECTW) {
   1386 				pipeunlock(wpipe);
   1387 				goto retrywrite;
   1388 			}
   1389 			/*
   1390 			 * If a process blocked in uiomove, our
   1391 			 * value for space might be bad.
   1392 			 *
   1393 			 * XXX will we be ok if the reader has gone
   1394 			 * away here?
   1395 			 */
   1396 			if (space > wpipe->pipe_buffer.size -
   1397 				    wpipe->pipe_buffer.cnt) {
   1398 				pipeunlock(wpipe);
   1399 				goto retrywrite;
   1400 			}
   1401 
   1402 			/*
   1403 			 * Transfer size is minimum of uio transfer
   1404 			 * and free space in pipe buffer.
   1405 			 */
   1406 			if (space > uio->uio_resid)
   1407 				size = uio->uio_resid;
   1408 			else
   1409 				size = space;
   1410 			/*
   1411 			 * First segment to transfer is minimum of
   1412 			 * transfer size and contiguous space in
   1413 			 * pipe buffer.  If first segment to transfer
   1414 			 * is less than the transfer size, we've got
   1415 			 * a wraparound in the buffer.
   1416 			 */
   1417 			segsize = wpipe->pipe_buffer.size -
   1418 				wpipe->pipe_buffer.in;
   1419 			if (segsize > size)
   1420 				segsize = size;
   1421 
   1422 			/* Transfer first segment */
   1423 
   1424 			PIPE_UNLOCK(rpipe);
   1425 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
   1426 						segsize, uio);
   1427 			PIPE_LOCK(rpipe);
   1428 
   1429 			if (error == 0 && segsize < size) {
   1430 				/*
   1431 				 * Transfer remaining part now, to
   1432 				 * support atomic writes.  Wraparound
   1433 				 * happened.
   1434 				 */
   1435 #ifdef DEBUG
   1436 				if (wpipe->pipe_buffer.in + segsize !=
   1437 				    wpipe->pipe_buffer.size)
   1438 					panic("Expected pipe buffer wraparound disappeared");
   1439 #endif
   1440 
   1441 				PIPE_UNLOCK(rpipe);
   1442 				error = uiomove(&wpipe->pipe_buffer.buffer[0],
   1443 						size - segsize, uio);
   1444 				PIPE_LOCK(rpipe);
   1445 			}
   1446 			if (error == 0) {
   1447 				wpipe->pipe_buffer.in += size;
   1448 				if (wpipe->pipe_buffer.in >=
   1449 				    wpipe->pipe_buffer.size) {
   1450 #ifdef DEBUG
   1451 					if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
   1452 						panic("Expected wraparound bad");
   1453 #endif
   1454 					wpipe->pipe_buffer.in = size - segsize;
   1455 				}
   1456 
   1457 				wpipe->pipe_buffer.cnt += size;
   1458 #ifdef DEBUG
   1459 				if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
   1460 					panic("Pipe buffer overflow");
   1461 #endif
   1462 			}
   1463 			pipeunlock(wpipe);
   1464 			if (error)
   1465 				break;
   1466 		} else {
   1467 			/*
   1468 			 * If the "read-side" has been blocked, wake it up now.
   1469 			 */
   1470 			if (wpipe->pipe_state & PIPE_WANTR) {
   1471 				wpipe->pipe_state &= ~PIPE_WANTR;
   1472 				wakeup(wpipe);
   1473 			}
   1474 
   1475 			/*
   1476 			 * don't block on non-blocking I/O
   1477 			 */
   1478 			if (fp->f_flag & FNONBLOCK) {
   1479 				error = EAGAIN;
   1480 				break;
   1481 			}
   1482 
   1483 			/*
   1484 			 * We have no more space and have something to offer,
   1485 			 * wake up select/poll.
   1486 			 */
   1487 			pipeselwakeup(wpipe, wpipe);
   1488 
   1489 			wpipe->pipe_state |= PIPE_WANTW;
   1490 #ifdef __FreeBSD__
   1491 			error = msleep(wpipe, PIPE_MTX(rpipe),
   1492 			    PRIBIO | PCATCH, "pipewr", 0);
   1493 #else
   1494 			error = tsleep(wpipe, PRIBIO | PCATCH, "pipewr", 0);
   1495 #endif
   1496 			if (error != 0)
   1497 				break;
   1498 			/*
   1499 			 * If read side wants to go away, we just issue a signal
   1500 			 * to ourselves.
   1501 			 */
   1502 			if (wpipe->pipe_state & PIPE_EOF) {
   1503 				error = EPIPE;
   1504 				break;
   1505 			}
   1506 		}
   1507 	}
   1508 
   1509 	--wpipe->pipe_busy;
   1510 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1511 		wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1512 		wakeup(wpipe);
   1513 	} else if (wpipe->pipe_buffer.cnt > 0) {
   1514 		/*
   1515 		 * If we have put any characters in the buffer, we wake up
   1516 		 * the reader.
   1517 		 */
   1518 		if (wpipe->pipe_state & PIPE_WANTR) {
   1519 			wpipe->pipe_state &= ~PIPE_WANTR;
   1520 			wakeup(wpipe);
   1521 		}
   1522 	}
   1523 
   1524 	/*
   1525 	 * Don't return EPIPE if I/O was successful
   1526 	 */
   1527 	if ((error == EPIPE) && (wpipe->pipe_buffer.cnt == 0)
   1528 	    && (uio->uio_resid == 0))
   1529 		error = 0;
   1530 
   1531 	if (error == 0)
   1532 		vfs_timestamp(&wpipe->pipe_mtime);
   1533 
   1534 	/*
   1535 	 * We have something to offer, wake up select/poll.
   1536 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1537 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1538 	 */
   1539 	if (wpipe->pipe_buffer.cnt)
   1540 		pipeselwakeup(wpipe, wpipe);
   1541 
   1542 	/*
   1543 	 * Arrange for next read(2) to do a signal.
   1544 	 */
   1545 	wpipe->pipe_state |= PIPE_SIGNALR;
   1546 
   1547 	PIPE_UNLOCK(rpipe);
   1548 	return (error);
   1549 }
   1550 
   1551 /*
   1552  * we implement a very minimal set of ioctls for compatibility with sockets.
   1553  */
   1554 int
   1555 #ifdef __FreeBSD__
   1556 pipe_ioctl(fp, cmd, data, td)
   1557 	struct file *fp;
   1558 	u_long cmd;
   1559 	caddr_t data;
   1560 	struct thread *td;
   1561 #else
   1562 pipe_ioctl(fp, cmd, data, p)
   1563 	struct file *fp;
   1564 	u_long cmd;
   1565 	caddr_t data;
   1566 	struct proc *p;
   1567 #endif
   1568 {
   1569 	struct pipe *mpipe = (struct pipe *)fp->f_data;
   1570 
   1571 	switch (cmd) {
   1572 
   1573 	case FIONBIO:
   1574 		return (0);
   1575 
   1576 	case FIOASYNC:
   1577 		PIPE_LOCK(mpipe);
   1578 		if (*(int *)data) {
   1579 			mpipe->pipe_state |= PIPE_ASYNC;
   1580 		} else {
   1581 			mpipe->pipe_state &= ~PIPE_ASYNC;
   1582 		}
   1583 		PIPE_UNLOCK(mpipe);
   1584 		return (0);
   1585 
   1586 	case FIONREAD:
   1587 		PIPE_LOCK(mpipe);
   1588 #ifndef PIPE_NODIRECT
   1589 		if (mpipe->pipe_state & PIPE_DIRECTW)
   1590 			*(int *)data = mpipe->pipe_map.cnt;
   1591 		else
   1592 #endif
   1593 			*(int *)data = mpipe->pipe_buffer.cnt;
   1594 		PIPE_UNLOCK(mpipe);
   1595 		return (0);
   1596 
   1597 #ifdef __FreeBSD__
   1598 	case FIOSETOWN:
   1599 		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
   1600 
   1601 	case FIOGETOWN:
   1602 		*(int *)data = fgetown(mpipe->pipe_sigio);
   1603 		return (0);
   1604 
   1605 	/* This is deprecated, FIOSETOWN should be used instead. */
   1606 	case TIOCSPGRP:
   1607 		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
   1608 
   1609 	/* This is deprecated, FIOGETOWN should be used instead. */
   1610 	case TIOCGPGRP:
   1611 		*(int *)data = -fgetown(mpipe->pipe_sigio);
   1612 		return (0);
   1613 #endif /* FreeBSD */
   1614 #ifdef __NetBSD__
   1615 	case TIOCSPGRP:
   1616 		mpipe->pipe_pgid = *(int *)data;
   1617 		return (0);
   1618 
   1619 	case TIOCGPGRP:
   1620 		*(int *)data = mpipe->pipe_pgid;
   1621 		return (0);
   1622 #endif /* NetBSD */
   1623 
   1624 	}
   1625 	return (EPASSTHROUGH);
   1626 }
   1627 
   1628 int
   1629 #ifdef __FreeBSD__
   1630 pipe_poll(fp, events, cred, td)
   1631 	struct file *fp;
   1632 	int events;
   1633 	struct ucred *cred;
   1634 	struct thread *td;
   1635 #elif defined(__NetBSD__)
   1636 pipe_poll(fp, events, td)
   1637 	struct file *fp;
   1638 	int events;
   1639 	struct proc *td;
   1640 #endif
   1641 {
   1642 	struct pipe *rpipe = (struct pipe *)fp->f_data;
   1643 	struct pipe *wpipe;
   1644 	int revents = 0;
   1645 
   1646 	wpipe = rpipe->pipe_peer;
   1647 	PIPE_LOCK(rpipe);
   1648 	if (events & (POLLIN | POLLRDNORM))
   1649 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1650 #ifndef PIPE_NODIRECT
   1651 		    (rpipe->pipe_state & PIPE_DIRECTW) ||
   1652 #endif
   1653 		    (rpipe->pipe_state & PIPE_EOF))
   1654 			revents |= events & (POLLIN | POLLRDNORM);
   1655 
   1656 	if (events & (POLLOUT | POLLWRNORM))
   1657 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF)
   1658 		    || (
   1659 #ifndef PIPE_NODIRECT
   1660 		     ((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
   1661 #endif
   1662 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1663 			revents |= events & (POLLOUT | POLLWRNORM);
   1664 
   1665 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1666 	    (wpipe == NULL) ||
   1667 	    (wpipe->pipe_state & PIPE_EOF))
   1668 		revents |= POLLHUP;
   1669 
   1670 	if (revents == 0) {
   1671 		if (events & (POLLIN | POLLRDNORM)) {
   1672 			selrecord(td, &rpipe->pipe_sel);
   1673 			rpipe->pipe_state |= PIPE_SEL;
   1674 		}
   1675 
   1676 		if (events & (POLLOUT | POLLWRNORM)) {
   1677 			selrecord(td, &wpipe->pipe_sel);
   1678 			wpipe->pipe_state |= PIPE_SEL;
   1679 		}
   1680 	}
   1681 	PIPE_UNLOCK(rpipe);
   1682 
   1683 	return (revents);
   1684 }
   1685 
   1686 static int
   1687 #ifdef __FreeBSD__
   1688 pipe_stat(fp, ub, td)
   1689 	struct file *fp;
   1690 	struct stat *ub;
   1691 	struct thread *td;
   1692 #else
   1693 pipe_stat(fp, ub, td)
   1694 	struct file *fp;
   1695 	struct stat *ub;
   1696 	struct proc *td;
   1697 #endif
   1698 {
   1699 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1700 
   1701 	memset((caddr_t)ub, 0, sizeof(*ub));
   1702 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1703 	ub->st_blksize = pipe->pipe_buffer.size;
   1704 	ub->st_size = pipe->pipe_buffer.cnt;
   1705 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1706 #ifdef __FreeBSD__
   1707 	ub->st_atimespec = pipe->pipe_atime;
   1708 	ub->st_mtimespec = pipe->pipe_mtime;
   1709 	ub->st_ctimespec = pipe->pipe_ctime;
   1710 #endif /* FreeBSD */
   1711 #ifdef __NetBSD__
   1712 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec)
   1713 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
   1714 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
   1715 #endif /* NetBSD */
   1716 	ub->st_uid = fp->f_cred->cr_uid;
   1717 	ub->st_gid = fp->f_cred->cr_gid;
   1718 	/*
   1719 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1720 	 * XXX (st_dev, st_ino) should be unique.
   1721 	 */
   1722 	return (0);
   1723 }
   1724 
   1725 /* ARGSUSED */
   1726 static int
   1727 #ifdef __FreeBSD__
   1728 pipe_close(fp, td)
   1729 	struct file *fp;
   1730 	struct thread *td;
   1731 #else
   1732 pipe_close(fp, td)
   1733 	struct file *fp;
   1734 	struct proc *td;
   1735 #endif
   1736 {
   1737 	struct pipe *cpipe = (struct pipe *)fp->f_data;
   1738 
   1739 #ifdef __FreeBSD__
   1740 	fp->f_ops = &badfileops;
   1741 	funsetown(cpipe->pipe_sigio);
   1742 #endif
   1743 	fp->f_data = NULL;
   1744 	pipeclose(cpipe);
   1745 	return (0);
   1746 }
   1747 
   1748 static void
   1749 pipe_free_kmem(cpipe)
   1750 	struct pipe *cpipe;
   1751 {
   1752 
   1753 #ifdef __FreeBSD__
   1754 
   1755 	GIANT_REQUIRED;
   1756 	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
   1757 	       ("pipespace: pipe mutex locked"));
   1758 #endif
   1759 
   1760 	if (cpipe->pipe_buffer.buffer != NULL) {
   1761 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
   1762 			--nbigpipe;
   1763 		amountpipekva -= cpipe->pipe_buffer.size;
   1764 #ifdef __FreeBSD__
   1765 		kmem_free(kernel_map,
   1766 			(vm_offset_t)cpipe->pipe_buffer.buffer,
   1767 			cpipe->pipe_buffer.size);
   1768 #elif defined(__NetBSD__)
   1769 		uvm_km_free(kernel_map,
   1770 			(vaddr_t)cpipe->pipe_buffer.buffer,
   1771 			cpipe->pipe_buffer.size);
   1772 #endif /* NetBSD */
   1773 		cpipe->pipe_buffer.buffer = NULL;
   1774 	}
   1775 #ifndef PIPE_NODIRECT
   1776 	if (cpipe->pipe_map.kva != 0) {
   1777 #ifdef __FreeBSD__
   1778 		amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE;
   1779 		kmem_free(kernel_map,
   1780 			cpipe->pipe_map.kva,
   1781 			cpipe->pipe_buffer.size + PAGE_SIZE);
   1782 #elif defined(__NetBSD__)
   1783 		pipe_loan_free(cpipe);
   1784 #endif /* NetBSD */
   1785 		cpipe->pipe_map.cnt = 0;
   1786 		cpipe->pipe_map.kva = 0;
   1787 		cpipe->pipe_map.pos = 0;
   1788 		cpipe->pipe_map.npages = 0;
   1789 	}
   1790 #endif /* !PIPE_NODIRECT */
   1791 }
   1792 
   1793 /*
   1794  * shutdown the pipe
   1795  */
   1796 static void
   1797 pipeclose(cpipe)
   1798 	struct pipe *cpipe;
   1799 {
   1800 	struct pipe *ppipe;
   1801 #ifdef __FreeBSD__
   1802 	int hadpeer = 0;
   1803 #endif
   1804 
   1805 	if (cpipe == NULL)
   1806 		return;
   1807 
   1808 	/* partially created pipes won't have a valid mutex. */
   1809 	if (PIPE_MTX(cpipe) != NULL)
   1810 		PIPE_LOCK(cpipe);
   1811 
   1812 	pipeselwakeup(cpipe, cpipe);
   1813 
   1814 	/*
   1815 	 * If the other side is blocked, wake it up saying that
   1816 	 * we want to close it down.
   1817 	 */
   1818 	while (cpipe->pipe_busy) {
   1819 		wakeup(cpipe);
   1820 		cpipe->pipe_state |= PIPE_WANTCLOSE | PIPE_EOF;
   1821 #ifdef __FreeBSD__
   1822 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
   1823 #else
   1824 		tsleep(cpipe, PRIBIO, "pipecl", 0);
   1825 #endif
   1826 	}
   1827 
   1828 	/*
   1829 	 * Disconnect from peer
   1830 	 */
   1831 	if ((ppipe = cpipe->pipe_peer) != NULL) {
   1832 #ifdef __FreeBSD__
   1833 		hadpeer++;
   1834 #endif
   1835 		pipeselwakeup(ppipe, ppipe);
   1836 
   1837 		ppipe->pipe_state |= PIPE_EOF;
   1838 		wakeup(ppipe);
   1839 #ifdef __FreeBSD__
   1840 		KNOTE(&ppipe->pipe_sel.sel_note, 0);
   1841 #endif
   1842 		ppipe->pipe_peer = NULL;
   1843 	}
   1844 	/*
   1845 	 * free resources
   1846 	 */
   1847 #ifdef __FreeBSD__
   1848 	if (PIPE_MTX(cpipe) != NULL) {
   1849 		PIPE_UNLOCK(cpipe);
   1850 		if (!hadpeer) {
   1851 			mtx_destroy(PIPE_MTX(cpipe));
   1852 			free(PIPE_MTX(cpipe), M_TEMP);
   1853 		}
   1854 	}
   1855 	mtx_lock(&Giant);
   1856 	pipe_free_kmem(cpipe);
   1857 	zfree(pipe_zone, cpipe);
   1858 	mtx_unlock(&Giant);
   1859 #endif
   1860 
   1861 #ifdef __NetBSD__
   1862 	if (PIPE_MTX(cpipe) != NULL)
   1863 		PIPE_UNLOCK(cpipe);
   1864 
   1865 	pipe_free_kmem(cpipe);
   1866 	(void) lockmgr(&cpipe->pipe_lock, LK_DRAIN, NULL);
   1867 	pool_put(&pipe_pool, cpipe);
   1868 #endif
   1869 }
   1870 
   1871 static void
   1872 filt_pipedetach(struct knote *kn)
   1873 {
   1874 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
   1875 
   1876 	switch(kn->kn_filter) {
   1877 	case EVFILT_WRITE:
   1878 		/* need the peer structure, not our own */
   1879 		cpipe = cpipe->pipe_peer;
   1880 
   1881 		/* if reader end already closed, just return */
   1882 		if (!cpipe)
   1883 			return;
   1884 
   1885 		break;
   1886 	default:
   1887 		/* nothing to do */
   1888 		break;
   1889 	}
   1890 
   1891 #ifdef DIAGNOSTIC
   1892 	if (kn->kn_hook != cpipe)
   1893 		panic("filt_pipedetach: inconsistent knote");
   1894 #endif
   1895 
   1896 	PIPE_LOCK(cpipe);
   1897 	SLIST_REMOVE(&cpipe->pipe_sel.sel_note, kn, knote, kn_selnext);
   1898 	PIPE_UNLOCK(cpipe);
   1899 }
   1900 
   1901 /*ARGSUSED*/
   1902 static int
   1903 filt_piperead(struct knote *kn, long hint)
   1904 {
   1905 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1906 	struct pipe *wpipe = rpipe->pipe_peer;
   1907 
   1908 	PIPE_LOCK(rpipe);
   1909 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1910 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1911 		kn->kn_data = rpipe->pipe_map.cnt;
   1912 
   1913 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1914 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1915 		kn->kn_flags |= EV_EOF;
   1916 		PIPE_UNLOCK(rpipe);
   1917 		return (1);
   1918 	}
   1919 	PIPE_UNLOCK(rpipe);
   1920 	return (kn->kn_data > 0);
   1921 }
   1922 
   1923 /*ARGSUSED*/
   1924 static int
   1925 filt_pipewrite(struct knote *kn, long hint)
   1926 {
   1927 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1928 	struct pipe *wpipe = rpipe->pipe_peer;
   1929 
   1930 	PIPE_LOCK(rpipe);
   1931 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1932 		kn->kn_data = 0;
   1933 		kn->kn_flags |= EV_EOF;
   1934 		PIPE_UNLOCK(rpipe);
   1935 		return (1);
   1936 	}
   1937 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1938 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1939 		kn->kn_data = 0;
   1940 
   1941 	PIPE_UNLOCK(rpipe);
   1942 	return (kn->kn_data >= PIPE_BUF);
   1943 }
   1944 
   1945 static const struct filterops pipe_rfiltops =
   1946 	{ 1, NULL, filt_pipedetach, filt_piperead };
   1947 static const struct filterops pipe_wfiltops =
   1948 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
   1949 
   1950 /*ARGSUSED*/
   1951 static int
   1952 pipe_kqfilter(struct file *fp, struct knote *kn)
   1953 {
   1954 	struct pipe *cpipe;
   1955 
   1956 	cpipe = (struct pipe *)kn->kn_fp->f_data;
   1957 	switch (kn->kn_filter) {
   1958 	case EVFILT_READ:
   1959 		kn->kn_fop = &pipe_rfiltops;
   1960 		break;
   1961 	case EVFILT_WRITE:
   1962 		kn->kn_fop = &pipe_wfiltops;
   1963 		cpipe = cpipe->pipe_peer;
   1964 		if (cpipe == NULL) {
   1965 			/* other end of pipe has been closed */
   1966 			return (EBADF);
   1967 		}
   1968 		break;
   1969 	default:
   1970 		return (1);
   1971 	}
   1972 	kn->kn_hook = cpipe;
   1973 
   1974 	PIPE_LOCK(cpipe);
   1975 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.sel_note, kn, kn_selnext);
   1976 	PIPE_UNLOCK(cpipe);
   1977 	return (0);
   1978 }
   1979 
   1980 #ifdef __NetBSD__
   1981 static int
   1982 pipe_fcntl(fp, cmd, data, p)
   1983 	struct file *fp;
   1984 	u_int cmd;
   1985 	caddr_t data;
   1986 	struct proc *p;
   1987 {
   1988 	if (cmd == F_SETFL)
   1989 		return (0);
   1990 	else
   1991 		return (EOPNOTSUPP);
   1992 }
   1993 
   1994 /*
   1995  * Handle pipe sysctls.
   1996  */
   1997 int
   1998 sysctl_dopipe(name, namelen, oldp, oldlenp, newp, newlen)
   1999 	int *name;
   2000 	u_int namelen;
   2001 	void *oldp;
   2002 	size_t *oldlenp;
   2003 	void *newp;
   2004 	size_t newlen;
   2005 {
   2006 	/* All sysctl names at this level are terminal. */
   2007 	if (namelen != 1)
   2008 		return (ENOTDIR);		/* overloaded */
   2009 
   2010 	switch (name[0]) {
   2011 	case KERN_PIPE_MAXKVASZ:
   2012 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxpipekva));
   2013 	case KERN_PIPE_LIMITKVA:
   2014 		return (sysctl_int(oldp, oldlenp, newp, newlen, &limitpipekva));
   2015 	case KERN_PIPE_MAXBIGPIPES:
   2016 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxbigpipes));
   2017 	case KERN_PIPE_NBIGPIPES:
   2018 		return (sysctl_rdint(oldp, oldlenp, newp, nbigpipe));
   2019 	case KERN_PIPE_KVASIZE:
   2020 		return (sysctl_rdint(oldp, oldlenp, newp, amountpipekva));
   2021 	default:
   2022 		return (EOPNOTSUPP);
   2023 	}
   2024 	/* NOTREACHED */
   2025 }
   2026 
   2027 /*
   2028  * Initialize pipe structs.
   2029  */
   2030 void
   2031 pipe_init(void)
   2032 {
   2033 	pool_init(&pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl", NULL);
   2034 }
   2035 
   2036 #endif /* __NetBSD __ */
   2037