sys_pipe.c revision 1.36 1 /* $NetBSD: sys_pipe.c,v 1.36 2003/02/14 13:16:44 pk Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.36 2003/02/14 13:16:44 pk Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/ttycom.h>
98 #include <sys/stat.h>
99 #include <sys/malloc.h>
100 #include <sys/poll.h>
101 #include <sys/signalvar.h>
102 #include <sys/vnode.h>
103 #include <sys/uio.h>
104 #include <sys/lock.h>
105 #include <sys/select.h>
106 #include <sys/mount.h>
107 #include <sys/sa.h>
108 #include <sys/syscallargs.h>
109 #include <uvm/uvm.h>
110 #include <sys/sysctl.h>
111 #include <sys/kernel.h>
112
113 #include <sys/pipe.h>
114
115 /*
116 * Avoid microtime(9), it's slow. We don't guard the read from time(9)
117 * with splclock(9) since we don't actually need to be THAT sure the access
118 * is atomic.
119 */
120 #define PIPE_TIMESTAMP(tvp) (*(tvp) = time)
121
122
123 /*
124 * Use this define if you want to disable *fancy* VM things. Expect an
125 * approx 30% decrease in transfer rate.
126 */
127 /* #define PIPE_NODIRECT */
128
129 /*
130 * interfaces to the outside world
131 */
132 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
133 struct ucred *cred, int flags);
134 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
135 struct ucred *cred, int flags);
136 static int pipe_close(struct file *fp, struct proc *p);
137 static int pipe_poll(struct file *fp, int events, struct proc *p);
138 static int pipe_fcntl(struct file *fp, u_int com, caddr_t data,
139 struct proc *p);
140 static int pipe_kqfilter(struct file *fp, struct knote *kn);
141 static int pipe_stat(struct file *fp, struct stat *sb, struct proc *p);
142 static int pipe_ioctl(struct file *fp, u_long cmd, caddr_t data,
143 struct proc *p);
144
145 static struct fileops pipeops = {
146 pipe_read, pipe_write, pipe_ioctl, pipe_fcntl, pipe_poll,
147 pipe_stat, pipe_close, pipe_kqfilter
148 };
149
150 /*
151 * Default pipe buffer size(s), this can be kind-of large now because pipe
152 * space is pageable. The pipe code will try to maintain locality of
153 * reference for performance reasons, so small amounts of outstanding I/O
154 * will not wipe the cache.
155 */
156 #define MINPIPESIZE (PIPE_SIZE/3)
157 #define MAXPIPESIZE (2*PIPE_SIZE/3)
158
159 /*
160 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
161 * is there so that on large systems, we don't exhaust it.
162 */
163 #define MAXPIPEKVA (8*1024*1024)
164 static int maxpipekva = MAXPIPEKVA;
165
166 /*
167 * Limit for direct transfers, we cannot, of course limit
168 * the amount of kva for pipes in general though.
169 */
170 #define LIMITPIPEKVA (16*1024*1024)
171 static int limitpipekva = LIMITPIPEKVA;
172
173 /*
174 * Limit the number of "big" pipes
175 */
176 #define LIMITBIGPIPES 32
177 static int maxbigpipes = LIMITBIGPIPES;
178 static int nbigpipe = 0;
179
180 /*
181 * Amount of KVA consumed by pipe buffers.
182 */
183 static int amountpipekva = 0;
184
185 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
186
187 static void pipeclose(struct pipe *pipe);
188 static void pipe_free_kmem(struct pipe *pipe);
189 static int pipe_create(struct pipe **pipep, int allockva);
190 static int pipelock(struct pipe *pipe, int catch);
191 static __inline void pipeunlock(struct pipe *pipe);
192 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp);
193 #ifndef PIPE_NODIRECT
194 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
195 #endif
196 static int pipespace(struct pipe *pipe, int size);
197
198 #ifndef PIPE_NODIRECT
199 static int pipe_loan_alloc(struct pipe *, int);
200 static void pipe_loan_free(struct pipe *);
201 #endif /* PIPE_NODIRECT */
202
203 static struct pool pipe_pool;
204
205 /*
206 * The pipe system call for the DTYPE_PIPE type of pipes
207 */
208
209 /* ARGSUSED */
210 int
211 sys_pipe(l, v, retval)
212 struct lwp *l;
213 void *v;
214 register_t *retval;
215 {
216 struct file *rf, *wf;
217 struct pipe *rpipe, *wpipe;
218 int fd, error;
219 struct proc *p;
220
221 p = l->l_proc;
222 rpipe = wpipe = NULL;
223 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
224 pipeclose(rpipe);
225 pipeclose(wpipe);
226 return (ENFILE);
227 }
228
229 /*
230 * Note: the file structure returned from falloc() is marked
231 * as 'larval' initially. Unless we mark it as 'mature' by
232 * FILE_SET_MATURE(), any attempt to do anything with it would
233 * return EBADF, including e.g. dup(2) or close(2). This avoids
234 * file descriptor races if we block in the second falloc().
235 */
236
237 error = falloc(p, &rf, &fd);
238 if (error)
239 goto free2;
240 retval[0] = fd;
241 rf->f_flag = FREAD;
242 rf->f_type = DTYPE_PIPE;
243 rf->f_data = (caddr_t)rpipe;
244 rf->f_ops = &pipeops;
245
246 error = falloc(p, &wf, &fd);
247 if (error)
248 goto free3;
249 retval[1] = fd;
250 wf->f_flag = FWRITE;
251 wf->f_type = DTYPE_PIPE;
252 wf->f_data = (caddr_t)wpipe;
253 wf->f_ops = &pipeops;
254
255 rpipe->pipe_peer = wpipe;
256 wpipe->pipe_peer = rpipe;
257
258 FILE_SET_MATURE(rf);
259 FILE_SET_MATURE(wf);
260 FILE_UNUSE(rf, p);
261 FILE_UNUSE(wf, p);
262 return (0);
263 free3:
264 FILE_UNUSE(rf, p);
265 ffree(rf);
266 fdremove(p->p_fd, retval[0]);
267 free2:
268 pipeclose(wpipe);
269 pipeclose(rpipe);
270
271 return (error);
272 }
273
274 /*
275 * Allocate kva for pipe circular buffer, the space is pageable
276 * This routine will 'realloc' the size of a pipe safely, if it fails
277 * it will retain the old buffer.
278 * If it fails it will return ENOMEM.
279 */
280 static int
281 pipespace(pipe, size)
282 struct pipe *pipe;
283 int size;
284 {
285 caddr_t buffer;
286 /*
287 * Allocate pageable virtual address space. Physical memory is
288 * allocated on demand.
289 */
290 buffer = (caddr_t) uvm_km_valloc(kernel_map, round_page(size));
291 if (buffer == NULL)
292 return (ENOMEM);
293
294 /* free old resources if we're resizing */
295 pipe_free_kmem(pipe);
296 pipe->pipe_buffer.buffer = buffer;
297 pipe->pipe_buffer.size = size;
298 pipe->pipe_buffer.in = 0;
299 pipe->pipe_buffer.out = 0;
300 pipe->pipe_buffer.cnt = 0;
301 amountpipekva += pipe->pipe_buffer.size;
302 return (0);
303 }
304
305 /*
306 * Initialize and allocate VM and memory for pipe.
307 */
308 static int
309 pipe_create(pipep, allockva)
310 struct pipe **pipep;
311 int allockva;
312 {
313 struct pipe *pipe;
314 int error;
315
316 pipe = pool_get(&pipe_pool, M_WAITOK);
317 if (pipe == NULL)
318 return (ENOMEM);
319
320 /* Initialize */
321 memset(pipe, 0, sizeof(struct pipe));
322 pipe->pipe_state = PIPE_SIGNALR;
323
324 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
325 return (error);
326
327 PIPE_TIMESTAMP(&pipe->pipe_ctime);
328 pipe->pipe_atime = pipe->pipe_ctime;
329 pipe->pipe_mtime = pipe->pipe_ctime;
330 pipe->pipe_pgid = NO_PID;
331 simple_lock_init(&pipe->pipe_slock);
332 lockinit(&pipe->pipe_lock, PRIBIO | PCATCH, "pipelk", 0, 0);
333
334 *pipep = pipe;
335 return (0);
336 }
337
338
339 /*
340 * Lock a pipe for I/O, blocking other access
341 * Called with pipe spin lock held.
342 * Return with pipe spin lock released on success.
343 */
344 static int
345 pipelock(pipe, catch)
346 struct pipe *pipe;
347 int catch;
348 {
349 int error;
350
351 LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
352
353 while (1) {
354 error = lockmgr(&pipe->pipe_lock, LK_EXCLUSIVE | LK_INTERLOCK,
355 &pipe->pipe_slock);
356 if (error == 0)
357 break;
358
359 simple_lock(&pipe->pipe_slock);
360 if (catch || (error != EINTR && error != ERESTART))
361 break;
362 }
363 return (error);
364 }
365
366 /*
367 * unlock a pipe I/O lock
368 */
369 static __inline void
370 pipeunlock(pipe)
371 struct pipe *pipe;
372 {
373
374 lockmgr(&pipe->pipe_lock, LK_RELEASE, NULL);
375 }
376
377 /*
378 * Select/poll wakup. This also sends SIGIO to peer connected to
379 * 'sigpipe' side of pipe.
380 */
381 static void
382 pipeselwakeup(selp, sigp)
383 struct pipe *selp, *sigp;
384 {
385 struct proc *p;
386 pid_t pid;
387
388 selnotify(&selp->pipe_sel, 0);
389 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
390 return;
391
392 pid = sigp->pipe_pgid;
393 if (pid == NO_PID || pid == 0)
394 return;
395
396 if (pid < 0)
397 gsignal(-pid, SIGIO);
398 else if ((p = pfind(pid)) != NULL)
399 psignal(p, SIGIO);
400 }
401
402 /* ARGSUSED */
403 static int
404 pipe_read(fp, offset, uio, cred, flags)
405 struct file *fp;
406 off_t *offset;
407 struct uio *uio;
408 struct ucred *cred;
409 int flags;
410 {
411 struct pipe *rpipe = (struct pipe *) fp->f_data;
412 struct pipebuf *bp = &rpipe->pipe_buffer;
413 int error;
414 size_t nread = 0;
415 size_t size;
416 size_t ocnt;
417
418 PIPE_LOCK(rpipe);
419 ++rpipe->pipe_busy;
420 ocnt = bp->cnt;
421
422 again:
423 error = pipelock(rpipe, 1);
424 if (error)
425 goto unlocked_error;
426
427 while (uio->uio_resid) {
428 /*
429 * normal pipe buffer receive
430 */
431 if (bp->cnt > 0) {
432 size = bp->size - bp->out;
433 if (size > bp->cnt)
434 size = bp->cnt;
435 if (size > uio->uio_resid)
436 size = uio->uio_resid;
437
438 error = uiomove(&bp->buffer[bp->out], size, uio);
439 if (error)
440 break;
441
442 bp->out += size;
443 if (bp->out >= bp->size)
444 bp->out = 0;
445
446 bp->cnt -= size;
447
448 /*
449 * If there is no more to read in the pipe, reset
450 * its pointers to the beginning. This improves
451 * cache hit stats.
452 */
453 if (bp->cnt == 0) {
454 bp->in = 0;
455 bp->out = 0;
456 }
457 nread += size;
458 #ifndef PIPE_NODIRECT
459 } else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
460 /*
461 * Direct copy, bypassing a kernel buffer.
462 */
463 caddr_t va;
464
465 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
466
467 size = rpipe->pipe_map.cnt;
468 if (size > uio->uio_resid)
469 size = uio->uio_resid;
470
471 va = (caddr_t) rpipe->pipe_map.kva +
472 rpipe->pipe_map.pos;
473 error = uiomove(va, size, uio);
474 if (error)
475 break;
476 nread += size;
477 rpipe->pipe_map.pos += size;
478 rpipe->pipe_map.cnt -= size;
479 if (rpipe->pipe_map.cnt == 0) {
480 PIPE_LOCK(rpipe);
481 rpipe->pipe_state &= ~PIPE_DIRECTR;
482 wakeup(rpipe);
483 PIPE_UNLOCK(rpipe);
484 }
485 #endif
486 } else {
487 /*
488 * Break if some data was read.
489 */
490 if (nread > 0)
491 break;
492
493 PIPE_LOCK(rpipe);
494
495 /*
496 * detect EOF condition
497 * read returns 0 on EOF, no need to set error
498 */
499 if (rpipe->pipe_state & PIPE_EOF) {
500 PIPE_UNLOCK(rpipe);
501 break;
502 }
503
504 /*
505 * don't block on non-blocking I/O
506 */
507 if (fp->f_flag & FNONBLOCK) {
508 PIPE_UNLOCK(rpipe);
509 error = EAGAIN;
510 break;
511 }
512
513 /*
514 * Unlock the pipe buffer for our remaining processing.
515 * We will either break out with an error or we will
516 * sleep and relock to loop.
517 */
518 pipeunlock(rpipe);
519
520 /*
521 * The PIPE_DIRECTR flag is not under the control
522 * of the long-term lock (see pipe_direct_write()),
523 * so re-check now while holding the spin lock.
524 */
525 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
526 goto again;
527
528 /*
529 * We want to read more, wake up select/poll.
530 */
531 pipeselwakeup(rpipe, rpipe->pipe_peer);
532
533 /*
534 * If the "write-side" is blocked, wake it up now.
535 */
536 if (rpipe->pipe_state & PIPE_WANTW) {
537 rpipe->pipe_state &= ~PIPE_WANTW;
538 wakeup(rpipe);
539 }
540
541 /* Now wait until the pipe is filled */
542 rpipe->pipe_state |= PIPE_WANTR;
543 error = ltsleep(rpipe, PRIBIO | PCATCH,
544 "piperd", 0, &rpipe->pipe_slock);
545 if (error != 0)
546 goto unlocked_error;
547 goto again;
548 }
549 }
550
551 if (error == 0)
552 PIPE_TIMESTAMP(&rpipe->pipe_atime);
553
554 PIPE_LOCK(rpipe);
555 pipeunlock(rpipe);
556
557 unlocked_error:
558 --rpipe->pipe_busy;
559
560 /*
561 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
562 */
563 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
564 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
565 wakeup(rpipe);
566 } else if (bp->cnt < MINPIPESIZE) {
567 /*
568 * Handle write blocking hysteresis.
569 */
570 if (rpipe->pipe_state & PIPE_WANTW) {
571 rpipe->pipe_state &= ~PIPE_WANTW;
572 wakeup(rpipe);
573 }
574 }
575
576 /*
577 * If anything was read off the buffer, signal to the writer it's
578 * possible to write more data. Also send signal if we are here for the
579 * first time after last write.
580 */
581 if ((bp->size - bp->cnt) >= PIPE_BUF
582 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
583 pipeselwakeup(rpipe, rpipe->pipe_peer);
584 rpipe->pipe_state &= ~PIPE_SIGNALR;
585 }
586
587 PIPE_UNLOCK(rpipe);
588 return (error);
589 }
590
591 #ifndef PIPE_NODIRECT
592 /*
593 * Allocate structure for loan transfer.
594 */
595 static int
596 pipe_loan_alloc(wpipe, npages)
597 struct pipe *wpipe;
598 int npages;
599 {
600 vsize_t len;
601
602 len = (vsize_t)npages << PAGE_SHIFT;
603 wpipe->pipe_map.kva = uvm_km_valloc_wait(kernel_map, len);
604 if (wpipe->pipe_map.kva == 0)
605 return (ENOMEM);
606
607 amountpipekva += len;
608 wpipe->pipe_map.npages = npages;
609 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
610 M_WAITOK);
611 return (0);
612 }
613
614 /*
615 * Free resources allocated for loan transfer.
616 */
617 static void
618 pipe_loan_free(wpipe)
619 struct pipe *wpipe;
620 {
621 vsize_t len;
622
623 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
624 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len);
625 wpipe->pipe_map.kva = 0;
626 amountpipekva -= len;
627 free(wpipe->pipe_map.pgs, M_PIPE);
628 wpipe->pipe_map.pgs = NULL;
629 }
630
631 /*
632 * NetBSD direct write, using uvm_loan() mechanism.
633 * This implements the pipe buffer write mechanism. Note that only
634 * a direct write OR a normal pipe write can be pending at any given time.
635 * If there are any characters in the pipe buffer, the direct write will
636 * be deferred until the receiving process grabs all of the bytes from
637 * the pipe buffer. Then the direct mapping write is set-up.
638 *
639 * Called with the long-term pipe lock held.
640 */
641 static int
642 pipe_direct_write(wpipe, uio)
643 struct pipe *wpipe;
644 struct uio *uio;
645 {
646 int error, npages, j;
647 struct vm_page **pgs;
648 vaddr_t bbase, kva, base, bend;
649 vsize_t blen, bcnt;
650 voff_t bpos;
651
652 KASSERT(wpipe->pipe_map.cnt == 0);
653
654 /*
655 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
656 * not aligned to PAGE_SIZE.
657 */
658 bbase = (vaddr_t)uio->uio_iov->iov_base;
659 base = trunc_page(bbase);
660 bend = round_page(bbase + uio->uio_iov->iov_len);
661 blen = bend - base;
662 bpos = bbase - base;
663
664 if (blen > PIPE_DIRECT_CHUNK) {
665 blen = PIPE_DIRECT_CHUNK;
666 bend = base + blen;
667 bcnt = PIPE_DIRECT_CHUNK - bpos;
668 } else {
669 bcnt = uio->uio_iov->iov_len;
670 }
671 npages = blen >> PAGE_SHIFT;
672
673 /*
674 * Free the old kva if we need more pages than we have
675 * allocated.
676 */
677 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
678 pipe_loan_free(wpipe);
679
680 /* Allocate new kva. */
681 if (wpipe->pipe_map.kva == 0) {
682 error = pipe_loan_alloc(wpipe, npages);
683 if (error)
684 return (error);
685 }
686
687 /* Loan the write buffer memory from writer process */
688 pgs = wpipe->pipe_map.pgs;
689 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
690 pgs, UVM_LOAN_TOPAGE);
691 if (error) {
692 pipe_loan_free(wpipe);
693 return (error);
694 }
695
696 /* Enter the loaned pages to kva */
697 kva = wpipe->pipe_map.kva;
698 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
699 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
700 }
701 pmap_update(pmap_kernel());
702
703 /* Now we can put the pipe in direct write mode */
704 wpipe->pipe_map.pos = bpos;
705 wpipe->pipe_map.cnt = bcnt;
706 wpipe->pipe_state |= PIPE_DIRECTW;
707
708 /*
709 * But before we can let someone do a direct read,
710 * we have to wait until the pipe is drained.
711 */
712
713 /* Relase the pipe lock while we wait */
714 PIPE_LOCK(wpipe);
715 pipeunlock(wpipe);
716
717 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
718 if (wpipe->pipe_state & PIPE_WANTR) {
719 wpipe->pipe_state &= ~PIPE_WANTR;
720 wakeup(wpipe);
721 }
722
723 wpipe->pipe_state |= PIPE_WANTW;
724 error = ltsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0,
725 &wpipe->pipe_slock);
726 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
727 error = EPIPE;
728 }
729
730 /* Pipe is drained; next read will off the direct buffer */
731 wpipe->pipe_state |= PIPE_DIRECTR;
732
733 /* Wait until the reader is done */
734 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
735 if (wpipe->pipe_state & PIPE_WANTR) {
736 wpipe->pipe_state &= ~PIPE_WANTR;
737 wakeup(wpipe);
738 }
739 pipeselwakeup(wpipe, wpipe);
740 error = ltsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0,
741 &wpipe->pipe_slock);
742 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
743 error = EPIPE;
744 }
745
746 /* Take pipe out of direct write mode */
747 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
748
749 /* Acquire the pipe lock and cleanup */
750 (void)pipelock(wpipe, 0);
751 if (pgs != NULL) {
752 pmap_kremove(wpipe->pipe_map.kva, blen);
753 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
754 }
755 if (error || amountpipekva > maxpipekva)
756 pipe_loan_free(wpipe);
757
758 if (error) {
759 pipeselwakeup(wpipe, wpipe);
760
761 /*
762 * If nothing was read from what we offered, return error
763 * straight on. Otherwise update uio resid first. Caller
764 * will deal with the error condition, returning short
765 * write, error, or restarting the write(2) as appropriate.
766 */
767 if (wpipe->pipe_map.cnt == bcnt) {
768 wpipe->pipe_map.cnt = 0;
769 wakeup(wpipe);
770 return (error);
771 }
772
773 bcnt -= wpipe->pipe_map.cnt;
774 }
775
776 uio->uio_resid -= bcnt;
777 /* uio_offset not updated, not set/used for write(2) */
778 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
779 uio->uio_iov->iov_len -= bcnt;
780 if (uio->uio_iov->iov_len == 0) {
781 uio->uio_iov++;
782 uio->uio_iovcnt--;
783 }
784
785 wpipe->pipe_map.cnt = 0;
786 return (error);
787 }
788 #endif /* !PIPE_NODIRECT */
789
790 static int
791 pipe_write(fp, offset, uio, cred, flags)
792 struct file *fp;
793 off_t *offset;
794 struct uio *uio;
795 struct ucred *cred;
796 int flags;
797 {
798 struct pipe *wpipe, *rpipe;
799 struct pipebuf *bp;
800 int error;
801
802 /* We want to write to our peer */
803 rpipe = (struct pipe *) fp->f_data;
804
805 retry:
806 error = 0;
807 PIPE_LOCK(rpipe);
808 wpipe = rpipe->pipe_peer;
809
810 /*
811 * Detect loss of pipe read side, issue SIGPIPE if lost.
812 */
813 if (wpipe == NULL)
814 error = EPIPE;
815 else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
816 /* Deal with race for peer */
817 PIPE_UNLOCK(rpipe);
818 goto retry;
819 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
820 PIPE_UNLOCK(wpipe);
821 error = EPIPE;
822 }
823
824 PIPE_UNLOCK(rpipe);
825 if (error != 0)
826 return (error);
827
828 ++wpipe->pipe_busy;
829
830 /* Aquire the long-term pipe lock */
831 if ((error = pipelock(wpipe,1)) != 0) {
832 --wpipe->pipe_busy;
833 if (wpipe->pipe_busy == 0
834 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
835 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
836 wakeup(wpipe);
837 }
838 PIPE_UNLOCK(wpipe);
839 return (error);
840 }
841
842 bp = &wpipe->pipe_buffer;
843
844 /*
845 * If it is advantageous to resize the pipe buffer, do so.
846 */
847 if ((uio->uio_resid > PIPE_SIZE) &&
848 (nbigpipe < maxbigpipes) &&
849 #ifndef PIPE_NODIRECT
850 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
851 #endif
852 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
853
854 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
855 nbigpipe++;
856 }
857
858 while (uio->uio_resid) {
859 size_t space;
860
861 #ifndef PIPE_NODIRECT
862 /*
863 * Pipe buffered writes cannot be coincidental with
864 * direct writes. Also, only one direct write can be
865 * in progress at any one time. We wait until the currently
866 * executing direct write is completed before continuing.
867 *
868 * We break out if a signal occurs or the reader goes away.
869 */
870 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
871 PIPE_LOCK(wpipe);
872 if (wpipe->pipe_state & PIPE_WANTR) {
873 wpipe->pipe_state &= ~PIPE_WANTR;
874 wakeup(wpipe);
875 }
876 pipeunlock(wpipe);
877 error = ltsleep(wpipe, PRIBIO | PCATCH,
878 "pipbww", 0, &wpipe->pipe_slock);
879
880 (void)pipelock(wpipe, 0);
881 if (wpipe->pipe_state & PIPE_EOF)
882 error = EPIPE;
883 }
884 if (error)
885 break;
886
887 /*
888 * If the transfer is large, we can gain performance if
889 * we do process-to-process copies directly.
890 * If the write is non-blocking, we don't use the
891 * direct write mechanism.
892 *
893 * The direct write mechanism will detect the reader going
894 * away on us.
895 */
896 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
897 (fp->f_flag & FNONBLOCK) == 0 &&
898 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
899 error = pipe_direct_write(wpipe, uio);
900
901 /*
902 * Break out if error occured, unless it's ENOMEM.
903 * ENOMEM means we failed to allocate some resources
904 * for direct write, so we just fallback to ordinary
905 * write. If the direct write was successful,
906 * process rest of data via ordinary write.
907 */
908 if (error == 0)
909 continue;
910
911 if (error != ENOMEM)
912 break;
913 }
914 #endif /* PIPE_NODIRECT */
915
916 space = bp->size - bp->cnt;
917
918 /* Writes of size <= PIPE_BUF must be atomic. */
919 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
920 space = 0;
921
922 if (space > 0) {
923 int size; /* Transfer size */
924 int segsize; /* first segment to transfer */
925
926 /*
927 * Transfer size is minimum of uio transfer
928 * and free space in pipe buffer.
929 */
930 if (space > uio->uio_resid)
931 size = uio->uio_resid;
932 else
933 size = space;
934 /*
935 * First segment to transfer is minimum of
936 * transfer size and contiguous space in
937 * pipe buffer. If first segment to transfer
938 * is less than the transfer size, we've got
939 * a wraparound in the buffer.
940 */
941 segsize = bp->size - bp->in;
942 if (segsize > size)
943 segsize = size;
944
945 /* Transfer first segment */
946 error = uiomove(&bp->buffer[bp->in], segsize, uio);
947
948 if (error == 0 && segsize < size) {
949 /*
950 * Transfer remaining part now, to
951 * support atomic writes. Wraparound
952 * happened.
953 */
954 #ifdef DEBUG
955 if (bp->in + segsize != bp->size)
956 panic("Expected pipe buffer wraparound disappeared");
957 #endif
958
959 error = uiomove(&bp->buffer[0],
960 size - segsize, uio);
961 }
962 if (error)
963 break;
964
965 bp->in += size;
966 if (bp->in >= bp->size) {
967 #ifdef DEBUG
968 if (bp->in != size - segsize + bp->size)
969 panic("Expected wraparound bad");
970 #endif
971 bp->in = size - segsize;
972 }
973
974 bp->cnt += size;
975 #ifdef DEBUG
976 if (bp->cnt > bp->size)
977 panic("Pipe buffer overflow");
978 #endif
979 } else {
980 /*
981 * If the "read-side" has been blocked, wake it up now.
982 */
983 PIPE_LOCK(wpipe);
984 if (wpipe->pipe_state & PIPE_WANTR) {
985 wpipe->pipe_state &= ~PIPE_WANTR;
986 wakeup(wpipe);
987 }
988 PIPE_UNLOCK(wpipe);
989
990 /*
991 * don't block on non-blocking I/O
992 */
993 if (fp->f_flag & FNONBLOCK) {
994 error = EAGAIN;
995 break;
996 }
997
998 /*
999 * We have no more space and have something to offer,
1000 * wake up select/poll.
1001 */
1002 if (bp->cnt)
1003 pipeselwakeup(wpipe, wpipe);
1004
1005 PIPE_LOCK(wpipe);
1006 pipeunlock(wpipe);
1007 wpipe->pipe_state |= PIPE_WANTW;
1008 error = ltsleep(wpipe, PRIBIO | PCATCH, "pipewr", 0,
1009 &wpipe->pipe_slock);
1010 (void)pipelock(wpipe, 0);
1011 if (error != 0)
1012 break;
1013 /*
1014 * If read side wants to go away, we just issue a signal
1015 * to ourselves.
1016 */
1017 if (wpipe->pipe_state & PIPE_EOF) {
1018 error = EPIPE;
1019 break;
1020 }
1021 }
1022 }
1023
1024 PIPE_LOCK(wpipe);
1025 --wpipe->pipe_busy;
1026 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1027 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1028 wakeup(wpipe);
1029 } else if (bp->cnt > 0) {
1030 /*
1031 * If we have put any characters in the buffer, we wake up
1032 * the reader.
1033 */
1034 if (wpipe->pipe_state & PIPE_WANTR) {
1035 wpipe->pipe_state &= ~PIPE_WANTR;
1036 wakeup(wpipe);
1037 }
1038 }
1039
1040 /*
1041 * Don't return EPIPE if I/O was successful
1042 */
1043 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1044 error = 0;
1045
1046 if (error == 0)
1047 PIPE_TIMESTAMP(&wpipe->pipe_mtime);
1048
1049 /*
1050 * We have something to offer, wake up select/poll.
1051 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1052 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1053 */
1054 if (bp->cnt)
1055 pipeselwakeup(wpipe, wpipe);
1056
1057 /*
1058 * Arrange for next read(2) to do a signal.
1059 */
1060 wpipe->pipe_state |= PIPE_SIGNALR;
1061
1062 pipeunlock(wpipe);
1063 PIPE_UNLOCK(wpipe);
1064 return (error);
1065 }
1066
1067 /*
1068 * we implement a very minimal set of ioctls for compatibility with sockets.
1069 */
1070 int
1071 pipe_ioctl(fp, cmd, data, p)
1072 struct file *fp;
1073 u_long cmd;
1074 caddr_t data;
1075 struct proc *p;
1076 {
1077 struct pipe *pipe = (struct pipe *)fp->f_data;
1078
1079 switch (cmd) {
1080
1081 case FIONBIO:
1082 return (0);
1083
1084 case FIOASYNC:
1085 PIPE_LOCK(pipe);
1086 if (*(int *)data) {
1087 pipe->pipe_state |= PIPE_ASYNC;
1088 } else {
1089 pipe->pipe_state &= ~PIPE_ASYNC;
1090 }
1091 PIPE_UNLOCK(pipe);
1092 return (0);
1093
1094 case FIONREAD:
1095 PIPE_LOCK(pipe);
1096 #ifndef PIPE_NODIRECT
1097 if (pipe->pipe_state & PIPE_DIRECTW)
1098 *(int *)data = pipe->pipe_map.cnt;
1099 else
1100 #endif
1101 *(int *)data = pipe->pipe_buffer.cnt;
1102 PIPE_UNLOCK(pipe);
1103 return (0);
1104
1105 case TIOCSPGRP:
1106 pipe->pipe_pgid = *(int *)data;
1107 return (0);
1108
1109 case TIOCGPGRP:
1110 *(int *)data = pipe->pipe_pgid;
1111 return (0);
1112
1113 }
1114 return (EPASSTHROUGH);
1115 }
1116
1117 int
1118 pipe_poll(fp, events, td)
1119 struct file *fp;
1120 int events;
1121 struct proc *td;
1122 {
1123 struct pipe *rpipe = (struct pipe *)fp->f_data;
1124 struct pipe *wpipe;
1125 int eof = 0;
1126 int revents = 0;
1127
1128 retry:
1129 PIPE_LOCK(rpipe);
1130 wpipe = rpipe->pipe_peer;
1131 if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
1132 /* Deal with race for peer */
1133 PIPE_UNLOCK(rpipe);
1134 goto retry;
1135 }
1136
1137 if (events & (POLLIN | POLLRDNORM))
1138 if ((rpipe->pipe_buffer.cnt > 0) ||
1139 #ifndef PIPE_NODIRECT
1140 (rpipe->pipe_state & PIPE_DIRECTR) ||
1141 #endif
1142 (rpipe->pipe_state & PIPE_EOF))
1143 revents |= events & (POLLIN | POLLRDNORM);
1144
1145 eof |= (rpipe->pipe_state & PIPE_EOF);
1146 PIPE_UNLOCK(rpipe);
1147
1148 if (wpipe == NULL)
1149 revents |= events & (POLLOUT | POLLWRNORM);
1150 else {
1151 if (events & (POLLOUT | POLLWRNORM))
1152 if ((wpipe->pipe_state & PIPE_EOF) || (
1153 #ifndef PIPE_NODIRECT
1154 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1155 #endif
1156 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1157 revents |= events & (POLLOUT | POLLWRNORM);
1158
1159 eof |= (wpipe->pipe_state & PIPE_EOF);
1160 PIPE_UNLOCK(wpipe);
1161 }
1162
1163 if (wpipe == NULL || eof)
1164 revents |= POLLHUP;
1165
1166 if (revents == 0) {
1167 if (events & (POLLIN | POLLRDNORM))
1168 selrecord(td, &rpipe->pipe_sel);
1169
1170 if (events & (POLLOUT | POLLWRNORM))
1171 selrecord(td, &wpipe->pipe_sel);
1172 }
1173
1174 return (revents);
1175 }
1176
1177 static int
1178 pipe_stat(fp, ub, td)
1179 struct file *fp;
1180 struct stat *ub;
1181 struct proc *td;
1182 {
1183 struct pipe *pipe = (struct pipe *)fp->f_data;
1184
1185 memset((caddr_t)ub, 0, sizeof(*ub));
1186 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1187 ub->st_blksize = pipe->pipe_buffer.size;
1188 ub->st_size = pipe->pipe_buffer.cnt;
1189 ub->st_blocks = (ub->st_size) ? 1 : 0;
1190 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec)
1191 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1192 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1193 ub->st_uid = fp->f_cred->cr_uid;
1194 ub->st_gid = fp->f_cred->cr_gid;
1195 /*
1196 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1197 * XXX (st_dev, st_ino) should be unique.
1198 */
1199 return (0);
1200 }
1201
1202 /* ARGSUSED */
1203 static int
1204 pipe_close(fp, td)
1205 struct file *fp;
1206 struct proc *td;
1207 {
1208 struct pipe *pipe = (struct pipe *)fp->f_data;
1209
1210 fp->f_data = NULL;
1211 pipeclose(pipe);
1212 return (0);
1213 }
1214
1215 static void
1216 pipe_free_kmem(pipe)
1217 struct pipe *pipe;
1218 {
1219
1220 if (pipe->pipe_buffer.buffer != NULL) {
1221 if (pipe->pipe_buffer.size > PIPE_SIZE)
1222 --nbigpipe;
1223 amountpipekva -= pipe->pipe_buffer.size;
1224 uvm_km_free(kernel_map,
1225 (vaddr_t)pipe->pipe_buffer.buffer,
1226 pipe->pipe_buffer.size);
1227 pipe->pipe_buffer.buffer = NULL;
1228 }
1229 #ifndef PIPE_NODIRECT
1230 if (pipe->pipe_map.kva != 0) {
1231 pipe_loan_free(pipe);
1232 pipe->pipe_map.cnt = 0;
1233 pipe->pipe_map.kva = 0;
1234 pipe->pipe_map.pos = 0;
1235 pipe->pipe_map.npages = 0;
1236 }
1237 #endif /* !PIPE_NODIRECT */
1238 }
1239
1240 /*
1241 * shutdown the pipe
1242 */
1243 static void
1244 pipeclose(pipe)
1245 struct pipe *pipe;
1246 {
1247 struct pipe *ppipe;
1248
1249 if (pipe == NULL)
1250 return;
1251
1252 retry:
1253 PIPE_LOCK(pipe);
1254
1255 pipeselwakeup(pipe, pipe);
1256
1257 /*
1258 * If the other side is blocked, wake it up saying that
1259 * we want to close it down.
1260 */
1261 while (pipe->pipe_busy) {
1262 wakeup(pipe);
1263 pipe->pipe_state |= PIPE_WANTCLOSE | PIPE_EOF;
1264 ltsleep(pipe, PRIBIO, "pipecl", 0, &pipe->pipe_slock);
1265 }
1266
1267 /*
1268 * Disconnect from peer
1269 */
1270 if ((ppipe = pipe->pipe_peer) != NULL) {
1271 /* Deal with race for peer */
1272 if (simple_lock_try(&ppipe->pipe_slock) == 0) {
1273 PIPE_UNLOCK(pipe);
1274 goto retry;
1275 }
1276 pipeselwakeup(ppipe, ppipe);
1277
1278 ppipe->pipe_state |= PIPE_EOF;
1279 wakeup(ppipe);
1280 ppipe->pipe_peer = NULL;
1281 PIPE_UNLOCK(ppipe);
1282 }
1283
1284 (void)lockmgr(&pipe->pipe_lock, LK_DRAIN | LK_INTERLOCK,
1285 &pipe->pipe_slock);
1286
1287 /*
1288 * free resources
1289 */
1290 pipe_free_kmem(pipe);
1291 pool_put(&pipe_pool, pipe);
1292 }
1293
1294 static void
1295 filt_pipedetach(struct knote *kn)
1296 {
1297 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1298
1299 switch(kn->kn_filter) {
1300 case EVFILT_WRITE:
1301 /* need the peer structure, not our own */
1302 pipe = pipe->pipe_peer;
1303 /* XXXSMP: race for peer */
1304
1305 /* if reader end already closed, just return */
1306 if (pipe == NULL)
1307 return;
1308
1309 break;
1310 default:
1311 /* nothing to do */
1312 break;
1313 }
1314
1315 #ifdef DIAGNOSTIC
1316 if (kn->kn_hook != pipe)
1317 panic("filt_pipedetach: inconsistent knote");
1318 #endif
1319
1320 PIPE_LOCK(pipe);
1321 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1322 PIPE_UNLOCK(pipe);
1323 }
1324
1325 /*ARGSUSED*/
1326 static int
1327 filt_piperead(struct knote *kn, long hint)
1328 {
1329 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1330 struct pipe *wpipe = rpipe->pipe_peer;
1331
1332 PIPE_LOCK(rpipe);
1333 kn->kn_data = rpipe->pipe_buffer.cnt;
1334 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1335 kn->kn_data = rpipe->pipe_map.cnt;
1336
1337 /* XXXSMP: race for peer */
1338 if ((rpipe->pipe_state & PIPE_EOF) ||
1339 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1340 kn->kn_flags |= EV_EOF;
1341 PIPE_UNLOCK(rpipe);
1342 return (1);
1343 }
1344 PIPE_UNLOCK(rpipe);
1345 return (kn->kn_data > 0);
1346 }
1347
1348 /*ARGSUSED*/
1349 static int
1350 filt_pipewrite(struct knote *kn, long hint)
1351 {
1352 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1353 struct pipe *wpipe = rpipe->pipe_peer;
1354
1355 PIPE_LOCK(rpipe);
1356 /* XXXSMP: race for peer */
1357 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1358 kn->kn_data = 0;
1359 kn->kn_flags |= EV_EOF;
1360 PIPE_UNLOCK(rpipe);
1361 return (1);
1362 }
1363 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1364 if (wpipe->pipe_state & PIPE_DIRECTW)
1365 kn->kn_data = 0;
1366
1367 PIPE_UNLOCK(rpipe);
1368 return (kn->kn_data >= PIPE_BUF);
1369 }
1370
1371 static const struct filterops pipe_rfiltops =
1372 { 1, NULL, filt_pipedetach, filt_piperead };
1373 static const struct filterops pipe_wfiltops =
1374 { 1, NULL, filt_pipedetach, filt_pipewrite };
1375
1376 /*ARGSUSED*/
1377 static int
1378 pipe_kqfilter(struct file *fp, struct knote *kn)
1379 {
1380 struct pipe *pipe;
1381
1382 pipe = (struct pipe *)kn->kn_fp->f_data;
1383 switch (kn->kn_filter) {
1384 case EVFILT_READ:
1385 kn->kn_fop = &pipe_rfiltops;
1386 break;
1387 case EVFILT_WRITE:
1388 kn->kn_fop = &pipe_wfiltops;
1389 /* XXXSMP: race for peer */
1390 pipe = pipe->pipe_peer;
1391 if (pipe == NULL) {
1392 /* other end of pipe has been closed */
1393 return (EBADF);
1394 }
1395 break;
1396 default:
1397 return (1);
1398 }
1399 kn->kn_hook = pipe;
1400
1401 PIPE_LOCK(pipe);
1402 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1403 PIPE_UNLOCK(pipe);
1404 return (0);
1405 }
1406
1407 static int
1408 pipe_fcntl(fp, cmd, data, p)
1409 struct file *fp;
1410 u_int cmd;
1411 caddr_t data;
1412 struct proc *p;
1413 {
1414 if (cmd == F_SETFL)
1415 return (0);
1416 else
1417 return (EOPNOTSUPP);
1418 }
1419
1420 /*
1421 * Handle pipe sysctls.
1422 */
1423 int
1424 sysctl_dopipe(name, namelen, oldp, oldlenp, newp, newlen)
1425 int *name;
1426 u_int namelen;
1427 void *oldp;
1428 size_t *oldlenp;
1429 void *newp;
1430 size_t newlen;
1431 {
1432 /* All sysctl names at this level are terminal. */
1433 if (namelen != 1)
1434 return (ENOTDIR); /* overloaded */
1435
1436 switch (name[0]) {
1437 case KERN_PIPE_MAXKVASZ:
1438 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxpipekva));
1439 case KERN_PIPE_LIMITKVA:
1440 return (sysctl_int(oldp, oldlenp, newp, newlen, &limitpipekva));
1441 case KERN_PIPE_MAXBIGPIPES:
1442 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxbigpipes));
1443 case KERN_PIPE_NBIGPIPES:
1444 return (sysctl_rdint(oldp, oldlenp, newp, nbigpipe));
1445 case KERN_PIPE_KVASIZE:
1446 return (sysctl_rdint(oldp, oldlenp, newp, amountpipekva));
1447 default:
1448 return (EOPNOTSUPP);
1449 }
1450 /* NOTREACHED */
1451 }
1452
1453 /*
1454 * Initialize pipe structs.
1455 */
1456 void
1457 pipe_init(void)
1458 {
1459 pool_init(&pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl", NULL);
1460 }
1461