Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.4.2.10
      1 /*	$NetBSD: sys_pipe.c,v 1.4.2.10 2002/02/28 23:48:50 nathanw Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1996 John S. Dyson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice immediately at the beginning of the file, without modification,
     12  *    this list of conditions, and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Absolutely no warranty of function or purpose is made by the author
     17  *    John S. Dyson.
     18  * 4. Modifications may be freely made to this file if the above conditions
     19  *    are met.
     20  *
     21  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.82 2001/06/15 20:45:01 jlemon Exp $
     22  */
     23 
     24 /*
     25  * This file contains a high-performance replacement for the socket-based
     26  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
     27  * all features of sockets, but does do everything that pipes normally
     28  * do.
     29  *
     30  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
     31  * written by Jaromir Dolecek.
     32  */
     33 
     34 /*
     35  * This code has two modes of operation, a small write mode and a large
     36  * write mode.  The small write mode acts like conventional pipes with
     37  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     38  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     39  * and PIPE_SIZE in size, it is fully mapped into the kernel (on FreeBSD,
     40  * those pages are also wired), and the receiving process can copy it directly
     41  * from the pages in the sending process.
     42  *
     43  * If the sending process receives a signal, it is possible that it will
     44  * go away, and certainly its address space can change, because control
     45  * is returned back to the user-mode side.  In that case, the pipe code
     46  * arranges to copy the buffer supplied by the user process on FreeBSD, to
     47  * a pageable kernel buffer, and the receiving process will grab the data
     48  * from the pageable kernel buffer.  Since signals don't happen all that often,
     49  * the copy operation is normally eliminated.
     50  * For NetBSD, the pages are mapped read-only, COW for kernel by uvm_loan(),
     51  * so no explicit handling need to be done, all is handled by standard VM
     52  * facilities.
     53  *
     54  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     55  * happen for small transfers so that the system will not spend all of
     56  * its time context switching.  PIPE_SIZE is constrained by the
     57  * amount of kernel virtual memory.
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.4.2.10 2002/02/28 23:48:50 nathanw Exp $");
     62 
     63 #include <sys/param.h>
     64 #include <sys/systm.h>
     65 #include <sys/proc.h>
     66 #include <sys/fcntl.h>
     67 #include <sys/file.h>
     68 #include <sys/filedesc.h>
     69 #include <sys/filio.h>
     70 #include <sys/ttycom.h>
     71 #include <sys/stat.h>
     72 #include <sys/poll.h>
     73 #include <sys/signalvar.h>
     74 #include <sys/vnode.h>
     75 #include <sys/uio.h>
     76 #include <sys/lock.h>
     77 #ifdef __FreeBSD__
     78 #include <sys/mutex.h>
     79 #include <sys/selinfo.h>
     80 #include <sys/sysproto.h>
     81 #elif defined(__NetBSD__)
     82 #include <sys/select.h>
     83 #include <sys/malloc.h>
     84 #include <sys/mount.h>
     85 #include <sys/syscallargs.h>
     86 #include <uvm/uvm.h>
     87 #include <sys/sysctl.h>
     88 #include <sys/kernel.h>
     89 #endif /* NetBSD, FreeBSD */
     90 
     91 #include <sys/pipe.h>
     92 
     93 #ifdef __NetBSD__
     94 /*
     95  * Avoid microtime(9), it's slow. We don't guard the read from time(9)
     96  * with splclock(9) since we don't actually need to be THAT sure the access
     97  * is atomic.
     98  */
     99 #define vfs_timestamp(tv)	(*(tv) = time)
    100 #endif
    101 
    102 /*
    103  * Use this define if you want to disable *fancy* VM things.  Expect an
    104  * approx 30% decrease in transfer rate.  This could be useful for
    105  * OpenBSD.
    106  */
    107 /* #define PIPE_NODIRECT */
    108 
    109 /*
    110  * interfaces to the outside world
    111  */
    112 #ifdef __FreeBSD__
    113 static int pipe_read __P((struct file *fp, struct uio *uio,
    114 		struct ucred *cred, int flags, struct proc *p));
    115 static int pipe_write __P((struct file *fp, struct uio *uio,
    116 		struct ucred *cred, int flags, struct proc *p));
    117 static int pipe_close __P((struct file *fp, struct proc *p));
    118 static int pipe_poll __P((struct file *fp, int events, struct ucred *cred,
    119 		struct proc *p));
    120 static int pipe_kqfilter __P((struct file *fp, struct knote *kn));
    121 static int pipe_stat __P((struct file *fp, struct stat *sb, struct proc *p));
    122 static int pipe_ioctl __P((struct file *fp, u_long cmd, caddr_t data, struct proc *p));
    123 
    124 static struct fileops pipeops = {
    125 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
    126 	pipe_stat, pipe_close
    127 };
    128 
    129 static void	filt_pipedetach(struct knote *kn);
    130 static int	filt_piperead(struct knote *kn, long hint);
    131 static int	filt_pipewrite(struct knote *kn, long hint);
    132 
    133 static struct filterops pipe_rfiltops =
    134 	{ 1, NULL, filt_pipedetach, filt_piperead };
    135 static struct filterops pipe_wfiltops =
    136 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
    137 #endif /* FreeBSD */
    138 
    139 #ifdef __NetBSD__
    140 static int pipe_read __P((struct file *fp, off_t *offset, struct uio *uio,
    141 		struct ucred *cred, int flags));
    142 static int pipe_write __P((struct file *fp, off_t *offset, struct uio *uio,
    143 		struct ucred *cred, int flags));
    144 static int pipe_close __P((struct file *fp, struct proc *p));
    145 static int pipe_poll __P((struct file *fp, int events, struct proc *p));
    146 static int pipe_fcntl __P((struct file *fp, u_int com, caddr_t data,
    147 		struct proc *p));
    148 static int pipe_stat __P((struct file *fp, struct stat *sb, struct proc *p));
    149 static int pipe_ioctl __P((struct file *fp, u_long cmd, caddr_t data, struct proc *p));
    150 
    151 static struct fileops pipeops =
    152     { pipe_read, pipe_write, pipe_ioctl, pipe_fcntl, pipe_poll,
    153       pipe_stat, pipe_close };
    154 #endif /* NetBSD */
    155 
    156 /*
    157  * Default pipe buffer size(s), this can be kind-of large now because pipe
    158  * space is pageable.  The pipe code will try to maintain locality of
    159  * reference for performance reasons, so small amounts of outstanding I/O
    160  * will not wipe the cache.
    161  */
    162 #define MINPIPESIZE (PIPE_SIZE/3)
    163 #define MAXPIPESIZE (2*PIPE_SIZE/3)
    164 
    165 /*
    166  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    167  * is there so that on large systems, we don't exhaust it.
    168  */
    169 #define MAXPIPEKVA (8*1024*1024)
    170 static int maxpipekva = MAXPIPEKVA;
    171 
    172 /*
    173  * Limit for direct transfers, we cannot, of course limit
    174  * the amount of kva for pipes in general though.
    175  */
    176 #define LIMITPIPEKVA (16*1024*1024)
    177 static int limitpipekva = LIMITPIPEKVA;
    178 
    179 /*
    180  * Limit the number of "big" pipes
    181  */
    182 #define LIMITBIGPIPES  32
    183 static int maxbigpipes = LIMITBIGPIPES;
    184 static int nbigpipe = 0;
    185 
    186 /*
    187  * Amount of KVA consumed by pipe buffers.
    188  */
    189 static int amountpipekva = 0;
    190 
    191 static void pipeclose __P((struct pipe *));
    192 static void pipe_free_kmem __P((struct pipe *));
    193 static int pipe_create __P((struct pipe **, int));
    194 static __inline int pipelock __P((struct pipe *, int));
    195 static __inline void pipeunlock __P((struct pipe *));
    196 static __inline void pipeselwakeup __P((struct pipe *, struct pipe *));
    197 static int pipespace __P((struct pipe *, int));
    198 
    199 #ifdef __FreeBSD__
    200 #ifndef PIPE_NODIRECT
    201 static int pipe_build_write_buffer __P((struct pipe *wpipe, struct uio *uio));
    202 static void pipe_destroy_write_buffer __P((struct pipe *wpipe));
    203 static int pipe_direct_write __P((struct pipe *wpipe, struct uio *uio));
    204 static void pipe_clone_write_buffer __P((struct pipe *wpipe));
    205 #endif
    206 
    207 static vm_zone_t pipe_zone;
    208 #endif /* FreeBSD */
    209 
    210 #ifdef __NetBSD__
    211 #ifndef PIPE_NODIRECT
    212 static int pipe_direct_write __P((struct pipe *, struct uio *));
    213 static int pipe_loan_alloc __P((struct pipe *, int));
    214 static void pipe_loan_free __P((struct pipe *));
    215 #endif /* PIPE_NODIRECT */
    216 
    217 static struct pool pipe_pool;
    218 #endif /* NetBSD */
    219 
    220 /*
    221  * The pipe system call for the DTYPE_PIPE type of pipes
    222  */
    223 
    224 /* ARGSUSED */
    225 #ifdef __FreeBSD__
    226 int
    227 pipe(p, uap)
    228 	struct proc *p;
    229 	struct pipe_args /* {
    230 		int	dummy;
    231 	} */ *uap;
    232 #elif defined(__NetBSD__)
    233 int
    234 sys_pipe(l, v, retval)
    235 	struct lwp *l;
    236 	void *v;
    237 	register_t *retval;
    238 #endif
    239 {
    240 	struct file *rf, *wf;
    241 	struct pipe *rpipe, *wpipe;
    242 	int fd, error;
    243 #ifdef __NetBSD__
    244 	struct proc *p;
    245 #endif
    246 
    247 #ifdef __FreeBSD__
    248 	if (pipe_zone == NULL)
    249 		pipe_zone = zinit("PIPE", sizeof(struct pipe), 0, 0, 4);
    250 
    251 	rpipe = wpipe = NULL;
    252 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 1)) {
    253 		pipeclose(rpipe);
    254 		pipeclose(wpipe);
    255 		return (ENFILE);
    256 	}
    257 
    258 	error = falloc(p, &rf, &fd);
    259 	if (error) {
    260 		pipeclose(rpipe);
    261 		pipeclose(wpipe);
    262 		return (error);
    263 	}
    264 	fhold(rf);
    265 	p->p_retval[0] = fd;
    266 
    267 	/*
    268 	 * Warning: once we've gotten past allocation of the fd for the
    269 	 * read-side, we can only drop the read side via fdrop() in order
    270 	 * to avoid races against processes which manage to dup() the read
    271 	 * side while we are blocked trying to allocate the write side.
    272 	 */
    273 	rf->f_flag = FREAD | FWRITE;
    274 	rf->f_type = DTYPE_PIPE;
    275 	rf->f_data = (caddr_t)rpipe;
    276 	rf->f_ops = &pipeops;
    277 	error = falloc(p, &wf, &fd);
    278 	if (error) {
    279 		struct filedesc *fdp = p->p_fd;
    280 
    281 		if (fdp->fd_ofiles[p->p_retval[0]] == rf) {
    282 			fdp->fd_ofiles[p->p_retval[0]] = NULL;
    283 			fdrop(rf, p);
    284 		}
    285 		fdrop(rf, p);
    286 		/* rpipe has been closed by fdrop(). */
    287 		pipeclose(wpipe);
    288 		return (error);
    289 	}
    290 	wf->f_flag = FREAD | FWRITE;
    291 	wf->f_type = DTYPE_PIPE;
    292 	wf->f_data = (caddr_t)wpipe;
    293 	wf->f_ops = &pipeops;
    294 	p->p_retval[1] = fd;
    295 
    296 	rpipe->pipe_peer = wpipe;
    297 	wpipe->pipe_peer = rpipe;
    298 	fdrop(rf, p);
    299 #endif /* FreeBSD */
    300 
    301 #ifdef __NetBSD__
    302 	p = l->l_proc;
    303 	rpipe = wpipe = NULL;
    304 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
    305 		pipeclose(rpipe);
    306 		pipeclose(wpipe);
    307 		return (ENFILE);
    308 	}
    309 
    310 	/*
    311 	 * Note: the file structure returned from falloc() is marked
    312 	 * as 'larval' initially. Unless we mark it as 'mature' by
    313 	 * FILE_SET_MATURE(), any attempt to do anything with it would
    314 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
    315 	 * file descriptor races if we block in the second falloc().
    316 	 */
    317 
    318 	error = falloc(p, &rf, &fd);
    319 	if (error)
    320 		goto free2;
    321 	retval[0] = fd;
    322 	rf->f_flag = FREAD;
    323 	rf->f_type = DTYPE_PIPE;
    324 	rf->f_data = (caddr_t)rpipe;
    325 	rf->f_ops = &pipeops;
    326 
    327 	error = falloc(p, &wf, &fd);
    328 	if (error)
    329 		goto free3;
    330 	retval[1] = fd;
    331 	wf->f_flag = FWRITE;
    332 	wf->f_type = DTYPE_PIPE;
    333 	wf->f_data = (caddr_t)wpipe;
    334 	wf->f_ops = &pipeops;
    335 
    336 	rpipe->pipe_peer = wpipe;
    337 	wpipe->pipe_peer = rpipe;
    338 
    339 	FILE_SET_MATURE(rf);
    340 	FILE_SET_MATURE(wf);
    341 	FILE_UNUSE(rf, p);
    342 	FILE_UNUSE(wf, p);
    343 	return (0);
    344 free3:
    345 	FILE_UNUSE(rf, p);
    346 	ffree(rf);
    347 	fdremove(p->p_fd, retval[0]);
    348 free2:
    349 	pipeclose(wpipe);
    350 	pipeclose(rpipe);
    351 #endif /* NetBSD */
    352 
    353 	return (error);
    354 }
    355 
    356 /*
    357  * Allocate kva for pipe circular buffer, the space is pageable
    358  * This routine will 'realloc' the size of a pipe safely, if it fails
    359  * it will retain the old buffer.
    360  * If it fails it will return ENOMEM.
    361  */
    362 static int
    363 pipespace(cpipe, size)
    364 	struct pipe *cpipe;
    365 	int size;
    366 {
    367 	caddr_t buffer;
    368 #ifdef __FreeBSD__
    369 	struct vm_object *object;
    370 	int npages, error;
    371 
    372 	npages = round_page(size)/PAGE_SIZE;
    373 	/*
    374 	 * Create an object, I don't like the idea of paging to/from
    375 	 * kernel_object.
    376 	 */
    377 	mtx_lock(&vm_mtx);
    378 	object = vm_object_allocate(OBJT_DEFAULT, npages);
    379 	buffer = (caddr_t) vm_map_min(kernel_map);
    380 
    381 	/*
    382 	 * Insert the object into the kernel map, and allocate kva for it.
    383 	 * The map entry is, by default, pageable.
    384 	 */
    385 	error = vm_map_find(kernel_map, object, 0,
    386 		(vm_offset_t *) &buffer, size, 1,
    387 		VM_PROT_ALL, VM_PROT_ALL, 0);
    388 
    389 	if (error != KERN_SUCCESS) {
    390 		vm_object_deallocate(object);
    391 		mtx_unlock(&vm_mtx);
    392 		return (ENOMEM);
    393 	}
    394 #endif /* FreeBSD */
    395 
    396 #ifdef __NetBSD__
    397 	/*
    398 	 * Allocate pageable virtual address space. Physical memory is allocated
    399 	 * on demand.
    400 	 */
    401 	buffer = (caddr_t) uvm_km_valloc(kernel_map, round_page(size));
    402 	if (buffer == NULL)
    403 		return (ENOMEM);
    404 #endif /* NetBSD */
    405 
    406 	/* free old resources if we're resizing */
    407 	pipe_free_kmem(cpipe);
    408 #ifdef __FreeBSD__
    409 	mtx_unlock(&vm_mtx);
    410 	cpipe->pipe_buffer.object = object;
    411 #endif
    412 	cpipe->pipe_buffer.buffer = buffer;
    413 	cpipe->pipe_buffer.size = size;
    414 	cpipe->pipe_buffer.in = 0;
    415 	cpipe->pipe_buffer.out = 0;
    416 	cpipe->pipe_buffer.cnt = 0;
    417 	amountpipekva += cpipe->pipe_buffer.size;
    418 	return (0);
    419 }
    420 
    421 /*
    422  * initialize and allocate VM and memory for pipe
    423  */
    424 static int
    425 pipe_create(cpipep, allockva)
    426 	struct pipe **cpipep;
    427 	int allockva;
    428 {
    429 	struct pipe *cpipe;
    430 	int error;
    431 
    432 #ifdef __FreeBSD__
    433 	*cpipep = zalloc(pipe_zone);
    434 #endif
    435 #ifdef __NetBSD__
    436 	*cpipep = pool_get(&pipe_pool, M_WAITOK);
    437 #endif
    438 	if (*cpipep == NULL)
    439 		return (ENOMEM);
    440 
    441 	cpipe = *cpipep;
    442 
    443 	/* Initialize */
    444 	memset(cpipe, 0, sizeof(*cpipe));
    445 	cpipe->pipe_state = PIPE_SIGNALR;
    446 
    447 	if (allockva && (error = pipespace(cpipe, PIPE_SIZE)))
    448 		return (error);
    449 
    450 	vfs_timestamp(&cpipe->pipe_ctime);
    451 	cpipe->pipe_atime = cpipe->pipe_ctime;
    452 	cpipe->pipe_mtime = cpipe->pipe_ctime;
    453 #ifdef __NetBSD__
    454 	cpipe->pipe_pgid = NO_PID;
    455 	lockinit(&cpipe->pipe_lock, PRIBIO | PCATCH, "pipelk", 0, 0);
    456 #endif
    457 
    458 	return (0);
    459 }
    460 
    461 
    462 /*
    463  * lock a pipe for I/O, blocking other access
    464  */
    465 static __inline int
    466 pipelock(cpipe, catch)
    467 	struct pipe *cpipe;
    468 	int catch;
    469 {
    470 	int error;
    471 
    472 #ifdef __FreeBSD__
    473 	while (cpipe->pipe_state & PIPE_LOCK) {
    474 		cpipe->pipe_state |= PIPE_LWANT;
    475 		error = tsleep(cpipe, catch ? (PRIBIO | PCATCH) : PRIBIO,
    476 		    "pipelk", 0);
    477 		if (error != 0)
    478 			return (error);
    479 	}
    480 	cpipe->pipe_state |= PIPE_LOCK;
    481 	return (0);
    482 #endif
    483 
    484 #ifdef __NetBSD__
    485 	do {
    486 		error = lockmgr(&cpipe->pipe_lock, LK_EXCLUSIVE, NULL);
    487 	} while (!catch && (error == EINTR || error == ERESTART));
    488 	return (error);
    489 #endif
    490 }
    491 
    492 /*
    493  * unlock a pipe I/O lock
    494  */
    495 static __inline void
    496 pipeunlock(cpipe)
    497 	struct pipe *cpipe;
    498 {
    499 #ifdef __FreeBSD__
    500 	cpipe->pipe_state &= ~PIPE_LOCK;
    501 	if (cpipe->pipe_state & PIPE_LWANT) {
    502 		cpipe->pipe_state &= ~PIPE_LWANT;
    503 		wakeup(cpipe);
    504 	}
    505 #endif
    506 
    507 #ifdef __NetBSD__
    508 	lockmgr(&cpipe->pipe_lock, LK_RELEASE, NULL);
    509 #endif
    510 }
    511 
    512 /*
    513  * Select/poll wakup. This also sends SIGIO to peer connected to
    514  * 'sigpipe' side of pipe.
    515  */
    516 static __inline void
    517 pipeselwakeup(selp, sigp)
    518 	struct pipe *selp, *sigp;
    519 {
    520 	if (selp->pipe_state & PIPE_SEL) {
    521 		selp->pipe_state &= ~PIPE_SEL;
    522 		selwakeup(&selp->pipe_sel);
    523 	}
    524 #ifdef __FreeBSD__
    525 	if (sigp && (sigp->pipe_state & PIPE_ASYNC) && sigp->pipe_sigio)
    526 		pgsigio(sigp->pipe_sigio, SIGIO, 0);
    527 	KNOTE(&selp->pipe_sel.si_note, 0);
    528 #endif
    529 
    530 #ifdef __NetBSD__
    531 	if (sigp && (sigp->pipe_state & PIPE_ASYNC)
    532 	    && sigp->pipe_pgid != NO_PID){
    533 		struct proc *p;
    534 
    535 		if (sigp->pipe_pgid < 0)
    536 			gsignal(-sigp->pipe_pgid, SIGIO);
    537 		else if (sigp->pipe_pgid > 0 && (p = pfind(sigp->pipe_pgid)) != 0)
    538 			psignal(p, SIGIO);
    539 	}
    540 #endif /* NetBSD */
    541 }
    542 
    543 /* ARGSUSED */
    544 #ifdef __FreeBSD__
    545 static int
    546 pipe_read(fp, uio, cred, flags, p)
    547 	struct file *fp;
    548 	struct uio *uio;
    549 	struct ucred *cred;
    550 	int flags;
    551 	struct proc *p;
    552 #elif defined(__NetBSD__)
    553 static int
    554 pipe_read(fp, offset, uio, cred, flags)
    555 	struct file *fp;
    556 	off_t *offset;
    557 	struct uio *uio;
    558 	struct ucred *cred;
    559 	int flags;
    560 #endif
    561 {
    562 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    563 	int error;
    564 	size_t nread = 0;
    565 	size_t size;
    566 	size_t ocnt;
    567 
    568 	++rpipe->pipe_busy;
    569 	error = pipelock(rpipe, 1);
    570 	if (error)
    571 		goto unlocked_error;
    572 
    573 	ocnt = rpipe->pipe_buffer.cnt;
    574 
    575 	while (uio->uio_resid) {
    576 		/*
    577 		 * normal pipe buffer receive
    578 		 */
    579 		if (rpipe->pipe_buffer.cnt > 0) {
    580 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
    581 			if (size > rpipe->pipe_buffer.cnt)
    582 				size = rpipe->pipe_buffer.cnt;
    583 			if (size > uio->uio_resid)
    584 				size = uio->uio_resid;
    585 
    586 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
    587 					size, uio);
    588 			if (error)
    589 				break;
    590 
    591 			rpipe->pipe_buffer.out += size;
    592 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
    593 				rpipe->pipe_buffer.out = 0;
    594 
    595 			rpipe->pipe_buffer.cnt -= size;
    596 
    597 			/*
    598 			 * If there is no more to read in the pipe, reset
    599 			 * its pointers to the beginning.  This improves
    600 			 * cache hit stats.
    601 			 */
    602 			if (rpipe->pipe_buffer.cnt == 0) {
    603 				rpipe->pipe_buffer.in = 0;
    604 				rpipe->pipe_buffer.out = 0;
    605 			}
    606 			nread += size;
    607 #ifndef PIPE_NODIRECT
    608 		/*
    609 		 * Direct copy, bypassing a kernel buffer.
    610 		 */
    611 		} else if ((size = rpipe->pipe_map.cnt) &&
    612 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
    613 			caddr_t	va;
    614 			if (size > uio->uio_resid)
    615 				size = uio->uio_resid;
    616 
    617 			va = (caddr_t) rpipe->pipe_map.kva +
    618 			    rpipe->pipe_map.pos;
    619 			error = uiomove(va, size, uio);
    620 			if (error)
    621 				break;
    622 			nread += size;
    623 			rpipe->pipe_map.pos += size;
    624 			rpipe->pipe_map.cnt -= size;
    625 			if (rpipe->pipe_map.cnt == 0) {
    626 				rpipe->pipe_state &= ~PIPE_DIRECTW;
    627 				wakeup(rpipe);
    628 			}
    629 #endif
    630 		} else {
    631 			/*
    632 			 * detect EOF condition
    633 			 * read returns 0 on EOF, no need to set error
    634 			 */
    635 			if (rpipe->pipe_state & PIPE_EOF)
    636 				break;
    637 
    638 			/*
    639 			 * If the "write-side" has been blocked, wake it up now.
    640 			 */
    641 			if (rpipe->pipe_state & PIPE_WANTW) {
    642 				rpipe->pipe_state &= ~PIPE_WANTW;
    643 				wakeup(rpipe);
    644 			}
    645 
    646 			/*
    647 			 * Break if some data was read.
    648 			 */
    649 			if (nread > 0)
    650 				break;
    651 
    652 			/*
    653 			 * don't block on non-blocking I/O
    654 			 */
    655 			if (fp->f_flag & FNONBLOCK) {
    656 				error = EAGAIN;
    657 				break;
    658 			}
    659 
    660 			/*
    661 			 * Unlock the pipe buffer for our remaining processing.
    662 			 * We will either break out with an error or we will
    663 			 * sleep and relock to loop.
    664 			 */
    665 			pipeunlock(rpipe);
    666 
    667 			/*
    668 			 * We want to read more, wake up select/poll.
    669 			 */
    670 			pipeselwakeup(rpipe, rpipe->pipe_peer);
    671 
    672 			rpipe->pipe_state |= PIPE_WANTR;
    673 			error = tsleep(rpipe, PRIBIO | PCATCH, "piperd", 0);
    674 			if (error != 0 || (error = pipelock(rpipe, 1)))
    675 				goto unlocked_error;
    676 		}
    677 	}
    678 	pipeunlock(rpipe);
    679 
    680 	if (error == 0)
    681 		vfs_timestamp(&rpipe->pipe_atime);
    682 unlocked_error:
    683 	--rpipe->pipe_busy;
    684 
    685 	/*
    686 	 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
    687 	 */
    688 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
    689 		rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
    690 		wakeup(rpipe);
    691 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
    692 		/*
    693 		 * Handle write blocking hysteresis.
    694 		 */
    695 		if (rpipe->pipe_state & PIPE_WANTW) {
    696 			rpipe->pipe_state &= ~PIPE_WANTW;
    697 			wakeup(rpipe);
    698 		}
    699 	}
    700 
    701 	/*
    702 	 * If anything was read off the buffer, signal to the writer it's
    703 	 * possible to write more data. Also send signal if we are here for the
    704 	 * first time after last write.
    705 	 */
    706 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF
    707 	    && (ocnt != rpipe->pipe_buffer.cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    708 		pipeselwakeup(rpipe, rpipe->pipe_peer);
    709 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    710 	}
    711 
    712 	return (error);
    713 }
    714 
    715 #ifdef __FreeBSD__
    716 #ifndef PIPE_NODIRECT
    717 /*
    718  * Map the sending processes' buffer into kernel space and wire it.
    719  * This is similar to a physical write operation.
    720  */
    721 static int
    722 pipe_build_write_buffer(wpipe, uio)
    723 	struct pipe *wpipe;
    724 	struct uio *uio;
    725 {
    726 	size_t size;
    727 	int i;
    728 	vm_offset_t addr, endaddr, paddr;
    729 
    730 	size = uio->uio_iov->iov_len;
    731 	if (size > wpipe->pipe_buffer.size)
    732 		size = wpipe->pipe_buffer.size;
    733 
    734 	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
    735 	mtx_lock(&vm_mtx);
    736 	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
    737 	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
    738 		vm_page_t m;
    739 
    740 		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
    741 		    (paddr = pmap_kextract(addr)) == 0) {
    742 			int j;
    743 
    744 			for (j = 0; j < i; j++)
    745 				vm_page_unwire(wpipe->pipe_map.ms[j], 1);
    746 			mtx_unlock(&vm_mtx);
    747 			return (EFAULT);
    748 		}
    749 
    750 		m = PHYS_TO_VM_PAGE(paddr);
    751 		vm_page_wire(m);
    752 		wpipe->pipe_map.ms[i] = m;
    753 	}
    754 
    755 /*
    756  * set up the control block
    757  */
    758 	wpipe->pipe_map.npages = i;
    759 	wpipe->pipe_map.pos =
    760 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
    761 	wpipe->pipe_map.cnt = size;
    762 
    763 /*
    764  * and map the buffer
    765  */
    766 	if (wpipe->pipe_map.kva == 0) {
    767 		/*
    768 		 * We need to allocate space for an extra page because the
    769 		 * address range might (will) span pages at times.
    770 		 */
    771 		wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
    772 			wpipe->pipe_buffer.size + PAGE_SIZE);
    773 		amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE;
    774 	}
    775 	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
    776 		wpipe->pipe_map.npages);
    777 
    778 	mtx_unlock(&vm_mtx);
    779 /*
    780  * and update the uio data
    781  */
    782 
    783 	uio->uio_iov->iov_len -= size;
    784 	uio->uio_iov->iov_base += size;
    785 	if (uio->uio_iov->iov_len == 0)
    786 		uio->uio_iov++;
    787 	uio->uio_resid -= size;
    788 	uio->uio_offset += size;
    789 	return (0);
    790 }
    791 
    792 /*
    793  * unmap and unwire the process buffer
    794  */
    795 static void
    796 pipe_destroy_write_buffer(wpipe)
    797 	struct pipe *wpipe;
    798 {
    799 	int i;
    800 
    801 	mtx_lock(&vm_mtx);
    802 	if (wpipe->pipe_map.kva) {
    803 		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
    804 
    805 		if (amountpipekva > maxpipekva) {
    806 			vm_offset_t kva = wpipe->pipe_map.kva;
    807 			wpipe->pipe_map.kva = 0;
    808 			kmem_free(kernel_map, kva,
    809 				wpipe->pipe_buffer.size + PAGE_SIZE);
    810 			amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
    811 		}
    812 	}
    813 	for (i = 0; i < wpipe->pipe_map.npages; i++)
    814 		vm_page_unwire(wpipe->pipe_map.ms[i], 1);
    815 	mtx_unlock(&vm_mtx);
    816 }
    817 
    818 /*
    819  * In the case of a signal, the writing process might go away.  This
    820  * code copies the data into the circular buffer so that the source
    821  * pages can be freed without loss of data.
    822  */
    823 static void
    824 pipe_clone_write_buffer(wpipe)
    825 	struct pipe *wpipe;
    826 {
    827 	int size;
    828 	int pos;
    829 
    830 	size = wpipe->pipe_map.cnt;
    831 	pos = wpipe->pipe_map.pos;
    832 	memcpy((caddr_t) wpipe->pipe_buffer.buffer,
    833 	    (caddr_t) wpipe->pipe_map.kva + pos, size);
    834 
    835 	wpipe->pipe_buffer.in = size;
    836 	wpipe->pipe_buffer.out = 0;
    837 	wpipe->pipe_buffer.cnt = size;
    838 	wpipe->pipe_state &= ~PIPE_DIRECTW;
    839 
    840 	pipe_destroy_write_buffer(wpipe);
    841 }
    842 
    843 /*
    844  * This implements the pipe buffer write mechanism.  Note that only
    845  * a direct write OR a normal pipe write can be pending at any given time.
    846  * If there are any characters in the pipe buffer, the direct write will
    847  * be deferred until the receiving process grabs all of the bytes from
    848  * the pipe buffer.  Then the direct mapping write is set-up.
    849  */
    850 static int
    851 pipe_direct_write(wpipe, uio)
    852 	struct pipe *wpipe;
    853 	struct uio *uio;
    854 {
    855 	int error;
    856 
    857 retry:
    858 	while (wpipe->pipe_state & PIPE_DIRECTW) {
    859 		if (wpipe->pipe_state & PIPE_WANTR) {
    860 			wpipe->pipe_state &= ~PIPE_WANTR;
    861 			wakeup(wpipe);
    862 		}
    863 		wpipe->pipe_state |= PIPE_WANTW;
    864 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdww", 0);
    865 		if (error)
    866 			goto error1;
    867 		if (wpipe->pipe_state & PIPE_EOF) {
    868 			error = EPIPE;
    869 			goto error1;
    870 		}
    871 	}
    872 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
    873 	if (wpipe->pipe_buffer.cnt > 0) {
    874 		if (wpipe->pipe_state & PIPE_WANTR) {
    875 			wpipe->pipe_state &= ~PIPE_WANTR;
    876 			wakeup(wpipe);
    877 		}
    878 
    879 		wpipe->pipe_state |= PIPE_WANTW;
    880 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0);
    881 		if (error)
    882 			goto error1;
    883 		if (wpipe->pipe_state & PIPE_EOF) {
    884 			error = EPIPE;
    885 			goto error1;
    886 		}
    887 		goto retry;
    888 	}
    889 
    890 	wpipe->pipe_state |= PIPE_DIRECTW;
    891 
    892 	error = pipe_build_write_buffer(wpipe, uio);
    893 	if (error) {
    894 		wpipe->pipe_state &= ~PIPE_DIRECTW;
    895 		goto error1;
    896 	}
    897 
    898 	error = 0;
    899 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
    900 		if (wpipe->pipe_state & PIPE_EOF) {
    901 			pipelock(wpipe, 0);
    902 			pipe_destroy_write_buffer(wpipe);
    903 			pipeunlock(wpipe);
    904 			pipeselwakeup(wpipe, wpipe);
    905 			error = EPIPE;
    906 			goto error1;
    907 		}
    908 		if (wpipe->pipe_state & PIPE_WANTR) {
    909 			wpipe->pipe_state &= ~PIPE_WANTR;
    910 			wakeup(wpipe);
    911 		}
    912 		pipeselwakeup(wpipe, wpipe);
    913 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0);
    914 	}
    915 
    916 	pipelock(wpipe,0);
    917 	if (wpipe->pipe_state & PIPE_DIRECTW) {
    918 		/*
    919 		 * this bit of trickery substitutes a kernel buffer for
    920 		 * the process that might be going away.
    921 		 */
    922 		pipe_clone_write_buffer(wpipe);
    923 	} else {
    924 		pipe_destroy_write_buffer(wpipe);
    925 	}
    926 	pipeunlock(wpipe);
    927 	return (error);
    928 
    929 error1:
    930 	wakeup(wpipe);
    931 	return (error);
    932 }
    933 #endif /* !PIPE_NODIRECT */
    934 #endif /* FreeBSD */
    935 
    936 #ifdef __NetBSD__
    937 #ifndef PIPE_NODIRECT
    938 /*
    939  * Allocate structure for loan transfer.
    940  */
    941 static int
    942 pipe_loan_alloc(wpipe, npages)
    943 	struct pipe *wpipe;
    944 	int npages;
    945 {
    946 	vsize_t len;
    947 
    948 	len = (vsize_t)npages << PAGE_SHIFT;
    949 	wpipe->pipe_map.kva = uvm_km_valloc_wait(kernel_map, len);
    950 	if (wpipe->pipe_map.kva == NULL)
    951 		return (ENOMEM);
    952 
    953 	amountpipekva += len;
    954 	wpipe->pipe_map.npages = npages;
    955 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
    956 	    M_WAITOK);
    957 	return (0);
    958 }
    959 
    960 /*
    961  * Free resources allocated for loan transfer.
    962  */
    963 static void
    964 pipe_loan_free(wpipe)
    965 	struct pipe *wpipe;
    966 {
    967 	vsize_t len;
    968 
    969 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    970 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len);
    971 	wpipe->pipe_map.kva = NULL;
    972 	amountpipekva -= len;
    973 	free(wpipe->pipe_map.pgs, M_PIPE);
    974 	wpipe->pipe_map.pgs = NULL;
    975 }
    976 
    977 /*
    978  * NetBSD direct write, using uvm_loan() mechanism.
    979  * This implements the pipe buffer write mechanism.  Note that only
    980  * a direct write OR a normal pipe write can be pending at any given time.
    981  * If there are any characters in the pipe buffer, the direct write will
    982  * be deferred until the receiving process grabs all of the bytes from
    983  * the pipe buffer.  Then the direct mapping write is set-up.
    984  */
    985 static int
    986 pipe_direct_write(wpipe, uio)
    987 	struct pipe *wpipe;
    988 	struct uio *uio;
    989 {
    990 	int error, npages, j;
    991 	struct vm_page **pgs;
    992 	vaddr_t bbase, kva, base, bend;
    993 	vsize_t blen, bcnt;
    994 	voff_t bpos;
    995 
    996 retry:
    997 	while (wpipe->pipe_state & PIPE_DIRECTW) {
    998 		if (wpipe->pipe_state & PIPE_WANTR) {
    999 			wpipe->pipe_state &= ~PIPE_WANTR;
   1000 			wakeup(wpipe);
   1001 		}
   1002 		wpipe->pipe_state |= PIPE_WANTW;
   1003 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdww", 0);
   1004 		if (error)
   1005 			goto error;
   1006 		if (wpipe->pipe_state & PIPE_EOF) {
   1007 			error = EPIPE;
   1008 			goto error;
   1009 		}
   1010 	}
   1011 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
   1012 	if (wpipe->pipe_buffer.cnt > 0) {
   1013 		if (wpipe->pipe_state & PIPE_WANTR) {
   1014 			wpipe->pipe_state &= ~PIPE_WANTR;
   1015 			wakeup(wpipe);
   1016 		}
   1017 
   1018 		wpipe->pipe_state |= PIPE_WANTW;
   1019 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0);
   1020 		if (error)
   1021 			goto error;
   1022 		if (wpipe->pipe_state & PIPE_EOF) {
   1023 			error = EPIPE;
   1024 			goto error;
   1025 		}
   1026 		goto retry;
   1027 	}
   1028 
   1029 	/*
   1030 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
   1031 	 * not aligned to PAGE_SIZE.
   1032 	 */
   1033 	bbase = (vaddr_t)uio->uio_iov->iov_base;
   1034 	base = trunc_page(bbase);
   1035 	bend = round_page(bbase + uio->uio_iov->iov_len);
   1036 	blen = bend - base;
   1037 	bpos = bbase - base;
   1038 
   1039 	if (blen > PIPE_DIRECT_CHUNK) {
   1040 		blen = PIPE_DIRECT_CHUNK;
   1041 		bend = base + blen;
   1042 		bcnt = PIPE_DIRECT_CHUNK - bpos;
   1043 	} else {
   1044 		bcnt = uio->uio_iov->iov_len;
   1045 	}
   1046 	npages = blen >> PAGE_SHIFT;
   1047 
   1048 	wpipe->pipe_map.pos = bpos;
   1049 	wpipe->pipe_map.cnt = bcnt;
   1050 
   1051 	/*
   1052 	 * Free the old kva if we need more pages than we have
   1053 	 * allocated.
   1054 	 */
   1055 	if (wpipe->pipe_map.kva && npages > wpipe->pipe_map.npages)
   1056 		pipe_loan_free(wpipe);
   1057 
   1058 	/* Allocate new kva. */
   1059 	if (wpipe->pipe_map.kva == NULL) {
   1060 		error = pipe_loan_alloc(wpipe, npages);
   1061 		if (error) {
   1062 			goto error;
   1063 		}
   1064 	}
   1065 
   1066 	/* Loan the write buffer memory from writer process */
   1067 	pgs = wpipe->pipe_map.pgs;
   1068 	error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
   1069 	    pgs, UVM_LOAN_TOPAGE);
   1070 	if (error) {
   1071 		pgs = NULL;
   1072 		goto cleanup;
   1073 	}
   1074 
   1075 	/* Enter the loaned pages to kva */
   1076 	kva = wpipe->pipe_map.kva;
   1077 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
   1078 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
   1079 	}
   1080 	pmap_update(pmap_kernel());
   1081 
   1082 	wpipe->pipe_state |= PIPE_DIRECTW;
   1083 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
   1084 		if (wpipe->pipe_state & PIPE_EOF) {
   1085 			error = EPIPE;
   1086 			break;
   1087 		}
   1088 		if (wpipe->pipe_state & PIPE_WANTR) {
   1089 			wpipe->pipe_state &= ~PIPE_WANTR;
   1090 			wakeup(wpipe);
   1091 		}
   1092 		pipeselwakeup(wpipe, wpipe);
   1093 		error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0);
   1094 	}
   1095 
   1096 	if (error)
   1097 		wpipe->pipe_state &= ~PIPE_DIRECTW;
   1098 
   1099 cleanup:
   1100 	pipelock(wpipe, 0);
   1101 	if (pgs != NULL) {
   1102 		pmap_kremove(wpipe->pipe_map.kva, blen);
   1103 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
   1104 	}
   1105 	if (error || amountpipekva > maxpipekva)
   1106 		pipe_loan_free(wpipe);
   1107 	pipeunlock(wpipe);
   1108 
   1109 	if (error) {
   1110 		pipeselwakeup(wpipe, wpipe);
   1111 
   1112 		/*
   1113 		 * If nothing was read from what we offered, return error
   1114 		 * straight on. Otherwise update uio resid first. Caller
   1115 		 * will deal with the error condition, returning short
   1116 		 * write, error, or restarting the write(2) as appropriate.
   1117 		 */
   1118 		if (wpipe->pipe_map.cnt == bcnt) {
   1119 error:
   1120 			wakeup(wpipe);
   1121 			return (error);
   1122 		}
   1123 
   1124 		bcnt -= wpipe->pipe_map.cnt;
   1125 	}
   1126 
   1127 	uio->uio_resid -= bcnt;
   1128 	/* uio_offset not updated, not set/used for write(2) */
   1129 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
   1130 	uio->uio_iov->iov_len -= bcnt;
   1131 	if (uio->uio_iov->iov_len == 0) {
   1132 		uio->uio_iov++;
   1133 		uio->uio_iovcnt--;
   1134 	}
   1135 
   1136 	return (error);
   1137 }
   1138 #endif /* !PIPE_NODIRECT */
   1139 #endif /* NetBSD */
   1140 
   1141 #ifdef __FreeBSD__
   1142 static int
   1143 pipe_write(fp, uio, cred, flags, p)
   1144 	struct file *fp;
   1145 	off_t *offset;
   1146 	struct uio *uio;
   1147 	struct ucred *cred;
   1148 	int flags;
   1149 	struct proc *p;
   1150 #elif defined(__NetBSD__)
   1151 static int
   1152 pipe_write(fp, offset, uio, cred, flags)
   1153 	struct file *fp;
   1154 	off_t *offset;
   1155 	struct uio *uio;
   1156 	struct ucred *cred;
   1157 	int flags;
   1158 #endif
   1159 {
   1160 	int error = 0;
   1161 	struct pipe *wpipe, *rpipe;
   1162 
   1163 	rpipe = (struct pipe *) fp->f_data;
   1164 	wpipe = rpipe->pipe_peer;
   1165 
   1166 	/*
   1167 	 * detect loss of pipe read side, issue SIGPIPE if lost.
   1168 	 */
   1169 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF))
   1170 		return (EPIPE);
   1171 
   1172 	++wpipe->pipe_busy;
   1173 
   1174 	/*
   1175 	 * If it is advantageous to resize the pipe buffer, do
   1176 	 * so.
   1177 	 */
   1178 	if ((uio->uio_resid > PIPE_SIZE) &&
   1179 		(nbigpipe < maxbigpipes) &&
   1180 #ifndef PIPE_NODIRECT
   1181 		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1182 #endif
   1183 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
   1184 		(wpipe->pipe_buffer.cnt == 0)) {
   1185 
   1186 		if ((error = pipelock(wpipe,1)) == 0) {
   1187 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
   1188 				nbigpipe++;
   1189 			pipeunlock(wpipe);
   1190 		} else {
   1191 			/*
   1192 			 * If an error occurred, unbusy and return, waking up
   1193 			 * any waiting readers.
   1194 			 */
   1195 			--wpipe->pipe_busy;
   1196 			if (wpipe->pipe_busy == 0
   1197 			    && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1198 				wpipe->pipe_state &=
   1199 				    ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1200 				wakeup(wpipe);
   1201 			}
   1202 
   1203 			return (error);
   1204 		}
   1205 	}
   1206 
   1207 #ifdef __FreeBSD__
   1208 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
   1209 #endif
   1210 
   1211 	while (uio->uio_resid) {
   1212 		int space;
   1213 
   1214 #ifndef PIPE_NODIRECT
   1215 		/*
   1216 		 * If the transfer is large, we can gain performance if
   1217 		 * we do process-to-process copies directly.
   1218 		 * If the write is non-blocking, we don't use the
   1219 		 * direct write mechanism.
   1220 		 *
   1221 		 * The direct write mechanism will detect the reader going
   1222 		 * away on us.
   1223 		 */
   1224 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
   1225 		    (fp->f_flag & FNONBLOCK) == 0 &&
   1226 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
   1227 			error = pipe_direct_write(wpipe, uio);
   1228 
   1229 			/*
   1230 			 * Break out if error occured, unless it's ENOMEM.
   1231 			 * ENOMEM means we failed to allocate some resources
   1232 			 * for direct write, so we just fallback to ordinary
   1233 			 * write. If the direct write was successful,
   1234 			 * process rest of data via ordinary write.
   1235 			 */
   1236 			if (!error)
   1237 				continue;
   1238 
   1239 			if (error != ENOMEM)
   1240 				break;
   1241 		}
   1242 #endif /* PIPE_NODIRECT */
   1243 
   1244 		/*
   1245 		 * Pipe buffered writes cannot be coincidental with
   1246 		 * direct writes.  We wait until the currently executing
   1247 		 * direct write is completed before we start filling the
   1248 		 * pipe buffer.  We break out if a signal occurs or the
   1249 		 * reader goes away.
   1250 		 */
   1251 	retrywrite:
   1252 		while (wpipe->pipe_state & PIPE_DIRECTW) {
   1253 			if (wpipe->pipe_state & PIPE_WANTR) {
   1254 				wpipe->pipe_state &= ~PIPE_WANTR;
   1255 				wakeup(wpipe);
   1256 			}
   1257 			error = tsleep(wpipe, PRIBIO | PCATCH, "pipbww", 0);
   1258 			if (wpipe->pipe_state & PIPE_EOF)
   1259 				break;
   1260 			if (error)
   1261 				break;
   1262 		}
   1263 		if (wpipe->pipe_state & PIPE_EOF) {
   1264 			error = EPIPE;
   1265 			break;
   1266 		}
   1267 
   1268 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1269 
   1270 		/* Writes of size <= PIPE_BUF must be atomic. */
   1271 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
   1272 			space = 0;
   1273 
   1274 		if (space > 0) {
   1275 			int size;	/* Transfer size */
   1276 			int segsize;	/* first segment to transfer */
   1277 
   1278 			if ((error = pipelock(wpipe,1)) != 0)
   1279 				break;
   1280 
   1281 			/*
   1282 			 * It is possible for a direct write to
   1283 			 * slip in on us... handle it here...
   1284 			 */
   1285 			if (wpipe->pipe_state & PIPE_DIRECTW) {
   1286 				pipeunlock(wpipe);
   1287 				goto retrywrite;
   1288 			}
   1289 			/*
   1290 			 * If a process blocked in uiomove, our
   1291 			 * value for space might be bad.
   1292 			 *
   1293 			 * XXX will we be ok if the reader has gone
   1294 			 * away here?
   1295 			 */
   1296 			if (space > wpipe->pipe_buffer.size -
   1297 				    wpipe->pipe_buffer.cnt) {
   1298 				pipeunlock(wpipe);
   1299 				goto retrywrite;
   1300 			}
   1301 
   1302 			/*
   1303 			 * Transfer size is minimum of uio transfer
   1304 			 * and free space in pipe buffer.
   1305 			 */
   1306 			if (space > uio->uio_resid)
   1307 				size = uio->uio_resid;
   1308 			else
   1309 				size = space;
   1310 			/*
   1311 			 * First segment to transfer is minimum of
   1312 			 * transfer size and contiguous space in
   1313 			 * pipe buffer.  If first segment to transfer
   1314 			 * is less than the transfer size, we've got
   1315 			 * a wraparound in the buffer.
   1316 			 */
   1317 			segsize = wpipe->pipe_buffer.size -
   1318 				wpipe->pipe_buffer.in;
   1319 			if (segsize > size)
   1320 				segsize = size;
   1321 
   1322 			/* Transfer first segment */
   1323 
   1324 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
   1325 						segsize, uio);
   1326 
   1327 			if (error == 0 && segsize < size) {
   1328 				/*
   1329 				 * Transfer remaining part now, to
   1330 				 * support atomic writes.  Wraparound
   1331 				 * happened.
   1332 				 */
   1333 #ifdef DEBUG
   1334 				if (wpipe->pipe_buffer.in + segsize !=
   1335 				    wpipe->pipe_buffer.size)
   1336 					panic("Expected pipe buffer wraparound disappeared");
   1337 #endif
   1338 
   1339 				error = uiomove(&wpipe->pipe_buffer.buffer[0],
   1340 						size - segsize, uio);
   1341 			}
   1342 			if (error == 0) {
   1343 				wpipe->pipe_buffer.in += size;
   1344 				if (wpipe->pipe_buffer.in >=
   1345 				    wpipe->pipe_buffer.size) {
   1346 #ifdef DEBUG
   1347 					if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
   1348 						panic("Expected wraparound bad");
   1349 #endif
   1350 					wpipe->pipe_buffer.in = size - segsize;
   1351 				}
   1352 
   1353 				wpipe->pipe_buffer.cnt += size;
   1354 #ifdef DEBUG
   1355 				if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
   1356 					panic("Pipe buffer overflow");
   1357 #endif
   1358 			}
   1359 			pipeunlock(wpipe);
   1360 			if (error)
   1361 				break;
   1362 		} else {
   1363 			/*
   1364 			 * If the "read-side" has been blocked, wake it up now.
   1365 			 */
   1366 			if (wpipe->pipe_state & PIPE_WANTR) {
   1367 				wpipe->pipe_state &= ~PIPE_WANTR;
   1368 				wakeup(wpipe);
   1369 			}
   1370 
   1371 			/*
   1372 			 * don't block on non-blocking I/O
   1373 			 */
   1374 			if (fp->f_flag & FNONBLOCK) {
   1375 				error = EAGAIN;
   1376 				break;
   1377 			}
   1378 
   1379 			/*
   1380 			 * We have no more space and have something to offer,
   1381 			 * wake up select/poll.
   1382 			 */
   1383 			pipeselwakeup(wpipe, wpipe);
   1384 
   1385 			wpipe->pipe_state |= PIPE_WANTW;
   1386 			error = tsleep(wpipe, PRIBIO | PCATCH, "pipewr", 0);
   1387 			if (error != 0)
   1388 				break;
   1389 			/*
   1390 			 * If read side wants to go away, we just issue a signal
   1391 			 * to ourselves.
   1392 			 */
   1393 			if (wpipe->pipe_state & PIPE_EOF) {
   1394 				error = EPIPE;
   1395 				break;
   1396 			}
   1397 		}
   1398 	}
   1399 
   1400 	--wpipe->pipe_busy;
   1401 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1402 		wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1403 		wakeup(wpipe);
   1404 	} else if (wpipe->pipe_buffer.cnt > 0) {
   1405 		/*
   1406 		 * If we have put any characters in the buffer, we wake up
   1407 		 * the reader.
   1408 		 */
   1409 		if (wpipe->pipe_state & PIPE_WANTR) {
   1410 			wpipe->pipe_state &= ~PIPE_WANTR;
   1411 			wakeup(wpipe);
   1412 		}
   1413 	}
   1414 
   1415 	/*
   1416 	 * Don't return EPIPE if I/O was successful
   1417 	 */
   1418 	if ((error == EPIPE) && (wpipe->pipe_buffer.cnt == 0)
   1419 	    && (uio->uio_resid == 0))
   1420 		error = 0;
   1421 
   1422 	if (error == 0)
   1423 		vfs_timestamp(&wpipe->pipe_mtime);
   1424 
   1425 	/*
   1426 	 * We have something to offer, wake up select/poll.
   1427 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1428 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1429 	 */
   1430 	if (wpipe->pipe_buffer.cnt)
   1431 		pipeselwakeup(wpipe, wpipe);
   1432 
   1433 	/*
   1434 	 * Arrange for next read(2) to do a signal.
   1435 	 */
   1436 	wpipe->pipe_state |= PIPE_SIGNALR;
   1437 
   1438 	return (error);
   1439 }
   1440 
   1441 /*
   1442  * we implement a very minimal set of ioctls for compatibility with sockets.
   1443  */
   1444 int
   1445 pipe_ioctl(fp, cmd, data, p)
   1446 	struct file *fp;
   1447 	u_long cmd;
   1448 	caddr_t data;
   1449 	struct proc *p;
   1450 {
   1451 	struct pipe *mpipe = (struct pipe *)fp->f_data;
   1452 
   1453 	switch (cmd) {
   1454 
   1455 	case FIONBIO:
   1456 		return (0);
   1457 
   1458 	case FIOASYNC:
   1459 		if (*(int *)data) {
   1460 			mpipe->pipe_state |= PIPE_ASYNC;
   1461 		} else {
   1462 			mpipe->pipe_state &= ~PIPE_ASYNC;
   1463 		}
   1464 		return (0);
   1465 
   1466 	case FIONREAD:
   1467 #ifndef PIPE_NODIRECT
   1468 		if (mpipe->pipe_state & PIPE_DIRECTW)
   1469 			*(int *)data = mpipe->pipe_map.cnt;
   1470 		else
   1471 #endif
   1472 			*(int *)data = mpipe->pipe_buffer.cnt;
   1473 		return (0);
   1474 
   1475 #ifdef __FreeBSD__
   1476 	case FIOSETOWN:
   1477 		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
   1478 
   1479 	case FIOGETOWN:
   1480 		*(int *)data = fgetown(mpipe->pipe_sigio);
   1481 		return (0);
   1482 
   1483 	/* This is deprecated, FIOSETOWN should be used instead. */
   1484 	case TIOCSPGRP:
   1485 		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
   1486 
   1487 	/* This is deprecated, FIOGETOWN should be used instead. */
   1488 	case TIOCGPGRP:
   1489 		*(int *)data = -fgetown(mpipe->pipe_sigio);
   1490 		return (0);
   1491 #endif /* FreeBSD */
   1492 #ifdef __NetBSD__
   1493 	case TIOCSPGRP:
   1494 		mpipe->pipe_pgid = *(int *)data;
   1495 		return (0);
   1496 
   1497 	case TIOCGPGRP:
   1498 		*(int *)data = mpipe->pipe_pgid;
   1499 		return (0);
   1500 #endif /* NetBSD */
   1501 
   1502 	}
   1503 	return (ENOTTY);
   1504 }
   1505 
   1506 int
   1507 pipe_poll(fp, events, p)
   1508 	struct file *fp;
   1509 	int events;
   1510 	struct proc *p;
   1511 {
   1512 	struct pipe *rpipe = (struct pipe *)fp->f_data;
   1513 	struct pipe *wpipe;
   1514 	int revents = 0;
   1515 
   1516 	wpipe = rpipe->pipe_peer;
   1517 	if (events & (POLLIN | POLLRDNORM))
   1518 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1519 #ifndef PIPE_NODIRECT
   1520 		    (rpipe->pipe_state & PIPE_DIRECTW) ||
   1521 #endif
   1522 		    (rpipe->pipe_state & PIPE_EOF))
   1523 			revents |= events & (POLLIN | POLLRDNORM);
   1524 
   1525 	if (events & (POLLOUT | POLLWRNORM))
   1526 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF)
   1527 		    || (
   1528 #ifndef PIPE_NODIRECT
   1529 		     ((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
   1530 #endif
   1531 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1532 			revents |= events & (POLLOUT | POLLWRNORM);
   1533 
   1534 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1535 	    (wpipe == NULL) ||
   1536 	    (wpipe->pipe_state & PIPE_EOF))
   1537 		revents |= POLLHUP;
   1538 
   1539 	if (revents == 0) {
   1540 		if (events & (POLLIN | POLLRDNORM)) {
   1541 			selrecord(p, &rpipe->pipe_sel);
   1542 			rpipe->pipe_state |= PIPE_SEL;
   1543 		}
   1544 
   1545 		if (events & (POLLOUT | POLLWRNORM)) {
   1546 			selrecord(p, &wpipe->pipe_sel);
   1547 			wpipe->pipe_state |= PIPE_SEL;
   1548 		}
   1549 	}
   1550 
   1551 	return (revents);
   1552 }
   1553 
   1554 static int
   1555 pipe_stat(fp, ub, p)
   1556 	struct file *fp;
   1557 	struct stat *ub;
   1558 	struct proc *p;
   1559 {
   1560 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1561 
   1562 	memset((caddr_t)ub, 0, sizeof(*ub));
   1563 	ub->st_mode = S_IFIFO;
   1564 	ub->st_blksize = pipe->pipe_buffer.size;
   1565 	ub->st_size = pipe->pipe_buffer.cnt;
   1566 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1567 #ifdef __FreeBSD__
   1568 	ub->st_atimespec = pipe->pipe_atime;
   1569 	ub->st_mtimespec = pipe->pipe_mtime;
   1570 	ub->st_ctimespec = pipe->pipe_ctime;
   1571 #endif /* FreeBSD */
   1572 #ifdef __NetBSD__
   1573 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec)
   1574 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
   1575 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
   1576 #endif /* NetBSD */
   1577 	ub->st_uid = fp->f_cred->cr_uid;
   1578 	ub->st_gid = fp->f_cred->cr_gid;
   1579 	/*
   1580 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1581 	 * XXX (st_dev, st_ino) should be unique.
   1582 	 */
   1583 	return (0);
   1584 }
   1585 
   1586 /* ARGSUSED */
   1587 static int
   1588 pipe_close(fp, p)
   1589 	struct file *fp;
   1590 	struct proc *p;
   1591 {
   1592 	struct pipe *cpipe = (struct pipe *)fp->f_data;
   1593 
   1594 #ifdef __FreeBSD__
   1595 	fp->f_ops = &badfileops;
   1596 	funsetown(cpipe->pipe_sigio);
   1597 #endif
   1598 	fp->f_data = NULL;
   1599 	pipeclose(cpipe);
   1600 	return (0);
   1601 }
   1602 
   1603 static void
   1604 pipe_free_kmem(cpipe)
   1605 	struct pipe *cpipe;
   1606 {
   1607 
   1608 #ifdef __FreeBSD__
   1609 	mtx_assert(&vm_mtx, MA_OWNED);
   1610 #endif
   1611 	if (cpipe->pipe_buffer.buffer != NULL) {
   1612 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
   1613 			--nbigpipe;
   1614 		amountpipekva -= cpipe->pipe_buffer.size;
   1615 #ifdef __FreeBSD__
   1616 		kmem_free(kernel_map,
   1617 			(vm_offset_t)cpipe->pipe_buffer.buffer,
   1618 			cpipe->pipe_buffer.size);
   1619 #elif defined(__NetBSD__)
   1620 		uvm_km_free(kernel_map,
   1621 			(vaddr_t)cpipe->pipe_buffer.buffer,
   1622 			cpipe->pipe_buffer.size);
   1623 #endif /* NetBSD */
   1624 		cpipe->pipe_buffer.buffer = NULL;
   1625 	}
   1626 #ifndef PIPE_NODIRECT
   1627 	if (cpipe->pipe_map.kva != NULL) {
   1628 #ifdef __FreeBSD__
   1629 		amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE;
   1630 		kmem_free(kernel_map,
   1631 			cpipe->pipe_map.kva,
   1632 			cpipe->pipe_buffer.size + PAGE_SIZE);
   1633 #elif defined(__NetBSD__)
   1634 		pipe_loan_free(cpipe);
   1635 #endif /* NetBSD */
   1636 		cpipe->pipe_map.cnt = 0;
   1637 		cpipe->pipe_map.kva = NULL;
   1638 		cpipe->pipe_map.pos = 0;
   1639 		cpipe->pipe_map.npages = 0;
   1640 	}
   1641 #endif /* !PIPE_NODIRECT */
   1642 }
   1643 
   1644 /*
   1645  * shutdown the pipe
   1646  */
   1647 static void
   1648 pipeclose(cpipe)
   1649 	struct pipe *cpipe;
   1650 {
   1651 	struct pipe *ppipe;
   1652 
   1653 	if (!cpipe)
   1654 		return;
   1655 
   1656 	pipeselwakeup(cpipe, cpipe);
   1657 
   1658 	/*
   1659 	 * If the other side is blocked, wake it up saying that
   1660 	 * we want to close it down.
   1661 	 */
   1662 	while (cpipe->pipe_busy) {
   1663 		wakeup(cpipe);
   1664 		cpipe->pipe_state |= PIPE_WANTCLOSE | PIPE_EOF;
   1665 		tsleep(cpipe, PRIBIO, "pipecl", 0);
   1666 	}
   1667 
   1668 	/*
   1669 	 * Disconnect from peer
   1670 	 */
   1671 	if ((ppipe = cpipe->pipe_peer) != NULL) {
   1672 		pipeselwakeup(ppipe, ppipe);
   1673 
   1674 		ppipe->pipe_state |= PIPE_EOF;
   1675 		wakeup(ppipe);
   1676 		ppipe->pipe_peer = NULL;
   1677 	}
   1678 
   1679 	/*
   1680 	 * free resources
   1681 	 */
   1682 #ifdef __FreeBSD__
   1683 	mtx_lock(&vm_mtx);
   1684 	pipe_free_kmem(cpipe);
   1685 	/* XXX: erm, doesn't zalloc already have its own locks and
   1686 	 * not need the giant vm lock?
   1687 	 */
   1688 	zfree(pipe_zone, cpipe);
   1689 	mtx_unlock(&vm_mtx);
   1690 #endif /* FreeBSD */
   1691 
   1692 #ifdef __NetBSD__
   1693 	pipe_free_kmem(cpipe);
   1694 	(void) lockmgr(&cpipe->pipe_lock, LK_DRAIN, NULL);
   1695 	pool_put(&pipe_pool, cpipe);
   1696 #endif
   1697 }
   1698 
   1699 #ifdef __FreeBSD__
   1700 /*ARGSUSED*/
   1701 static int
   1702 pipe_kqfilter(struct file *fp, struct knote *kn)
   1703 {
   1704 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
   1705 
   1706 	switch (kn->kn_filter) {
   1707 	case EVFILT_READ:
   1708 		kn->kn_fop = &pipe_rfiltops;
   1709 		break;
   1710 	case EVFILT_WRITE:
   1711 		kn->kn_fop = &pipe_wfiltops;
   1712 		cpipe = cpipe->pipe_peer;
   1713 		break;
   1714 	default:
   1715 		return (1);
   1716 	}
   1717 	kn->kn_hook = (caddr_t)cpipe;
   1718 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
   1719 	return (0);
   1720 }
   1721 
   1722 static void
   1723 filt_pipedetach(struct knote *kn)
   1724 {
   1725 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
   1726 
   1727 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
   1728 }
   1729 
   1730 /*ARGSUSED*/
   1731 static int
   1732 filt_piperead(struct knote *kn, long hint)
   1733 {
   1734 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1735 	struct pipe *wpipe = rpipe->pipe_peer;
   1736 
   1737 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1738 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1739 		kn->kn_data = rpipe->pipe_map.cnt;
   1740 
   1741 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1742 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1743 		kn->kn_flags |= EV_EOF;
   1744 		return (1);
   1745 	}
   1746 	return (kn->kn_data > 0);
   1747 }
   1748 
   1749 /*ARGSUSED*/
   1750 static int
   1751 filt_pipewrite(struct knote *kn, long hint)
   1752 {
   1753 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1754 	struct pipe *wpipe = rpipe->pipe_peer;
   1755 
   1756 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1757 		kn->kn_data = 0;
   1758 		kn->kn_flags |= EV_EOF;
   1759 		return (1);
   1760 	}
   1761 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1762 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1763 		kn->kn_data = 0;
   1764 
   1765 	return (kn->kn_data >= PIPE_BUF);
   1766 }
   1767 #endif /* FreeBSD */
   1768 
   1769 #ifdef __NetBSD__
   1770 static int
   1771 pipe_fcntl(fp, cmd, data, p)
   1772 	struct file *fp;
   1773 	u_int cmd;
   1774 	caddr_t data;
   1775 	struct proc *p;
   1776 {
   1777 	if (cmd == F_SETFL)
   1778 		return (0);
   1779 	else
   1780 		return (EOPNOTSUPP);
   1781 }
   1782 
   1783 /*
   1784  * Handle pipe sysctls.
   1785  */
   1786 int
   1787 sysctl_dopipe(name, namelen, oldp, oldlenp, newp, newlen)
   1788 	int *name;
   1789 	u_int namelen;
   1790 	void *oldp;
   1791 	size_t *oldlenp;
   1792 	void *newp;
   1793 	size_t newlen;
   1794 {
   1795 	/* All sysctl names at this level are terminal. */
   1796 	if (namelen != 1)
   1797 		return (ENOTDIR);		/* overloaded */
   1798 
   1799 	switch (name[0]) {
   1800 	case KERN_PIPE_MAXKVASZ:
   1801 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxpipekva));
   1802 	case KERN_PIPE_LIMITKVA:
   1803 		return (sysctl_int(oldp, oldlenp, newp, newlen, &limitpipekva));
   1804 	case KERN_PIPE_MAXBIGPIPES:
   1805 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxbigpipes));
   1806 	case KERN_PIPE_NBIGPIPES:
   1807 		return (sysctl_rdint(oldp, oldlenp, newp, nbigpipe));
   1808 	case KERN_PIPE_KVASIZE:
   1809 		return (sysctl_rdint(oldp, oldlenp, newp, amountpipekva));
   1810 	default:
   1811 		return (EOPNOTSUPP);
   1812 	}
   1813 	/* NOTREACHED */
   1814 }
   1815 
   1816 /*
   1817  * Initialize pipe structs.
   1818  */
   1819 void
   1820 pipe_init(void)
   1821 {
   1822 	pool_init(&pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
   1823 		0, NULL, NULL, M_PIPE);
   1824 }
   1825 
   1826 #endif /* __NetBSD __ */
   1827