sys_pipe.c revision 1.45 1 /* $NetBSD: sys_pipe.c,v 1.45 2003/10/25 09:10:35 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.45 2003/10/25 09:10:35 christos Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/ttycom.h>
98 #include <sys/stat.h>
99 #include <sys/malloc.h>
100 #include <sys/poll.h>
101 #include <sys/signalvar.h>
102 #include <sys/vnode.h>
103 #include <sys/uio.h>
104 #include <sys/lock.h>
105 #include <sys/select.h>
106 #include <sys/mount.h>
107 #include <sys/sa.h>
108 #include <sys/syscallargs.h>
109 #include <uvm/uvm.h>
110 #include <sys/sysctl.h>
111 #include <sys/kernel.h>
112
113 #include <sys/pipe.h>
114
115 /*
116 * Avoid microtime(9), it's slow. We don't guard the read from time(9)
117 * with splclock(9) since we don't actually need to be THAT sure the access
118 * is atomic.
119 */
120 #define PIPE_TIMESTAMP(tvp) (*(tvp) = time)
121
122
123 /*
124 * Use this define if you want to disable *fancy* VM things. Expect an
125 * approx 30% decrease in transfer rate.
126 */
127 /* #define PIPE_NODIRECT */
128
129 /*
130 * interfaces to the outside world
131 */
132 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
133 struct ucred *cred, int flags);
134 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
135 struct ucred *cred, int flags);
136 static int pipe_close(struct file *fp, struct proc *p);
137 static int pipe_poll(struct file *fp, int events, struct proc *p);
138 static int pipe_fcntl(struct file *fp, u_int com, void *data,
139 struct proc *p);
140 static int pipe_kqfilter(struct file *fp, struct knote *kn);
141 static int pipe_stat(struct file *fp, struct stat *sb, struct proc *p);
142 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
143 struct proc *p);
144
145 static struct fileops pipeops = {
146 pipe_read, pipe_write, pipe_ioctl, pipe_fcntl, pipe_poll,
147 pipe_stat, pipe_close, pipe_kqfilter
148 };
149
150 /*
151 * Default pipe buffer size(s), this can be kind-of large now because pipe
152 * space is pageable. The pipe code will try to maintain locality of
153 * reference for performance reasons, so small amounts of outstanding I/O
154 * will not wipe the cache.
155 */
156 #define MINPIPESIZE (PIPE_SIZE/3)
157 #define MAXPIPESIZE (2*PIPE_SIZE/3)
158
159 /*
160 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
161 * is there so that on large systems, we don't exhaust it.
162 */
163 #define MAXPIPEKVA (8*1024*1024)
164 static int maxpipekva = MAXPIPEKVA;
165
166 /*
167 * Limit for direct transfers, we cannot, of course limit
168 * the amount of kva for pipes in general though.
169 */
170 #define LIMITPIPEKVA (16*1024*1024)
171 static int limitpipekva = LIMITPIPEKVA;
172
173 /*
174 * Limit the number of "big" pipes
175 */
176 #define LIMITBIGPIPES 32
177 static int maxbigpipes = LIMITBIGPIPES;
178 static int nbigpipe = 0;
179
180 /*
181 * Amount of KVA consumed by pipe buffers.
182 */
183 static int amountpipekva = 0;
184
185 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
186
187 static void pipeclose(struct file *fp, struct pipe *pipe);
188 static void pipe_free_kmem(struct pipe *pipe);
189 static int pipe_create(struct pipe **pipep, int allockva);
190 static int pipelock(struct pipe *pipe, int catch);
191 static __inline void pipeunlock(struct pipe *pipe);
192 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, void *data,
193 int code);
194 #ifndef PIPE_NODIRECT
195 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
196 struct uio *uio);
197 #endif
198 static int pipespace(struct pipe *pipe, int size);
199
200 #ifndef PIPE_NODIRECT
201 static int pipe_loan_alloc(struct pipe *, int);
202 static void pipe_loan_free(struct pipe *);
203 #endif /* PIPE_NODIRECT */
204
205 static struct pool pipe_pool;
206
207 /*
208 * The pipe system call for the DTYPE_PIPE type of pipes
209 */
210
211 /* ARGSUSED */
212 int
213 sys_pipe(l, v, retval)
214 struct lwp *l;
215 void *v;
216 register_t *retval;
217 {
218 struct file *rf, *wf;
219 struct pipe *rpipe, *wpipe;
220 int fd, error;
221 struct proc *p;
222
223 p = l->l_proc;
224 rpipe = wpipe = NULL;
225 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
226 pipeclose(NULL, rpipe);
227 pipeclose(NULL, wpipe);
228 return (ENFILE);
229 }
230
231 /*
232 * Note: the file structure returned from falloc() is marked
233 * as 'larval' initially. Unless we mark it as 'mature' by
234 * FILE_SET_MATURE(), any attempt to do anything with it would
235 * return EBADF, including e.g. dup(2) or close(2). This avoids
236 * file descriptor races if we block in the second falloc().
237 */
238
239 error = falloc(p, &rf, &fd);
240 if (error)
241 goto free2;
242 retval[0] = fd;
243 rf->f_flag = FREAD;
244 rf->f_type = DTYPE_PIPE;
245 rf->f_data = (caddr_t)rpipe;
246 rf->f_ops = &pipeops;
247
248 error = falloc(p, &wf, &fd);
249 if (error)
250 goto free3;
251 retval[1] = fd;
252 wf->f_flag = FWRITE;
253 wf->f_type = DTYPE_PIPE;
254 wf->f_data = (caddr_t)wpipe;
255 wf->f_ops = &pipeops;
256
257 rpipe->pipe_peer = wpipe;
258 wpipe->pipe_peer = rpipe;
259
260 FILE_SET_MATURE(rf);
261 FILE_SET_MATURE(wf);
262 FILE_UNUSE(rf, p);
263 FILE_UNUSE(wf, p);
264 return (0);
265 free3:
266 FILE_UNUSE(rf, p);
267 ffree(rf);
268 fdremove(p->p_fd, retval[0]);
269 free2:
270 pipeclose(NULL, wpipe);
271 pipeclose(NULL, rpipe);
272
273 return (error);
274 }
275
276 /*
277 * Allocate kva for pipe circular buffer, the space is pageable
278 * This routine will 'realloc' the size of a pipe safely, if it fails
279 * it will retain the old buffer.
280 * If it fails it will return ENOMEM.
281 */
282 static int
283 pipespace(pipe, size)
284 struct pipe *pipe;
285 int size;
286 {
287 caddr_t buffer;
288 /*
289 * Allocate pageable virtual address space. Physical memory is
290 * allocated on demand.
291 */
292 buffer = (caddr_t) uvm_km_valloc(kernel_map, round_page(size));
293 if (buffer == NULL)
294 return (ENOMEM);
295
296 /* free old resources if we're resizing */
297 pipe_free_kmem(pipe);
298 pipe->pipe_buffer.buffer = buffer;
299 pipe->pipe_buffer.size = size;
300 pipe->pipe_buffer.in = 0;
301 pipe->pipe_buffer.out = 0;
302 pipe->pipe_buffer.cnt = 0;
303 amountpipekva += pipe->pipe_buffer.size;
304 return (0);
305 }
306
307 /*
308 * Initialize and allocate VM and memory for pipe.
309 */
310 static int
311 pipe_create(pipep, allockva)
312 struct pipe **pipep;
313 int allockva;
314 {
315 struct pipe *pipe;
316 int error;
317
318 pipe = pool_get(&pipe_pool, M_WAITOK);
319 if (pipe == NULL)
320 return (ENOMEM);
321
322 /* Initialize */
323 memset(pipe, 0, sizeof(struct pipe));
324 pipe->pipe_state = PIPE_SIGNALR;
325
326 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
327 return (error);
328
329 PIPE_TIMESTAMP(&pipe->pipe_ctime);
330 pipe->pipe_atime = pipe->pipe_ctime;
331 pipe->pipe_mtime = pipe->pipe_ctime;
332 simple_lock_init(&pipe->pipe_slock);
333 lockinit(&pipe->pipe_lock, PRIBIO | PCATCH, "pipelk", 0, 0);
334
335 *pipep = pipe;
336 return (0);
337 }
338
339
340 /*
341 * Lock a pipe for I/O, blocking other access
342 * Called with pipe spin lock held.
343 * Return with pipe spin lock released on success.
344 */
345 static int
346 pipelock(pipe, catch)
347 struct pipe *pipe;
348 int catch;
349 {
350 int error;
351
352 LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
353
354 while (1) {
355 error = lockmgr(&pipe->pipe_lock, LK_EXCLUSIVE | LK_INTERLOCK,
356 &pipe->pipe_slock);
357 if (error == 0)
358 break;
359
360 simple_lock(&pipe->pipe_slock);
361 if (catch || (error != EINTR && error != ERESTART))
362 break;
363 /*
364 * XXX XXX XXX
365 * The pipe lock is initialised with PCATCH on and we cannot
366 * override this in a lockmgr() call. Thus a pending signal
367 * will cause lockmgr() to return with EINTR or ERESTART.
368 * We cannot simply re-enter lockmgr() at this point since
369 * the pending signals have not yet been posted and would
370 * cause an immediate EINTR/ERESTART return again.
371 * As a workaround we pause for a while here, giving the lock
372 * a chance to drain, before trying again.
373 * XXX XXX XXX
374 *
375 * NOTE: Consider dropping PCATCH from this lock; in practice
376 * it is never held for long enough periods for having it
377 * interruptable at the start of pipe_read/pipe_write to be
378 * beneficial.
379 */
380 (void) tsleep(&lbolt, PRIBIO, "rstrtpipelock", hz);
381 }
382 return (error);
383 }
384
385 /*
386 * unlock a pipe I/O lock
387 */
388 static __inline void
389 pipeunlock(pipe)
390 struct pipe *pipe;
391 {
392
393 lockmgr(&pipe->pipe_lock, LK_RELEASE, NULL);
394 }
395
396 /*
397 * Select/poll wakup. This also sends SIGIO to peer connected to
398 * 'sigpipe' side of pipe.
399 */
400 static void
401 pipeselwakeup(selp, sigp, data, code)
402 struct pipe *selp, *sigp;
403 void *data;
404 int code;
405 {
406 /*###406 [cc] warning: `band' might be used uninitialized in this function%%%*/
407 int band;
408
409 selnotify(&selp->pipe_sel, 0);
410
411 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
412 return;
413
414 switch (code) {
415 case POLL_IN:
416 band = POLLIN|POLLRDNORM;
417 break;
418 case POLL_OUT:
419 band = POLLOUT|POLLWRNORM;
420 break;
421 case POLL_HUP:
422 band = POLLHUP;
423 break;
424 #if POLL_HUP != POLL_ERR
425 case POLL_ERR:
426 band = POLLERR;
427 break;
428 #endif
429 default:
430 band = 0;
431 #ifdef DIAGNOSTIC
432 printf("bad siginfo code %d in pipe notification.\n", code);
433 #endif
434 break;
435 }
436
437 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
438 }
439
440 /* ARGSUSED */
441 static int
442 pipe_read(fp, offset, uio, cred, flags)
443 struct file *fp;
444 off_t *offset;
445 struct uio *uio;
446 struct ucred *cred;
447 int flags;
448 {
449 struct pipe *rpipe = (struct pipe *) fp->f_data;
450 struct pipebuf *bp = &rpipe->pipe_buffer;
451 int error;
452 size_t nread = 0;
453 size_t size;
454 size_t ocnt;
455
456 PIPE_LOCK(rpipe);
457 ++rpipe->pipe_busy;
458 ocnt = bp->cnt;
459
460 again:
461 error = pipelock(rpipe, 1);
462 if (error)
463 goto unlocked_error;
464
465 while (uio->uio_resid) {
466 /*
467 * normal pipe buffer receive
468 */
469 if (bp->cnt > 0) {
470 size = bp->size - bp->out;
471 if (size > bp->cnt)
472 size = bp->cnt;
473 if (size > uio->uio_resid)
474 size = uio->uio_resid;
475
476 error = uiomove(&bp->buffer[bp->out], size, uio);
477 if (error)
478 break;
479
480 bp->out += size;
481 if (bp->out >= bp->size)
482 bp->out = 0;
483
484 bp->cnt -= size;
485
486 /*
487 * If there is no more to read in the pipe, reset
488 * its pointers to the beginning. This improves
489 * cache hit stats.
490 */
491 if (bp->cnt == 0) {
492 bp->in = 0;
493 bp->out = 0;
494 }
495 nread += size;
496 #ifndef PIPE_NODIRECT
497 } else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
498 /*
499 * Direct copy, bypassing a kernel buffer.
500 */
501 caddr_t va;
502
503 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
504
505 size = rpipe->pipe_map.cnt;
506 if (size > uio->uio_resid)
507 size = uio->uio_resid;
508
509 va = (caddr_t) rpipe->pipe_map.kva +
510 rpipe->pipe_map.pos;
511 error = uiomove(va, size, uio);
512 if (error)
513 break;
514 nread += size;
515 rpipe->pipe_map.pos += size;
516 rpipe->pipe_map.cnt -= size;
517 if (rpipe->pipe_map.cnt == 0) {
518 PIPE_LOCK(rpipe);
519 rpipe->pipe_state &= ~PIPE_DIRECTR;
520 wakeup(rpipe);
521 PIPE_UNLOCK(rpipe);
522 }
523 #endif
524 } else {
525 /*
526 * Break if some data was read.
527 */
528 if (nread > 0)
529 break;
530
531 PIPE_LOCK(rpipe);
532
533 /*
534 * detect EOF condition
535 * read returns 0 on EOF, no need to set error
536 */
537 if (rpipe->pipe_state & PIPE_EOF) {
538 PIPE_UNLOCK(rpipe);
539 break;
540 }
541
542 /*
543 * don't block on non-blocking I/O
544 */
545 if (fp->f_flag & FNONBLOCK) {
546 PIPE_UNLOCK(rpipe);
547 error = EAGAIN;
548 break;
549 }
550
551 /*
552 * Unlock the pipe buffer for our remaining processing.
553 * We will either break out with an error or we will
554 * sleep and relock to loop.
555 */
556 pipeunlock(rpipe);
557
558 /*
559 * The PIPE_DIRECTR flag is not under the control
560 * of the long-term lock (see pipe_direct_write()),
561 * so re-check now while holding the spin lock.
562 */
563 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
564 goto again;
565
566 /*
567 * We want to read more, wake up select/poll.
568 */
569 pipeselwakeup(rpipe, rpipe->pipe_peer, fp->f_data,
570 POLL_IN);
571
572 /*
573 * If the "write-side" is blocked, wake it up now.
574 */
575 if (rpipe->pipe_state & PIPE_WANTW) {
576 rpipe->pipe_state &= ~PIPE_WANTW;
577 wakeup(rpipe);
578 }
579
580 /* Now wait until the pipe is filled */
581 rpipe->pipe_state |= PIPE_WANTR;
582 error = ltsleep(rpipe, PRIBIO | PCATCH,
583 "piperd", 0, &rpipe->pipe_slock);
584 if (error != 0)
585 goto unlocked_error;
586 goto again;
587 }
588 }
589
590 if (error == 0)
591 PIPE_TIMESTAMP(&rpipe->pipe_atime);
592
593 PIPE_LOCK(rpipe);
594 pipeunlock(rpipe);
595
596 unlocked_error:
597 --rpipe->pipe_busy;
598
599 /*
600 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
601 */
602 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
603 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
604 wakeup(rpipe);
605 } else if (bp->cnt < MINPIPESIZE) {
606 /*
607 * Handle write blocking hysteresis.
608 */
609 if (rpipe->pipe_state & PIPE_WANTW) {
610 rpipe->pipe_state &= ~PIPE_WANTW;
611 wakeup(rpipe);
612 }
613 }
614
615 /*
616 * If anything was read off the buffer, signal to the writer it's
617 * possible to write more data. Also send signal if we are here for the
618 * first time after last write.
619 */
620 if ((bp->size - bp->cnt) >= PIPE_BUF
621 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
622 pipeselwakeup(rpipe, rpipe->pipe_peer, fp->f_data, POLL_OUT);
623 rpipe->pipe_state &= ~PIPE_SIGNALR;
624 }
625
626 PIPE_UNLOCK(rpipe);
627 return (error);
628 }
629
630 #ifndef PIPE_NODIRECT
631 /*
632 * Allocate structure for loan transfer.
633 */
634 static int
635 pipe_loan_alloc(wpipe, npages)
636 struct pipe *wpipe;
637 int npages;
638 {
639 vsize_t len;
640
641 len = (vsize_t)npages << PAGE_SHIFT;
642 wpipe->pipe_map.kva = uvm_km_valloc_wait(kernel_map, len);
643 if (wpipe->pipe_map.kva == 0)
644 return (ENOMEM);
645
646 amountpipekva += len;
647 wpipe->pipe_map.npages = npages;
648 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
649 M_WAITOK);
650 return (0);
651 }
652
653 /*
654 * Free resources allocated for loan transfer.
655 */
656 static void
657 pipe_loan_free(wpipe)
658 struct pipe *wpipe;
659 {
660 vsize_t len;
661
662 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
663 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len);
664 wpipe->pipe_map.kva = 0;
665 amountpipekva -= len;
666 free(wpipe->pipe_map.pgs, M_PIPE);
667 wpipe->pipe_map.pgs = NULL;
668 }
669
670 /*
671 * NetBSD direct write, using uvm_loan() mechanism.
672 * This implements the pipe buffer write mechanism. Note that only
673 * a direct write OR a normal pipe write can be pending at any given time.
674 * If there are any characters in the pipe buffer, the direct write will
675 * be deferred until the receiving process grabs all of the bytes from
676 * the pipe buffer. Then the direct mapping write is set-up.
677 *
678 * Called with the long-term pipe lock held.
679 */
680 static int
681 pipe_direct_write(fp, wpipe, uio)
682 struct file *fp;
683 struct pipe *wpipe;
684 struct uio *uio;
685 {
686 int error, npages, j;
687 struct vm_page **pgs;
688 vaddr_t bbase, kva, base, bend;
689 vsize_t blen, bcnt;
690 voff_t bpos;
691
692 KASSERT(wpipe->pipe_map.cnt == 0);
693
694 /*
695 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
696 * not aligned to PAGE_SIZE.
697 */
698 bbase = (vaddr_t)uio->uio_iov->iov_base;
699 base = trunc_page(bbase);
700 bend = round_page(bbase + uio->uio_iov->iov_len);
701 blen = bend - base;
702 bpos = bbase - base;
703
704 if (blen > PIPE_DIRECT_CHUNK) {
705 blen = PIPE_DIRECT_CHUNK;
706 bend = base + blen;
707 bcnt = PIPE_DIRECT_CHUNK - bpos;
708 } else {
709 bcnt = uio->uio_iov->iov_len;
710 }
711 npages = blen >> PAGE_SHIFT;
712
713 /*
714 * Free the old kva if we need more pages than we have
715 * allocated.
716 */
717 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
718 pipe_loan_free(wpipe);
719
720 /* Allocate new kva. */
721 if (wpipe->pipe_map.kva == 0) {
722 error = pipe_loan_alloc(wpipe, npages);
723 if (error)
724 return (error);
725 }
726
727 /* Loan the write buffer memory from writer process */
728 pgs = wpipe->pipe_map.pgs;
729 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
730 pgs, UVM_LOAN_TOPAGE);
731 if (error) {
732 pipe_loan_free(wpipe);
733 return (error);
734 }
735
736 /* Enter the loaned pages to kva */
737 kva = wpipe->pipe_map.kva;
738 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
739 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
740 }
741 pmap_update(pmap_kernel());
742
743 /* Now we can put the pipe in direct write mode */
744 wpipe->pipe_map.pos = bpos;
745 wpipe->pipe_map.cnt = bcnt;
746 wpipe->pipe_state |= PIPE_DIRECTW;
747
748 /*
749 * But before we can let someone do a direct read,
750 * we have to wait until the pipe is drained.
751 */
752
753 /* Relase the pipe lock while we wait */
754 PIPE_LOCK(wpipe);
755 pipeunlock(wpipe);
756
757 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
758 if (wpipe->pipe_state & PIPE_WANTR) {
759 wpipe->pipe_state &= ~PIPE_WANTR;
760 wakeup(wpipe);
761 }
762
763 wpipe->pipe_state |= PIPE_WANTW;
764 error = ltsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0,
765 &wpipe->pipe_slock);
766 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
767 error = EPIPE;
768 }
769
770 /* Pipe is drained; next read will off the direct buffer */
771 wpipe->pipe_state |= PIPE_DIRECTR;
772
773 /* Wait until the reader is done */
774 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
775 if (wpipe->pipe_state & PIPE_WANTR) {
776 wpipe->pipe_state &= ~PIPE_WANTR;
777 wakeup(wpipe);
778 }
779 pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_IN);
780 error = ltsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0,
781 &wpipe->pipe_slock);
782 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
783 error = EPIPE;
784 }
785
786 /* Take pipe out of direct write mode */
787 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
788
789 /* Acquire the pipe lock and cleanup */
790 (void)pipelock(wpipe, 0);
791 if (pgs != NULL) {
792 pmap_kremove(wpipe->pipe_map.kva, blen);
793 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
794 }
795 if (error || amountpipekva > maxpipekva)
796 pipe_loan_free(wpipe);
797
798 if (error) {
799 pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_ERR);
800
801 /*
802 * If nothing was read from what we offered, return error
803 * straight on. Otherwise update uio resid first. Caller
804 * will deal with the error condition, returning short
805 * write, error, or restarting the write(2) as appropriate.
806 */
807 if (wpipe->pipe_map.cnt == bcnt) {
808 wpipe->pipe_map.cnt = 0;
809 wakeup(wpipe);
810 return (error);
811 }
812
813 bcnt -= wpipe->pipe_map.cnt;
814 }
815
816 uio->uio_resid -= bcnt;
817 /* uio_offset not updated, not set/used for write(2) */
818 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
819 uio->uio_iov->iov_len -= bcnt;
820 if (uio->uio_iov->iov_len == 0) {
821 uio->uio_iov++;
822 uio->uio_iovcnt--;
823 }
824
825 wpipe->pipe_map.cnt = 0;
826 return (error);
827 }
828 #endif /* !PIPE_NODIRECT */
829
830 static int
831 pipe_write(fp, offset, uio, cred, flags)
832 struct file *fp;
833 off_t *offset;
834 struct uio *uio;
835 struct ucred *cred;
836 int flags;
837 {
838 struct pipe *wpipe, *rpipe;
839 struct pipebuf *bp;
840 int error;
841
842 /* We want to write to our peer */
843 rpipe = (struct pipe *) fp->f_data;
844
845 retry:
846 error = 0;
847 PIPE_LOCK(rpipe);
848 wpipe = rpipe->pipe_peer;
849
850 /*
851 * Detect loss of pipe read side, issue SIGPIPE if lost.
852 */
853 if (wpipe == NULL)
854 error = EPIPE;
855 else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
856 /* Deal with race for peer */
857 PIPE_UNLOCK(rpipe);
858 goto retry;
859 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
860 PIPE_UNLOCK(wpipe);
861 error = EPIPE;
862 }
863
864 PIPE_UNLOCK(rpipe);
865 if (error != 0)
866 return (error);
867
868 ++wpipe->pipe_busy;
869
870 /* Aquire the long-term pipe lock */
871 if ((error = pipelock(wpipe,1)) != 0) {
872 --wpipe->pipe_busy;
873 if (wpipe->pipe_busy == 0
874 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
875 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
876 wakeup(wpipe);
877 }
878 PIPE_UNLOCK(wpipe);
879 return (error);
880 }
881
882 bp = &wpipe->pipe_buffer;
883
884 /*
885 * If it is advantageous to resize the pipe buffer, do so.
886 */
887 if ((uio->uio_resid > PIPE_SIZE) &&
888 (nbigpipe < maxbigpipes) &&
889 #ifndef PIPE_NODIRECT
890 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
891 #endif
892 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
893
894 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
895 nbigpipe++;
896 }
897
898 while (uio->uio_resid) {
899 size_t space;
900
901 #ifndef PIPE_NODIRECT
902 /*
903 * Pipe buffered writes cannot be coincidental with
904 * direct writes. Also, only one direct write can be
905 * in progress at any one time. We wait until the currently
906 * executing direct write is completed before continuing.
907 *
908 * We break out if a signal occurs or the reader goes away.
909 */
910 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
911 PIPE_LOCK(wpipe);
912 if (wpipe->pipe_state & PIPE_WANTR) {
913 wpipe->pipe_state &= ~PIPE_WANTR;
914 wakeup(wpipe);
915 }
916 pipeunlock(wpipe);
917 error = ltsleep(wpipe, PRIBIO | PCATCH,
918 "pipbww", 0, &wpipe->pipe_slock);
919
920 (void)pipelock(wpipe, 0);
921 if (wpipe->pipe_state & PIPE_EOF)
922 error = EPIPE;
923 }
924 if (error)
925 break;
926
927 /*
928 * If the transfer is large, we can gain performance if
929 * we do process-to-process copies directly.
930 * If the write is non-blocking, we don't use the
931 * direct write mechanism.
932 *
933 * The direct write mechanism will detect the reader going
934 * away on us.
935 */
936 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
937 (fp->f_flag & FNONBLOCK) == 0 &&
938 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
939 error = pipe_direct_write(fp, wpipe, uio);
940
941 /*
942 * Break out if error occured, unless it's ENOMEM.
943 * ENOMEM means we failed to allocate some resources
944 * for direct write, so we just fallback to ordinary
945 * write. If the direct write was successful,
946 * process rest of data via ordinary write.
947 */
948 if (error == 0)
949 continue;
950
951 if (error != ENOMEM)
952 break;
953 }
954 #endif /* PIPE_NODIRECT */
955
956 space = bp->size - bp->cnt;
957
958 /* Writes of size <= PIPE_BUF must be atomic. */
959 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
960 space = 0;
961
962 if (space > 0) {
963 int size; /* Transfer size */
964 int segsize; /* first segment to transfer */
965
966 /*
967 * Transfer size is minimum of uio transfer
968 * and free space in pipe buffer.
969 */
970 if (space > uio->uio_resid)
971 size = uio->uio_resid;
972 else
973 size = space;
974 /*
975 * First segment to transfer is minimum of
976 * transfer size and contiguous space in
977 * pipe buffer. If first segment to transfer
978 * is less than the transfer size, we've got
979 * a wraparound in the buffer.
980 */
981 segsize = bp->size - bp->in;
982 if (segsize > size)
983 segsize = size;
984
985 /* Transfer first segment */
986 error = uiomove(&bp->buffer[bp->in], segsize, uio);
987
988 if (error == 0 && segsize < size) {
989 /*
990 * Transfer remaining part now, to
991 * support atomic writes. Wraparound
992 * happened.
993 */
994 #ifdef DEBUG
995 if (bp->in + segsize != bp->size)
996 panic("Expected pipe buffer wraparound disappeared");
997 #endif
998
999 error = uiomove(&bp->buffer[0],
1000 size - segsize, uio);
1001 }
1002 if (error)
1003 break;
1004
1005 bp->in += size;
1006 if (bp->in >= bp->size) {
1007 #ifdef DEBUG
1008 if (bp->in != size - segsize + bp->size)
1009 panic("Expected wraparound bad");
1010 #endif
1011 bp->in = size - segsize;
1012 }
1013
1014 bp->cnt += size;
1015 #ifdef DEBUG
1016 if (bp->cnt > bp->size)
1017 panic("Pipe buffer overflow");
1018 #endif
1019 } else {
1020 /*
1021 * If the "read-side" has been blocked, wake it up now.
1022 */
1023 PIPE_LOCK(wpipe);
1024 if (wpipe->pipe_state & PIPE_WANTR) {
1025 wpipe->pipe_state &= ~PIPE_WANTR;
1026 wakeup(wpipe);
1027 }
1028 PIPE_UNLOCK(wpipe);
1029
1030 /*
1031 * don't block on non-blocking I/O
1032 */
1033 if (fp->f_flag & FNONBLOCK) {
1034 error = EAGAIN;
1035 break;
1036 }
1037
1038 /*
1039 * We have no more space and have something to offer,
1040 * wake up select/poll.
1041 */
1042 if (bp->cnt)
1043 pipeselwakeup(wpipe, wpipe, fp->f_data,
1044 POLL_OUT);
1045
1046 PIPE_LOCK(wpipe);
1047 pipeunlock(wpipe);
1048 wpipe->pipe_state |= PIPE_WANTW;
1049 error = ltsleep(wpipe, PRIBIO | PCATCH, "pipewr", 0,
1050 &wpipe->pipe_slock);
1051 (void)pipelock(wpipe, 0);
1052 if (error != 0)
1053 break;
1054 /*
1055 * If read side wants to go away, we just issue a signal
1056 * to ourselves.
1057 */
1058 if (wpipe->pipe_state & PIPE_EOF) {
1059 error = EPIPE;
1060 break;
1061 }
1062 }
1063 }
1064
1065 PIPE_LOCK(wpipe);
1066 --wpipe->pipe_busy;
1067 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1068 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1069 wakeup(wpipe);
1070 } else if (bp->cnt > 0) {
1071 /*
1072 * If we have put any characters in the buffer, we wake up
1073 * the reader.
1074 */
1075 if (wpipe->pipe_state & PIPE_WANTR) {
1076 wpipe->pipe_state &= ~PIPE_WANTR;
1077 wakeup(wpipe);
1078 }
1079 }
1080
1081 /*
1082 * Don't return EPIPE if I/O was successful
1083 */
1084 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1085 error = 0;
1086
1087 if (error == 0)
1088 PIPE_TIMESTAMP(&wpipe->pipe_mtime);
1089
1090 /*
1091 * We have something to offer, wake up select/poll.
1092 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1093 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1094 */
1095 if (bp->cnt)
1096 pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_OUT);
1097
1098 /*
1099 * Arrange for next read(2) to do a signal.
1100 */
1101 wpipe->pipe_state |= PIPE_SIGNALR;
1102
1103 pipeunlock(wpipe);
1104 PIPE_UNLOCK(wpipe);
1105 return (error);
1106 }
1107
1108 /*
1109 * we implement a very minimal set of ioctls for compatibility with sockets.
1110 */
1111 int
1112 pipe_ioctl(fp, cmd, data, p)
1113 struct file *fp;
1114 u_long cmd;
1115 void *data;
1116 struct proc *p;
1117 {
1118 struct pipe *pipe = (struct pipe *)fp->f_data;
1119
1120 switch (cmd) {
1121
1122 case FIONBIO:
1123 return (0);
1124
1125 case FIOASYNC:
1126 PIPE_LOCK(pipe);
1127 if (*(int *)data) {
1128 pipe->pipe_state |= PIPE_ASYNC;
1129 } else {
1130 pipe->pipe_state &= ~PIPE_ASYNC;
1131 }
1132 PIPE_UNLOCK(pipe);
1133 return (0);
1134
1135 case FIONREAD:
1136 PIPE_LOCK(pipe);
1137 #ifndef PIPE_NODIRECT
1138 if (pipe->pipe_state & PIPE_DIRECTW)
1139 *(int *)data = pipe->pipe_map.cnt;
1140 else
1141 #endif
1142 *(int *)data = pipe->pipe_buffer.cnt;
1143 PIPE_UNLOCK(pipe);
1144 return (0);
1145
1146 case TIOCSPGRP:
1147 case FIOSETOWN:
1148 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1149
1150 case TIOCGPGRP:
1151 case FIOGETOWN:
1152 return fgetown(p, pipe->pipe_pgid, cmd, data);
1153
1154 }
1155 return (EPASSTHROUGH);
1156 }
1157
1158 int
1159 pipe_poll(fp, events, td)
1160 struct file *fp;
1161 int events;
1162 struct proc *td;
1163 {
1164 struct pipe *rpipe = (struct pipe *)fp->f_data;
1165 struct pipe *wpipe;
1166 int eof = 0;
1167 int revents = 0;
1168
1169 retry:
1170 PIPE_LOCK(rpipe);
1171 wpipe = rpipe->pipe_peer;
1172 if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
1173 /* Deal with race for peer */
1174 PIPE_UNLOCK(rpipe);
1175 goto retry;
1176 }
1177
1178 if (events & (POLLIN | POLLRDNORM))
1179 if ((rpipe->pipe_buffer.cnt > 0) ||
1180 #ifndef PIPE_NODIRECT
1181 (rpipe->pipe_state & PIPE_DIRECTR) ||
1182 #endif
1183 (rpipe->pipe_state & PIPE_EOF))
1184 revents |= events & (POLLIN | POLLRDNORM);
1185
1186 eof |= (rpipe->pipe_state & PIPE_EOF);
1187 PIPE_UNLOCK(rpipe);
1188
1189 if (wpipe == NULL)
1190 revents |= events & (POLLOUT | POLLWRNORM);
1191 else {
1192 if (events & (POLLOUT | POLLWRNORM))
1193 if ((wpipe->pipe_state & PIPE_EOF) || (
1194 #ifndef PIPE_NODIRECT
1195 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1196 #endif
1197 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1198 revents |= events & (POLLOUT | POLLWRNORM);
1199
1200 eof |= (wpipe->pipe_state & PIPE_EOF);
1201 PIPE_UNLOCK(wpipe);
1202 }
1203
1204 if (wpipe == NULL || eof)
1205 revents |= POLLHUP;
1206
1207 if (revents == 0) {
1208 if (events & (POLLIN | POLLRDNORM))
1209 selrecord(td, &rpipe->pipe_sel);
1210
1211 if (events & (POLLOUT | POLLWRNORM))
1212 selrecord(td, &wpipe->pipe_sel);
1213 }
1214
1215 return (revents);
1216 }
1217
1218 static int
1219 pipe_stat(fp, ub, td)
1220 struct file *fp;
1221 struct stat *ub;
1222 struct proc *td;
1223 {
1224 struct pipe *pipe = (struct pipe *)fp->f_data;
1225
1226 memset((caddr_t)ub, 0, sizeof(*ub));
1227 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1228 ub->st_blksize = pipe->pipe_buffer.size;
1229 ub->st_size = pipe->pipe_buffer.cnt;
1230 ub->st_blocks = (ub->st_size) ? 1 : 0;
1231 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec)
1232 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1233 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1234 ub->st_uid = fp->f_cred->cr_uid;
1235 ub->st_gid = fp->f_cred->cr_gid;
1236 /*
1237 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1238 * XXX (st_dev, st_ino) should be unique.
1239 */
1240 return (0);
1241 }
1242
1243 /* ARGSUSED */
1244 static int
1245 pipe_close(fp, td)
1246 struct file *fp;
1247 struct proc *td;
1248 {
1249 struct pipe *pipe = (struct pipe *)fp->f_data;
1250
1251 fp->f_data = NULL;
1252 pipeclose(fp, pipe);
1253 return (0);
1254 }
1255
1256 static void
1257 pipe_free_kmem(pipe)
1258 struct pipe *pipe;
1259 {
1260
1261 if (pipe->pipe_buffer.buffer != NULL) {
1262 if (pipe->pipe_buffer.size > PIPE_SIZE)
1263 --nbigpipe;
1264 amountpipekva -= pipe->pipe_buffer.size;
1265 uvm_km_free(kernel_map,
1266 (vaddr_t)pipe->pipe_buffer.buffer,
1267 pipe->pipe_buffer.size);
1268 pipe->pipe_buffer.buffer = NULL;
1269 }
1270 #ifndef PIPE_NODIRECT
1271 if (pipe->pipe_map.kva != 0) {
1272 pipe_loan_free(pipe);
1273 pipe->pipe_map.cnt = 0;
1274 pipe->pipe_map.kva = 0;
1275 pipe->pipe_map.pos = 0;
1276 pipe->pipe_map.npages = 0;
1277 }
1278 #endif /* !PIPE_NODIRECT */
1279 }
1280
1281 /*
1282 * shutdown the pipe
1283 */
1284 static void
1285 pipeclose(fp, pipe)
1286 struct file *fp;
1287 struct pipe *pipe;
1288 {
1289 struct pipe *ppipe;
1290
1291 if (pipe == NULL)
1292 return;
1293
1294 retry:
1295 PIPE_LOCK(pipe);
1296
1297 if (fp)
1298 pipeselwakeup(pipe, pipe, fp->f_data, POLL_HUP);
1299
1300 /*
1301 * If the other side is blocked, wake it up saying that
1302 * we want to close it down.
1303 */
1304 while (pipe->pipe_busy) {
1305 wakeup(pipe);
1306 pipe->pipe_state |= PIPE_WANTCLOSE | PIPE_EOF;
1307 ltsleep(pipe, PRIBIO, "pipecl", 0, &pipe->pipe_slock);
1308 }
1309
1310 /*
1311 * Disconnect from peer
1312 */
1313 if ((ppipe = pipe->pipe_peer) != NULL) {
1314 /* Deal with race for peer */
1315 if (simple_lock_try(&ppipe->pipe_slock) == 0) {
1316 PIPE_UNLOCK(pipe);
1317 goto retry;
1318 }
1319 if (fp)
1320 pipeselwakeup(ppipe, ppipe, fp->f_data, POLL_HUP);
1321
1322 ppipe->pipe_state |= PIPE_EOF;
1323 wakeup(ppipe);
1324 ppipe->pipe_peer = NULL;
1325 PIPE_UNLOCK(ppipe);
1326 }
1327
1328 (void)lockmgr(&pipe->pipe_lock, LK_DRAIN | LK_INTERLOCK,
1329 &pipe->pipe_slock);
1330
1331 /*
1332 * free resources
1333 */
1334 pipe_free_kmem(pipe);
1335 pool_put(&pipe_pool, pipe);
1336 }
1337
1338 static void
1339 filt_pipedetach(struct knote *kn)
1340 {
1341 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1342
1343 switch(kn->kn_filter) {
1344 case EVFILT_WRITE:
1345 /* need the peer structure, not our own */
1346 pipe = pipe->pipe_peer;
1347 /* XXXSMP: race for peer */
1348
1349 /* if reader end already closed, just return */
1350 if (pipe == NULL)
1351 return;
1352
1353 break;
1354 default:
1355 /* nothing to do */
1356 break;
1357 }
1358
1359 #ifdef DIAGNOSTIC
1360 if (kn->kn_hook != pipe)
1361 panic("filt_pipedetach: inconsistent knote");
1362 #endif
1363
1364 PIPE_LOCK(pipe);
1365 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1366 PIPE_UNLOCK(pipe);
1367 }
1368
1369 /*ARGSUSED*/
1370 static int
1371 filt_piperead(struct knote *kn, long hint)
1372 {
1373 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1374 struct pipe *wpipe = rpipe->pipe_peer;
1375
1376 PIPE_LOCK(rpipe);
1377 kn->kn_data = rpipe->pipe_buffer.cnt;
1378 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1379 kn->kn_data = rpipe->pipe_map.cnt;
1380
1381 /* XXXSMP: race for peer */
1382 if ((rpipe->pipe_state & PIPE_EOF) ||
1383 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1384 kn->kn_flags |= EV_EOF;
1385 PIPE_UNLOCK(rpipe);
1386 return (1);
1387 }
1388 PIPE_UNLOCK(rpipe);
1389 return (kn->kn_data > 0);
1390 }
1391
1392 /*ARGSUSED*/
1393 static int
1394 filt_pipewrite(struct knote *kn, long hint)
1395 {
1396 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1397 struct pipe *wpipe = rpipe->pipe_peer;
1398
1399 PIPE_LOCK(rpipe);
1400 /* XXXSMP: race for peer */
1401 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1402 kn->kn_data = 0;
1403 kn->kn_flags |= EV_EOF;
1404 PIPE_UNLOCK(rpipe);
1405 return (1);
1406 }
1407 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1408 if (wpipe->pipe_state & PIPE_DIRECTW)
1409 kn->kn_data = 0;
1410
1411 PIPE_UNLOCK(rpipe);
1412 return (kn->kn_data >= PIPE_BUF);
1413 }
1414
1415 static const struct filterops pipe_rfiltops =
1416 { 1, NULL, filt_pipedetach, filt_piperead };
1417 static const struct filterops pipe_wfiltops =
1418 { 1, NULL, filt_pipedetach, filt_pipewrite };
1419
1420 /*ARGSUSED*/
1421 static int
1422 pipe_kqfilter(struct file *fp, struct knote *kn)
1423 {
1424 struct pipe *pipe;
1425
1426 pipe = (struct pipe *)kn->kn_fp->f_data;
1427 switch (kn->kn_filter) {
1428 case EVFILT_READ:
1429 kn->kn_fop = &pipe_rfiltops;
1430 break;
1431 case EVFILT_WRITE:
1432 kn->kn_fop = &pipe_wfiltops;
1433 /* XXXSMP: race for peer */
1434 pipe = pipe->pipe_peer;
1435 if (pipe == NULL) {
1436 /* other end of pipe has been closed */
1437 return (EBADF);
1438 }
1439 break;
1440 default:
1441 return (1);
1442 }
1443 kn->kn_hook = pipe;
1444
1445 PIPE_LOCK(pipe);
1446 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1447 PIPE_UNLOCK(pipe);
1448 return (0);
1449 }
1450
1451 static int
1452 pipe_fcntl(fp, cmd, data, p)
1453 struct file *fp;
1454 u_int cmd;
1455 void *data;
1456 struct proc *p;
1457 {
1458 if (cmd == F_SETFL)
1459 return (0);
1460 else
1461 return (EOPNOTSUPP);
1462 }
1463
1464 /*
1465 * Handle pipe sysctls.
1466 */
1467 int
1468 sysctl_dopipe(name, namelen, oldp, oldlenp, newp, newlen)
1469 int *name;
1470 u_int namelen;
1471 void *oldp;
1472 size_t *oldlenp;
1473 void *newp;
1474 size_t newlen;
1475 {
1476 /* All sysctl names at this level are terminal. */
1477 if (namelen != 1)
1478 return (ENOTDIR); /* overloaded */
1479
1480 switch (name[0]) {
1481 case KERN_PIPE_MAXKVASZ:
1482 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxpipekva));
1483 case KERN_PIPE_LIMITKVA:
1484 return (sysctl_int(oldp, oldlenp, newp, newlen, &limitpipekva));
1485 case KERN_PIPE_MAXBIGPIPES:
1486 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxbigpipes));
1487 case KERN_PIPE_NBIGPIPES:
1488 return (sysctl_rdint(oldp, oldlenp, newp, nbigpipe));
1489 case KERN_PIPE_KVASIZE:
1490 return (sysctl_rdint(oldp, oldlenp, newp, amountpipekva));
1491 default:
1492 return (EOPNOTSUPP);
1493 }
1494 /* NOTREACHED */
1495 }
1496
1497 /*
1498 * Initialize pipe structs.
1499 */
1500 void
1501 pipe_init(void)
1502 {
1503 pool_init(&pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl", NULL);
1504 }
1505