Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.47
      1 /*	$NetBSD: sys_pipe.c,v 1.47 2003/12/04 19:38:24 atatat Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1996 John S. Dyson
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice immediately at the beginning of the file, without modification,
     48  *    this list of conditions, and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Absolutely no warranty of function or purpose is made by the author
     53  *    John S. Dyson.
     54  * 4. Modifications may be freely made to this file if the above conditions
     55  *    are met.
     56  *
     57  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
     58  */
     59 
     60 /*
     61  * This file contains a high-performance replacement for the socket-based
     62  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
     63  * all features of sockets, but does do everything that pipes normally
     64  * do.
     65  *
     66  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
     67  * written by Jaromir Dolecek.
     68  */
     69 
     70 /*
     71  * This code has two modes of operation, a small write mode and a large
     72  * write mode.  The small write mode acts like conventional pipes with
     73  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     74  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     75  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
     76  * using the UVM page loan facility from where the receiving process can copy
     77  * the data directly from the pages in the sending process.
     78  *
     79  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     80  * happen for small transfers so that the system will not spend all of
     81  * its time context switching.  PIPE_SIZE is constrained by the
     82  * amount of kernel virtual memory.
     83  */
     84 
     85 #include <sys/cdefs.h>
     86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.47 2003/12/04 19:38:24 atatat Exp $");
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/proc.h>
     91 #include <sys/fcntl.h>
     92 #include <sys/file.h>
     93 #include <sys/filedesc.h>
     94 #include <sys/filio.h>
     95 #include <sys/kernel.h>
     96 #include <sys/lock.h>
     97 #include <sys/ttycom.h>
     98 #include <sys/stat.h>
     99 #include <sys/malloc.h>
    100 #include <sys/poll.h>
    101 #include <sys/signalvar.h>
    102 #include <sys/vnode.h>
    103 #include <sys/uio.h>
    104 #include <sys/lock.h>
    105 #include <sys/select.h>
    106 #include <sys/mount.h>
    107 #include <sys/sa.h>
    108 #include <sys/syscallargs.h>
    109 #include <uvm/uvm.h>
    110 #include <sys/sysctl.h>
    111 #include <sys/kernel.h>
    112 
    113 #include <sys/pipe.h>
    114 
    115 /*
    116  * Avoid microtime(9), it's slow. We don't guard the read from time(9)
    117  * with splclock(9) since we don't actually need to be THAT sure the access
    118  * is atomic.
    119  */
    120 #define PIPE_TIMESTAMP(tvp)	(*(tvp) = time)
    121 
    122 
    123 /*
    124  * Use this define if you want to disable *fancy* VM things.  Expect an
    125  * approx 30% decrease in transfer rate.
    126  */
    127 /* #define PIPE_NODIRECT */
    128 
    129 /*
    130  * interfaces to the outside world
    131  */
    132 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
    133 		struct ucred *cred, int flags);
    134 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
    135 		struct ucred *cred, int flags);
    136 static int pipe_close(struct file *fp, struct proc *p);
    137 static int pipe_poll(struct file *fp, int events, struct proc *p);
    138 static int pipe_fcntl(struct file *fp, u_int com, void *data,
    139 		struct proc *p);
    140 static int pipe_kqfilter(struct file *fp, struct knote *kn);
    141 static int pipe_stat(struct file *fp, struct stat *sb, struct proc *p);
    142 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
    143 		struct proc *p);
    144 
    145 static struct fileops pipeops = {
    146 	pipe_read, pipe_write, pipe_ioctl, pipe_fcntl, pipe_poll,
    147 	pipe_stat, pipe_close, pipe_kqfilter
    148 };
    149 
    150 /*
    151  * Default pipe buffer size(s), this can be kind-of large now because pipe
    152  * space is pageable.  The pipe code will try to maintain locality of
    153  * reference for performance reasons, so small amounts of outstanding I/O
    154  * will not wipe the cache.
    155  */
    156 #define MINPIPESIZE (PIPE_SIZE/3)
    157 #define MAXPIPESIZE (2*PIPE_SIZE/3)
    158 
    159 /*
    160  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    161  * is there so that on large systems, we don't exhaust it.
    162  */
    163 #define MAXPIPEKVA (8*1024*1024)
    164 static int maxpipekva = MAXPIPEKVA;
    165 
    166 /*
    167  * Limit for direct transfers, we cannot, of course limit
    168  * the amount of kva for pipes in general though.
    169  */
    170 #define LIMITPIPEKVA (16*1024*1024)
    171 static int limitpipekva = LIMITPIPEKVA;
    172 
    173 /*
    174  * Limit the number of "big" pipes
    175  */
    176 #define LIMITBIGPIPES  32
    177 static int maxbigpipes = LIMITBIGPIPES;
    178 static int nbigpipe = 0;
    179 
    180 /*
    181  * Amount of KVA consumed by pipe buffers.
    182  */
    183 static int amountpipekva = 0;
    184 
    185 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
    186 
    187 static void pipeclose(struct file *fp, struct pipe *pipe);
    188 static void pipe_free_kmem(struct pipe *pipe);
    189 static int pipe_create(struct pipe **pipep, int allockva);
    190 static int pipelock(struct pipe *pipe, int catch);
    191 static __inline void pipeunlock(struct pipe *pipe);
    192 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, void *data,
    193     int code);
    194 #ifndef PIPE_NODIRECT
    195 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
    196     struct uio *uio);
    197 #endif
    198 static int pipespace(struct pipe *pipe, int size);
    199 
    200 #ifndef PIPE_NODIRECT
    201 static int pipe_loan_alloc(struct pipe *, int);
    202 static void pipe_loan_free(struct pipe *);
    203 #endif /* PIPE_NODIRECT */
    204 
    205 static struct pool pipe_pool;
    206 
    207 /*
    208  * The pipe system call for the DTYPE_PIPE type of pipes
    209  */
    210 
    211 /* ARGSUSED */
    212 int
    213 sys_pipe(l, v, retval)
    214 	struct lwp *l;
    215 	void *v;
    216 	register_t *retval;
    217 {
    218 	struct file *rf, *wf;
    219 	struct pipe *rpipe, *wpipe;
    220 	int fd, error;
    221 	struct proc *p;
    222 
    223 	p = l->l_proc;
    224 	rpipe = wpipe = NULL;
    225 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
    226 		pipeclose(NULL, rpipe);
    227 		pipeclose(NULL, wpipe);
    228 		return (ENFILE);
    229 	}
    230 
    231 	/*
    232 	 * Note: the file structure returned from falloc() is marked
    233 	 * as 'larval' initially. Unless we mark it as 'mature' by
    234 	 * FILE_SET_MATURE(), any attempt to do anything with it would
    235 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
    236 	 * file descriptor races if we block in the second falloc().
    237 	 */
    238 
    239 	error = falloc(p, &rf, &fd);
    240 	if (error)
    241 		goto free2;
    242 	retval[0] = fd;
    243 	rf->f_flag = FREAD;
    244 	rf->f_type = DTYPE_PIPE;
    245 	rf->f_data = (caddr_t)rpipe;
    246 	rf->f_ops = &pipeops;
    247 
    248 	error = falloc(p, &wf, &fd);
    249 	if (error)
    250 		goto free3;
    251 	retval[1] = fd;
    252 	wf->f_flag = FWRITE;
    253 	wf->f_type = DTYPE_PIPE;
    254 	wf->f_data = (caddr_t)wpipe;
    255 	wf->f_ops = &pipeops;
    256 
    257 	rpipe->pipe_peer = wpipe;
    258 	wpipe->pipe_peer = rpipe;
    259 
    260 	FILE_SET_MATURE(rf);
    261 	FILE_SET_MATURE(wf);
    262 	FILE_UNUSE(rf, p);
    263 	FILE_UNUSE(wf, p);
    264 	return (0);
    265 free3:
    266 	FILE_UNUSE(rf, p);
    267 	ffree(rf);
    268 	fdremove(p->p_fd, retval[0]);
    269 free2:
    270 	pipeclose(NULL, wpipe);
    271 	pipeclose(NULL, rpipe);
    272 
    273 	return (error);
    274 }
    275 
    276 /*
    277  * Allocate kva for pipe circular buffer, the space is pageable
    278  * This routine will 'realloc' the size of a pipe safely, if it fails
    279  * it will retain the old buffer.
    280  * If it fails it will return ENOMEM.
    281  */
    282 static int
    283 pipespace(pipe, size)
    284 	struct pipe *pipe;
    285 	int size;
    286 {
    287 	caddr_t buffer;
    288 	/*
    289 	 * Allocate pageable virtual address space. Physical memory is
    290 	 * allocated on demand.
    291 	 */
    292 	buffer = (caddr_t) uvm_km_valloc(kernel_map, round_page(size));
    293 	if (buffer == NULL)
    294 		return (ENOMEM);
    295 
    296 	/* free old resources if we're resizing */
    297 	pipe_free_kmem(pipe);
    298 	pipe->pipe_buffer.buffer = buffer;
    299 	pipe->pipe_buffer.size = size;
    300 	pipe->pipe_buffer.in = 0;
    301 	pipe->pipe_buffer.out = 0;
    302 	pipe->pipe_buffer.cnt = 0;
    303 	amountpipekva += pipe->pipe_buffer.size;
    304 	return (0);
    305 }
    306 
    307 /*
    308  * Initialize and allocate VM and memory for pipe.
    309  */
    310 static int
    311 pipe_create(pipep, allockva)
    312 	struct pipe **pipep;
    313 	int allockva;
    314 {
    315 	struct pipe *pipe;
    316 	int error;
    317 
    318 	pipe = *pipep = pool_get(&pipe_pool, M_WAITOK);
    319 	if (pipe == NULL)
    320 		return (ENOMEM);
    321 
    322 	/* Initialize */
    323 	memset(pipe, 0, sizeof(struct pipe));
    324 	pipe->pipe_state = PIPE_SIGNALR;
    325 
    326 	if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
    327 		return (error);
    328 
    329 	PIPE_TIMESTAMP(&pipe->pipe_ctime);
    330 	pipe->pipe_atime = pipe->pipe_ctime;
    331 	pipe->pipe_mtime = pipe->pipe_ctime;
    332 	simple_lock_init(&pipe->pipe_slock);
    333 	lockinit(&pipe->pipe_lock, PRIBIO | PCATCH, "pipelk", 0, 0);
    334 
    335 	return (0);
    336 }
    337 
    338 
    339 /*
    340  * Lock a pipe for I/O, blocking other access
    341  * Called with pipe spin lock held.
    342  * Return with pipe spin lock released on success.
    343  */
    344 static int
    345 pipelock(pipe, catch)
    346 	struct pipe *pipe;
    347 	int catch;
    348 {
    349 	int error;
    350 
    351 	LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
    352 
    353 	while (1) {
    354 		error = lockmgr(&pipe->pipe_lock, LK_EXCLUSIVE | LK_INTERLOCK,
    355 				&pipe->pipe_slock);
    356 		if (error == 0)
    357 			break;
    358 
    359 		simple_lock(&pipe->pipe_slock);
    360 		if (catch || (error != EINTR && error != ERESTART))
    361 			break;
    362 		/*
    363 		 * XXX XXX XXX
    364 		 * The pipe lock is initialised with PCATCH on and we cannot
    365 		 * override this in a lockmgr() call. Thus a pending signal
    366 		 * will cause lockmgr() to return with EINTR or ERESTART.
    367 		 * We cannot simply re-enter lockmgr() at this point since
    368 		 * the pending signals have not yet been posted and would
    369 		 * cause an immediate EINTR/ERESTART return again.
    370 		 * As a workaround we pause for a while here, giving the lock
    371 		 * a chance to drain, before trying again.
    372 		 * XXX XXX XXX
    373 		 *
    374 		 * NOTE: Consider dropping PCATCH from this lock; in practice
    375 		 * it is never held for long enough periods for having it
    376 		 * interruptable at the start of pipe_read/pipe_write to be
    377 		 * beneficial.
    378 		 */
    379 		(void) tsleep(&lbolt, PRIBIO, "rstrtpipelock", hz);
    380 	}
    381 	return (error);
    382 }
    383 
    384 /*
    385  * unlock a pipe I/O lock
    386  */
    387 static __inline void
    388 pipeunlock(pipe)
    389 	struct pipe *pipe;
    390 {
    391 
    392 	lockmgr(&pipe->pipe_lock, LK_RELEASE, NULL);
    393 }
    394 
    395 /*
    396  * Select/poll wakup. This also sends SIGIO to peer connected to
    397  * 'sigpipe' side of pipe.
    398  */
    399 static void
    400 pipeselwakeup(selp, sigp, data, code)
    401 	struct pipe *selp, *sigp;
    402 	void *data;
    403 	int code;
    404 {
    405 /*###406 [cc] warning: `band' might be used uninitialized in this function%%%*/
    406 	int band;
    407 
    408 	selnotify(&selp->pipe_sel, 0);
    409 
    410 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    411 		return;
    412 
    413 	switch (code) {
    414 	case POLL_IN:
    415 		band = POLLIN|POLLRDNORM;
    416 		break;
    417 	case POLL_OUT:
    418 		band = POLLOUT|POLLWRNORM;
    419 		break;
    420 	case POLL_HUP:
    421 		band = POLLHUP;
    422 		break;
    423 #if POLL_HUP != POLL_ERR
    424 	case POLL_ERR:
    425 		band = POLLERR;
    426 		break;
    427 #endif
    428 	default:
    429 		band = 0;
    430 #ifdef DIAGNOSTIC
    431 		printf("bad siginfo code %d in pipe notification.\n", code);
    432 #endif
    433 		break;
    434 	}
    435 
    436 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    437 }
    438 
    439 /* ARGSUSED */
    440 static int
    441 pipe_read(fp, offset, uio, cred, flags)
    442 	struct file *fp;
    443 	off_t *offset;
    444 	struct uio *uio;
    445 	struct ucred *cred;
    446 	int flags;
    447 {
    448 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    449 	struct pipebuf *bp = &rpipe->pipe_buffer;
    450 	int error;
    451 	size_t nread = 0;
    452 	size_t size;
    453 	size_t ocnt;
    454 
    455 	PIPE_LOCK(rpipe);
    456 	++rpipe->pipe_busy;
    457 	ocnt = bp->cnt;
    458 
    459 again:
    460 	error = pipelock(rpipe, 1);
    461 	if (error)
    462 		goto unlocked_error;
    463 
    464 	while (uio->uio_resid) {
    465 		/*
    466 		 * normal pipe buffer receive
    467 		 */
    468 		if (bp->cnt > 0) {
    469 			size = bp->size - bp->out;
    470 			if (size > bp->cnt)
    471 				size = bp->cnt;
    472 			if (size > uio->uio_resid)
    473 				size = uio->uio_resid;
    474 
    475 			error = uiomove(&bp->buffer[bp->out], size, uio);
    476 			if (error)
    477 				break;
    478 
    479 			bp->out += size;
    480 			if (bp->out >= bp->size)
    481 				bp->out = 0;
    482 
    483 			bp->cnt -= size;
    484 
    485 			/*
    486 			 * If there is no more to read in the pipe, reset
    487 			 * its pointers to the beginning.  This improves
    488 			 * cache hit stats.
    489 			 */
    490 			if (bp->cnt == 0) {
    491 				bp->in = 0;
    492 				bp->out = 0;
    493 			}
    494 			nread += size;
    495 #ifndef PIPE_NODIRECT
    496 		} else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
    497 			/*
    498 			 * Direct copy, bypassing a kernel buffer.
    499 			 */
    500 			caddr_t	va;
    501 
    502 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
    503 
    504 			size = rpipe->pipe_map.cnt;
    505 			if (size > uio->uio_resid)
    506 				size = uio->uio_resid;
    507 
    508 			va = (caddr_t) rpipe->pipe_map.kva +
    509 			    rpipe->pipe_map.pos;
    510 			error = uiomove(va, size, uio);
    511 			if (error)
    512 				break;
    513 			nread += size;
    514 			rpipe->pipe_map.pos += size;
    515 			rpipe->pipe_map.cnt -= size;
    516 			if (rpipe->pipe_map.cnt == 0) {
    517 				PIPE_LOCK(rpipe);
    518 				rpipe->pipe_state &= ~PIPE_DIRECTR;
    519 				wakeup(rpipe);
    520 				PIPE_UNLOCK(rpipe);
    521 			}
    522 #endif
    523 		} else {
    524 			/*
    525 			 * Break if some data was read.
    526 			 */
    527 			if (nread > 0)
    528 				break;
    529 
    530 			PIPE_LOCK(rpipe);
    531 
    532 			/*
    533 			 * detect EOF condition
    534 			 * read returns 0 on EOF, no need to set error
    535 			 */
    536 			if (rpipe->pipe_state & PIPE_EOF) {
    537 				PIPE_UNLOCK(rpipe);
    538 				break;
    539 			}
    540 
    541 			/*
    542 			 * don't block on non-blocking I/O
    543 			 */
    544 			if (fp->f_flag & FNONBLOCK) {
    545 				PIPE_UNLOCK(rpipe);
    546 				error = EAGAIN;
    547 				break;
    548 			}
    549 
    550 			/*
    551 			 * Unlock the pipe buffer for our remaining processing.
    552 			 * We will either break out with an error or we will
    553 			 * sleep and relock to loop.
    554 			 */
    555 			pipeunlock(rpipe);
    556 
    557 			/*
    558 			 * The PIPE_DIRECTR flag is not under the control
    559 			 * of the long-term lock (see pipe_direct_write()),
    560 			 * so re-check now while holding the spin lock.
    561 			 */
    562 			if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
    563 				goto again;
    564 
    565 			/*
    566 			 * We want to read more, wake up select/poll.
    567 			 */
    568 			pipeselwakeup(rpipe, rpipe->pipe_peer, fp->f_data,
    569 			    POLL_IN);
    570 
    571 			/*
    572 			 * If the "write-side" is blocked, wake it up now.
    573 			 */
    574 			if (rpipe->pipe_state & PIPE_WANTW) {
    575 				rpipe->pipe_state &= ~PIPE_WANTW;
    576 				wakeup(rpipe);
    577 			}
    578 
    579 			/* Now wait until the pipe is filled */
    580 			rpipe->pipe_state |= PIPE_WANTR;
    581 			error = ltsleep(rpipe, PRIBIO | PCATCH,
    582 					"piperd", 0, &rpipe->pipe_slock);
    583 			if (error != 0)
    584 				goto unlocked_error;
    585 			goto again;
    586 		}
    587 	}
    588 
    589 	if (error == 0)
    590 		PIPE_TIMESTAMP(&rpipe->pipe_atime);
    591 
    592 	PIPE_LOCK(rpipe);
    593 	pipeunlock(rpipe);
    594 
    595 unlocked_error:
    596 	--rpipe->pipe_busy;
    597 
    598 	/*
    599 	 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
    600 	 */
    601 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
    602 		rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
    603 		wakeup(rpipe);
    604 	} else if (bp->cnt < MINPIPESIZE) {
    605 		/*
    606 		 * Handle write blocking hysteresis.
    607 		 */
    608 		if (rpipe->pipe_state & PIPE_WANTW) {
    609 			rpipe->pipe_state &= ~PIPE_WANTW;
    610 			wakeup(rpipe);
    611 		}
    612 	}
    613 
    614 	/*
    615 	 * If anything was read off the buffer, signal to the writer it's
    616 	 * possible to write more data. Also send signal if we are here for the
    617 	 * first time after last write.
    618 	 */
    619 	if ((bp->size - bp->cnt) >= PIPE_BUF
    620 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    621 		pipeselwakeup(rpipe, rpipe->pipe_peer, fp->f_data, POLL_OUT);
    622 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    623 	}
    624 
    625 	PIPE_UNLOCK(rpipe);
    626 	return (error);
    627 }
    628 
    629 #ifndef PIPE_NODIRECT
    630 /*
    631  * Allocate structure for loan transfer.
    632  */
    633 static int
    634 pipe_loan_alloc(wpipe, npages)
    635 	struct pipe *wpipe;
    636 	int npages;
    637 {
    638 	vsize_t len;
    639 
    640 	len = (vsize_t)npages << PAGE_SHIFT;
    641 	wpipe->pipe_map.kva = uvm_km_valloc_wait(kernel_map, len);
    642 	if (wpipe->pipe_map.kva == 0)
    643 		return (ENOMEM);
    644 
    645 	amountpipekva += len;
    646 	wpipe->pipe_map.npages = npages;
    647 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
    648 	    M_WAITOK);
    649 	return (0);
    650 }
    651 
    652 /*
    653  * Free resources allocated for loan transfer.
    654  */
    655 static void
    656 pipe_loan_free(wpipe)
    657 	struct pipe *wpipe;
    658 {
    659 	vsize_t len;
    660 
    661 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    662 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len);
    663 	wpipe->pipe_map.kva = 0;
    664 	amountpipekva -= len;
    665 	free(wpipe->pipe_map.pgs, M_PIPE);
    666 	wpipe->pipe_map.pgs = NULL;
    667 }
    668 
    669 /*
    670  * NetBSD direct write, using uvm_loan() mechanism.
    671  * This implements the pipe buffer write mechanism.  Note that only
    672  * a direct write OR a normal pipe write can be pending at any given time.
    673  * If there are any characters in the pipe buffer, the direct write will
    674  * be deferred until the receiving process grabs all of the bytes from
    675  * the pipe buffer.  Then the direct mapping write is set-up.
    676  *
    677  * Called with the long-term pipe lock held.
    678  */
    679 static int
    680 pipe_direct_write(fp, wpipe, uio)
    681 	struct file *fp;
    682 	struct pipe *wpipe;
    683 	struct uio *uio;
    684 {
    685 	int error, npages, j;
    686 	struct vm_page **pgs;
    687 	vaddr_t bbase, kva, base, bend;
    688 	vsize_t blen, bcnt;
    689 	voff_t bpos;
    690 
    691 	KASSERT(wpipe->pipe_map.cnt == 0);
    692 
    693 	/*
    694 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
    695 	 * not aligned to PAGE_SIZE.
    696 	 */
    697 	bbase = (vaddr_t)uio->uio_iov->iov_base;
    698 	base = trunc_page(bbase);
    699 	bend = round_page(bbase + uio->uio_iov->iov_len);
    700 	blen = bend - base;
    701 	bpos = bbase - base;
    702 
    703 	if (blen > PIPE_DIRECT_CHUNK) {
    704 		blen = PIPE_DIRECT_CHUNK;
    705 		bend = base + blen;
    706 		bcnt = PIPE_DIRECT_CHUNK - bpos;
    707 	} else {
    708 		bcnt = uio->uio_iov->iov_len;
    709 	}
    710 	npages = blen >> PAGE_SHIFT;
    711 
    712 	/*
    713 	 * Free the old kva if we need more pages than we have
    714 	 * allocated.
    715 	 */
    716 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
    717 		pipe_loan_free(wpipe);
    718 
    719 	/* Allocate new kva. */
    720 	if (wpipe->pipe_map.kva == 0) {
    721 		error = pipe_loan_alloc(wpipe, npages);
    722 		if (error)
    723 			return (error);
    724 	}
    725 
    726 	/* Loan the write buffer memory from writer process */
    727 	pgs = wpipe->pipe_map.pgs;
    728 	error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
    729 			 pgs, UVM_LOAN_TOPAGE);
    730 	if (error) {
    731 		pipe_loan_free(wpipe);
    732 		return (error);
    733 	}
    734 
    735 	/* Enter the loaned pages to kva */
    736 	kva = wpipe->pipe_map.kva;
    737 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
    738 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
    739 	}
    740 	pmap_update(pmap_kernel());
    741 
    742 	/* Now we can put the pipe in direct write mode */
    743 	wpipe->pipe_map.pos = bpos;
    744 	wpipe->pipe_map.cnt = bcnt;
    745 	wpipe->pipe_state |= PIPE_DIRECTW;
    746 
    747 	/*
    748 	 * But before we can let someone do a direct read,
    749 	 * we have to wait until the pipe is drained.
    750 	 */
    751 
    752 	/* Relase the pipe lock while we wait */
    753 	PIPE_LOCK(wpipe);
    754 	pipeunlock(wpipe);
    755 
    756 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
    757 		if (wpipe->pipe_state & PIPE_WANTR) {
    758 			wpipe->pipe_state &= ~PIPE_WANTR;
    759 			wakeup(wpipe);
    760 		}
    761 
    762 		wpipe->pipe_state |= PIPE_WANTW;
    763 		error = ltsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0,
    764 				&wpipe->pipe_slock);
    765 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    766 			error = EPIPE;
    767 	}
    768 
    769 	/* Pipe is drained; next read will off the direct buffer */
    770 	wpipe->pipe_state |= PIPE_DIRECTR;
    771 
    772 	/* Wait until the reader is done */
    773 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
    774 		if (wpipe->pipe_state & PIPE_WANTR) {
    775 			wpipe->pipe_state &= ~PIPE_WANTR;
    776 			wakeup(wpipe);
    777 		}
    778 		pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_IN);
    779 		error = ltsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0,
    780 				&wpipe->pipe_slock);
    781 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    782 			error = EPIPE;
    783 	}
    784 
    785 	/* Take pipe out of direct write mode */
    786 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
    787 
    788 	/* Acquire the pipe lock and cleanup */
    789 	(void)pipelock(wpipe, 0);
    790 	if (pgs != NULL) {
    791 		pmap_kremove(wpipe->pipe_map.kva, blen);
    792 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
    793 	}
    794 	if (error || amountpipekva > maxpipekva)
    795 		pipe_loan_free(wpipe);
    796 
    797 	if (error) {
    798 		pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_ERR);
    799 
    800 		/*
    801 		 * If nothing was read from what we offered, return error
    802 		 * straight on. Otherwise update uio resid first. Caller
    803 		 * will deal with the error condition, returning short
    804 		 * write, error, or restarting the write(2) as appropriate.
    805 		 */
    806 		if (wpipe->pipe_map.cnt == bcnt) {
    807 			wpipe->pipe_map.cnt = 0;
    808 			wakeup(wpipe);
    809 			return (error);
    810 		}
    811 
    812 		bcnt -= wpipe->pipe_map.cnt;
    813 	}
    814 
    815 	uio->uio_resid -= bcnt;
    816 	/* uio_offset not updated, not set/used for write(2) */
    817 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
    818 	uio->uio_iov->iov_len -= bcnt;
    819 	if (uio->uio_iov->iov_len == 0) {
    820 		uio->uio_iov++;
    821 		uio->uio_iovcnt--;
    822 	}
    823 
    824 	wpipe->pipe_map.cnt = 0;
    825 	return (error);
    826 }
    827 #endif /* !PIPE_NODIRECT */
    828 
    829 static int
    830 pipe_write(fp, offset, uio, cred, flags)
    831 	struct file *fp;
    832 	off_t *offset;
    833 	struct uio *uio;
    834 	struct ucred *cred;
    835 	int flags;
    836 {
    837 	struct pipe *wpipe, *rpipe;
    838 	struct pipebuf *bp;
    839 	int error;
    840 
    841 	/* We want to write to our peer */
    842 	rpipe = (struct pipe *) fp->f_data;
    843 
    844 retry:
    845 	error = 0;
    846 	PIPE_LOCK(rpipe);
    847 	wpipe = rpipe->pipe_peer;
    848 
    849 	/*
    850 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    851 	 */
    852 	if (wpipe == NULL)
    853 		error = EPIPE;
    854 	else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
    855 		/* Deal with race for peer */
    856 		PIPE_UNLOCK(rpipe);
    857 		goto retry;
    858 	} else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
    859 		PIPE_UNLOCK(wpipe);
    860 		error = EPIPE;
    861 	}
    862 
    863 	PIPE_UNLOCK(rpipe);
    864 	if (error != 0)
    865 		return (error);
    866 
    867 	++wpipe->pipe_busy;
    868 
    869 	/* Aquire the long-term pipe lock */
    870 	if ((error = pipelock(wpipe,1)) != 0) {
    871 		--wpipe->pipe_busy;
    872 		if (wpipe->pipe_busy == 0
    873 		    && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
    874 			wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
    875 			wakeup(wpipe);
    876 		}
    877 		PIPE_UNLOCK(wpipe);
    878 		return (error);
    879 	}
    880 
    881 	bp = &wpipe->pipe_buffer;
    882 
    883 	/*
    884 	 * If it is advantageous to resize the pipe buffer, do so.
    885 	 */
    886 	if ((uio->uio_resid > PIPE_SIZE) &&
    887 	    (nbigpipe < maxbigpipes) &&
    888 #ifndef PIPE_NODIRECT
    889 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    890 #endif
    891 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    892 
    893 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    894 			nbigpipe++;
    895 	}
    896 
    897 	while (uio->uio_resid) {
    898 		size_t space;
    899 
    900 #ifndef PIPE_NODIRECT
    901 		/*
    902 		 * Pipe buffered writes cannot be coincidental with
    903 		 * direct writes.  Also, only one direct write can be
    904 		 * in progress at any one time.  We wait until the currently
    905 		 * executing direct write is completed before continuing.
    906 		 *
    907 		 * We break out if a signal occurs or the reader goes away.
    908 		 */
    909 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
    910 			PIPE_LOCK(wpipe);
    911 			if (wpipe->pipe_state & PIPE_WANTR) {
    912 				wpipe->pipe_state &= ~PIPE_WANTR;
    913 				wakeup(wpipe);
    914 			}
    915 			pipeunlock(wpipe);
    916 			error = ltsleep(wpipe, PRIBIO | PCATCH,
    917 					"pipbww", 0, &wpipe->pipe_slock);
    918 
    919 			(void)pipelock(wpipe, 0);
    920 			if (wpipe->pipe_state & PIPE_EOF)
    921 				error = EPIPE;
    922 		}
    923 		if (error)
    924 			break;
    925 
    926 		/*
    927 		 * If the transfer is large, we can gain performance if
    928 		 * we do process-to-process copies directly.
    929 		 * If the write is non-blocking, we don't use the
    930 		 * direct write mechanism.
    931 		 *
    932 		 * The direct write mechanism will detect the reader going
    933 		 * away on us.
    934 		 */
    935 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    936 		    (fp->f_flag & FNONBLOCK) == 0 &&
    937 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
    938 			error = pipe_direct_write(fp, wpipe, uio);
    939 
    940 			/*
    941 			 * Break out if error occured, unless it's ENOMEM.
    942 			 * ENOMEM means we failed to allocate some resources
    943 			 * for direct write, so we just fallback to ordinary
    944 			 * write. If the direct write was successful,
    945 			 * process rest of data via ordinary write.
    946 			 */
    947 			if (error == 0)
    948 				continue;
    949 
    950 			if (error != ENOMEM)
    951 				break;
    952 		}
    953 #endif /* PIPE_NODIRECT */
    954 
    955 		space = bp->size - bp->cnt;
    956 
    957 		/* Writes of size <= PIPE_BUF must be atomic. */
    958 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    959 			space = 0;
    960 
    961 		if (space > 0) {
    962 			int size;	/* Transfer size */
    963 			int segsize;	/* first segment to transfer */
    964 
    965 			/*
    966 			 * Transfer size is minimum of uio transfer
    967 			 * and free space in pipe buffer.
    968 			 */
    969 			if (space > uio->uio_resid)
    970 				size = uio->uio_resid;
    971 			else
    972 				size = space;
    973 			/*
    974 			 * First segment to transfer is minimum of
    975 			 * transfer size and contiguous space in
    976 			 * pipe buffer.  If first segment to transfer
    977 			 * is less than the transfer size, we've got
    978 			 * a wraparound in the buffer.
    979 			 */
    980 			segsize = bp->size - bp->in;
    981 			if (segsize > size)
    982 				segsize = size;
    983 
    984 			/* Transfer first segment */
    985 			error = uiomove(&bp->buffer[bp->in], segsize, uio);
    986 
    987 			if (error == 0 && segsize < size) {
    988 				/*
    989 				 * Transfer remaining part now, to
    990 				 * support atomic writes.  Wraparound
    991 				 * happened.
    992 				 */
    993 #ifdef DEBUG
    994 				if (bp->in + segsize != bp->size)
    995 					panic("Expected pipe buffer wraparound disappeared");
    996 #endif
    997 
    998 				error = uiomove(&bp->buffer[0],
    999 						size - segsize, uio);
   1000 			}
   1001 			if (error)
   1002 				break;
   1003 
   1004 			bp->in += size;
   1005 			if (bp->in >= bp->size) {
   1006 #ifdef DEBUG
   1007 				if (bp->in != size - segsize + bp->size)
   1008 					panic("Expected wraparound bad");
   1009 #endif
   1010 				bp->in = size - segsize;
   1011 			}
   1012 
   1013 			bp->cnt += size;
   1014 #ifdef DEBUG
   1015 			if (bp->cnt > bp->size)
   1016 				panic("Pipe buffer overflow");
   1017 #endif
   1018 		} else {
   1019 			/*
   1020 			 * If the "read-side" has been blocked, wake it up now.
   1021 			 */
   1022 			PIPE_LOCK(wpipe);
   1023 			if (wpipe->pipe_state & PIPE_WANTR) {
   1024 				wpipe->pipe_state &= ~PIPE_WANTR;
   1025 				wakeup(wpipe);
   1026 			}
   1027 			PIPE_UNLOCK(wpipe);
   1028 
   1029 			/*
   1030 			 * don't block on non-blocking I/O
   1031 			 */
   1032 			if (fp->f_flag & FNONBLOCK) {
   1033 				error = EAGAIN;
   1034 				break;
   1035 			}
   1036 
   1037 			/*
   1038 			 * We have no more space and have something to offer,
   1039 			 * wake up select/poll.
   1040 			 */
   1041 			if (bp->cnt)
   1042 				pipeselwakeup(wpipe, wpipe, fp->f_data,
   1043 				    POLL_OUT);
   1044 
   1045 			PIPE_LOCK(wpipe);
   1046 			pipeunlock(wpipe);
   1047 			wpipe->pipe_state |= PIPE_WANTW;
   1048 			error = ltsleep(wpipe, PRIBIO | PCATCH, "pipewr", 0,
   1049 					&wpipe->pipe_slock);
   1050 			(void)pipelock(wpipe, 0);
   1051 			if (error != 0)
   1052 				break;
   1053 			/*
   1054 			 * If read side wants to go away, we just issue a signal
   1055 			 * to ourselves.
   1056 			 */
   1057 			if (wpipe->pipe_state & PIPE_EOF) {
   1058 				error = EPIPE;
   1059 				break;
   1060 			}
   1061 		}
   1062 	}
   1063 
   1064 	PIPE_LOCK(wpipe);
   1065 	--wpipe->pipe_busy;
   1066 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1067 		wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1068 		wakeup(wpipe);
   1069 	} else if (bp->cnt > 0) {
   1070 		/*
   1071 		 * If we have put any characters in the buffer, we wake up
   1072 		 * the reader.
   1073 		 */
   1074 		if (wpipe->pipe_state & PIPE_WANTR) {
   1075 			wpipe->pipe_state &= ~PIPE_WANTR;
   1076 			wakeup(wpipe);
   1077 		}
   1078 	}
   1079 
   1080 	/*
   1081 	 * Don't return EPIPE if I/O was successful
   1082 	 */
   1083 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
   1084 		error = 0;
   1085 
   1086 	if (error == 0)
   1087 		PIPE_TIMESTAMP(&wpipe->pipe_mtime);
   1088 
   1089 	/*
   1090 	 * We have something to offer, wake up select/poll.
   1091 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1092 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1093 	 */
   1094 	if (bp->cnt)
   1095 		pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_OUT);
   1096 
   1097 	/*
   1098 	 * Arrange for next read(2) to do a signal.
   1099 	 */
   1100 	wpipe->pipe_state |= PIPE_SIGNALR;
   1101 
   1102 	pipeunlock(wpipe);
   1103 	PIPE_UNLOCK(wpipe);
   1104 	return (error);
   1105 }
   1106 
   1107 /*
   1108  * we implement a very minimal set of ioctls for compatibility with sockets.
   1109  */
   1110 int
   1111 pipe_ioctl(fp, cmd, data, p)
   1112 	struct file *fp;
   1113 	u_long cmd;
   1114 	void *data;
   1115 	struct proc *p;
   1116 {
   1117 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1118 
   1119 	switch (cmd) {
   1120 
   1121 	case FIONBIO:
   1122 		return (0);
   1123 
   1124 	case FIOASYNC:
   1125 		PIPE_LOCK(pipe);
   1126 		if (*(int *)data) {
   1127 			pipe->pipe_state |= PIPE_ASYNC;
   1128 		} else {
   1129 			pipe->pipe_state &= ~PIPE_ASYNC;
   1130 		}
   1131 		PIPE_UNLOCK(pipe);
   1132 		return (0);
   1133 
   1134 	case FIONREAD:
   1135 		PIPE_LOCK(pipe);
   1136 #ifndef PIPE_NODIRECT
   1137 		if (pipe->pipe_state & PIPE_DIRECTW)
   1138 			*(int *)data = pipe->pipe_map.cnt;
   1139 		else
   1140 #endif
   1141 			*(int *)data = pipe->pipe_buffer.cnt;
   1142 		PIPE_UNLOCK(pipe);
   1143 		return (0);
   1144 
   1145 	case TIOCSPGRP:
   1146 	case FIOSETOWN:
   1147 		return fsetown(p, &pipe->pipe_pgid, cmd, data);
   1148 
   1149 	case TIOCGPGRP:
   1150 	case FIOGETOWN:
   1151 		return fgetown(p, pipe->pipe_pgid, cmd, data);
   1152 
   1153 	}
   1154 	return (EPASSTHROUGH);
   1155 }
   1156 
   1157 int
   1158 pipe_poll(fp, events, td)
   1159 	struct file *fp;
   1160 	int events;
   1161 	struct proc *td;
   1162 {
   1163 	struct pipe *rpipe = (struct pipe *)fp->f_data;
   1164 	struct pipe *wpipe;
   1165 	int eof = 0;
   1166 	int revents = 0;
   1167 
   1168 retry:
   1169 	PIPE_LOCK(rpipe);
   1170 	wpipe = rpipe->pipe_peer;
   1171 	if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
   1172 		/* Deal with race for peer */
   1173 		PIPE_UNLOCK(rpipe);
   1174 		goto retry;
   1175 	}
   1176 
   1177 	if (events & (POLLIN | POLLRDNORM))
   1178 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1179 #ifndef PIPE_NODIRECT
   1180 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
   1181 #endif
   1182 		    (rpipe->pipe_state & PIPE_EOF))
   1183 			revents |= events & (POLLIN | POLLRDNORM);
   1184 
   1185 	eof |= (rpipe->pipe_state & PIPE_EOF);
   1186 	PIPE_UNLOCK(rpipe);
   1187 
   1188 	if (wpipe == NULL)
   1189 		revents |= events & (POLLOUT | POLLWRNORM);
   1190 	else {
   1191 		if (events & (POLLOUT | POLLWRNORM))
   1192 			if ((wpipe->pipe_state & PIPE_EOF) || (
   1193 #ifndef PIPE_NODIRECT
   1194 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1195 #endif
   1196 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1197 				revents |= events & (POLLOUT | POLLWRNORM);
   1198 
   1199 		eof |= (wpipe->pipe_state & PIPE_EOF);
   1200 		PIPE_UNLOCK(wpipe);
   1201 	}
   1202 
   1203 	if (wpipe == NULL || eof)
   1204 		revents |= POLLHUP;
   1205 
   1206 	if (revents == 0) {
   1207 		if (events & (POLLIN | POLLRDNORM))
   1208 			selrecord(td, &rpipe->pipe_sel);
   1209 
   1210 		if (events & (POLLOUT | POLLWRNORM))
   1211 			selrecord(td, &wpipe->pipe_sel);
   1212 	}
   1213 
   1214 	return (revents);
   1215 }
   1216 
   1217 static int
   1218 pipe_stat(fp, ub, td)
   1219 	struct file *fp;
   1220 	struct stat *ub;
   1221 	struct proc *td;
   1222 {
   1223 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1224 
   1225 	memset((caddr_t)ub, 0, sizeof(*ub));
   1226 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1227 	ub->st_blksize = pipe->pipe_buffer.size;
   1228 	ub->st_size = pipe->pipe_buffer.cnt;
   1229 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1230 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec)
   1231 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
   1232 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
   1233 	ub->st_uid = fp->f_cred->cr_uid;
   1234 	ub->st_gid = fp->f_cred->cr_gid;
   1235 	/*
   1236 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1237 	 * XXX (st_dev, st_ino) should be unique.
   1238 	 */
   1239 	return (0);
   1240 }
   1241 
   1242 /* ARGSUSED */
   1243 static int
   1244 pipe_close(fp, td)
   1245 	struct file *fp;
   1246 	struct proc *td;
   1247 {
   1248 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1249 
   1250 	fp->f_data = NULL;
   1251 	pipeclose(fp, pipe);
   1252 	return (0);
   1253 }
   1254 
   1255 static void
   1256 pipe_free_kmem(pipe)
   1257 	struct pipe *pipe;
   1258 {
   1259 
   1260 	if (pipe->pipe_buffer.buffer != NULL) {
   1261 		if (pipe->pipe_buffer.size > PIPE_SIZE)
   1262 			--nbigpipe;
   1263 		amountpipekva -= pipe->pipe_buffer.size;
   1264 		uvm_km_free(kernel_map,
   1265 			(vaddr_t)pipe->pipe_buffer.buffer,
   1266 			pipe->pipe_buffer.size);
   1267 		pipe->pipe_buffer.buffer = NULL;
   1268 	}
   1269 #ifndef PIPE_NODIRECT
   1270 	if (pipe->pipe_map.kva != 0) {
   1271 		pipe_loan_free(pipe);
   1272 		pipe->pipe_map.cnt = 0;
   1273 		pipe->pipe_map.kva = 0;
   1274 		pipe->pipe_map.pos = 0;
   1275 		pipe->pipe_map.npages = 0;
   1276 	}
   1277 #endif /* !PIPE_NODIRECT */
   1278 }
   1279 
   1280 /*
   1281  * shutdown the pipe
   1282  */
   1283 static void
   1284 pipeclose(fp, pipe)
   1285 	struct file *fp;
   1286 	struct pipe *pipe;
   1287 {
   1288 	struct pipe *ppipe;
   1289 
   1290 	if (pipe == NULL)
   1291 		return;
   1292 
   1293 retry:
   1294 	PIPE_LOCK(pipe);
   1295 
   1296 	if (fp)
   1297 		pipeselwakeup(pipe, pipe, fp->f_data, POLL_HUP);
   1298 
   1299 	/*
   1300 	 * If the other side is blocked, wake it up saying that
   1301 	 * we want to close it down.
   1302 	 */
   1303 	while (pipe->pipe_busy) {
   1304 		wakeup(pipe);
   1305 		pipe->pipe_state |= PIPE_WANTCLOSE | PIPE_EOF;
   1306 		ltsleep(pipe, PRIBIO, "pipecl", 0, &pipe->pipe_slock);
   1307 	}
   1308 
   1309 	/*
   1310 	 * Disconnect from peer
   1311 	 */
   1312 	if ((ppipe = pipe->pipe_peer) != NULL) {
   1313 		/* Deal with race for peer */
   1314 		if (simple_lock_try(&ppipe->pipe_slock) == 0) {
   1315 			PIPE_UNLOCK(pipe);
   1316 			goto retry;
   1317 		}
   1318 		if (fp)
   1319 			pipeselwakeup(ppipe, ppipe, fp->f_data, POLL_HUP);
   1320 
   1321 		ppipe->pipe_state |= PIPE_EOF;
   1322 		wakeup(ppipe);
   1323 		ppipe->pipe_peer = NULL;
   1324 		PIPE_UNLOCK(ppipe);
   1325 	}
   1326 
   1327 	(void)lockmgr(&pipe->pipe_lock, LK_DRAIN | LK_INTERLOCK,
   1328 			&pipe->pipe_slock);
   1329 
   1330 	/*
   1331 	 * free resources
   1332 	 */
   1333 	pipe_free_kmem(pipe);
   1334 	pool_put(&pipe_pool, pipe);
   1335 }
   1336 
   1337 static void
   1338 filt_pipedetach(struct knote *kn)
   1339 {
   1340 	struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
   1341 
   1342 	switch(kn->kn_filter) {
   1343 	case EVFILT_WRITE:
   1344 		/* need the peer structure, not our own */
   1345 		pipe = pipe->pipe_peer;
   1346 		/* XXXSMP: race for peer */
   1347 
   1348 		/* if reader end already closed, just return */
   1349 		if (pipe == NULL)
   1350 			return;
   1351 
   1352 		break;
   1353 	default:
   1354 		/* nothing to do */
   1355 		break;
   1356 	}
   1357 
   1358 #ifdef DIAGNOSTIC
   1359 	if (kn->kn_hook != pipe)
   1360 		panic("filt_pipedetach: inconsistent knote");
   1361 #endif
   1362 
   1363 	PIPE_LOCK(pipe);
   1364 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
   1365 	PIPE_UNLOCK(pipe);
   1366 }
   1367 
   1368 /*ARGSUSED*/
   1369 static int
   1370 filt_piperead(struct knote *kn, long hint)
   1371 {
   1372 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1373 	struct pipe *wpipe = rpipe->pipe_peer;
   1374 
   1375 	PIPE_LOCK(rpipe);
   1376 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1377 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1378 		kn->kn_data = rpipe->pipe_map.cnt;
   1379 
   1380 	/* XXXSMP: race for peer */
   1381 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1382 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1383 		kn->kn_flags |= EV_EOF;
   1384 		PIPE_UNLOCK(rpipe);
   1385 		return (1);
   1386 	}
   1387 	PIPE_UNLOCK(rpipe);
   1388 	return (kn->kn_data > 0);
   1389 }
   1390 
   1391 /*ARGSUSED*/
   1392 static int
   1393 filt_pipewrite(struct knote *kn, long hint)
   1394 {
   1395 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1396 	struct pipe *wpipe = rpipe->pipe_peer;
   1397 
   1398 	PIPE_LOCK(rpipe);
   1399 	/* XXXSMP: race for peer */
   1400 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1401 		kn->kn_data = 0;
   1402 		kn->kn_flags |= EV_EOF;
   1403 		PIPE_UNLOCK(rpipe);
   1404 		return (1);
   1405 	}
   1406 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1407 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1408 		kn->kn_data = 0;
   1409 
   1410 	PIPE_UNLOCK(rpipe);
   1411 	return (kn->kn_data >= PIPE_BUF);
   1412 }
   1413 
   1414 static const struct filterops pipe_rfiltops =
   1415 	{ 1, NULL, filt_pipedetach, filt_piperead };
   1416 static const struct filterops pipe_wfiltops =
   1417 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
   1418 
   1419 /*ARGSUSED*/
   1420 static int
   1421 pipe_kqfilter(struct file *fp, struct knote *kn)
   1422 {
   1423 	struct pipe *pipe;
   1424 
   1425 	pipe = (struct pipe *)kn->kn_fp->f_data;
   1426 	switch (kn->kn_filter) {
   1427 	case EVFILT_READ:
   1428 		kn->kn_fop = &pipe_rfiltops;
   1429 		break;
   1430 	case EVFILT_WRITE:
   1431 		kn->kn_fop = &pipe_wfiltops;
   1432 		/* XXXSMP: race for peer */
   1433 		pipe = pipe->pipe_peer;
   1434 		if (pipe == NULL) {
   1435 			/* other end of pipe has been closed */
   1436 			return (EBADF);
   1437 		}
   1438 		break;
   1439 	default:
   1440 		return (1);
   1441 	}
   1442 	kn->kn_hook = pipe;
   1443 
   1444 	PIPE_LOCK(pipe);
   1445 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
   1446 	PIPE_UNLOCK(pipe);
   1447 	return (0);
   1448 }
   1449 
   1450 static int
   1451 pipe_fcntl(fp, cmd, data, p)
   1452 	struct file *fp;
   1453 	u_int cmd;
   1454 	void *data;
   1455 	struct proc *p;
   1456 {
   1457 	if (cmd == F_SETFL)
   1458 		return (0);
   1459 	else
   1460 		return (EOPNOTSUPP);
   1461 }
   1462 
   1463 /*
   1464  * Handle pipe sysctls.
   1465  */
   1466 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1467 {
   1468 
   1469 	sysctl_createv(SYSCTL_PERMANENT,
   1470 		       CTLTYPE_NODE, "kern", NULL,
   1471 		       NULL, 0, NULL, 0,
   1472 		       CTL_KERN, CTL_EOL);
   1473 	sysctl_createv(SYSCTL_PERMANENT,
   1474 		       CTLTYPE_NODE, "pipe", NULL,
   1475 		       NULL, 0, NULL, 0,
   1476 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1477 
   1478 	sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
   1479 		       CTLTYPE_INT, "maxkvasz", NULL,
   1480 		       NULL, 0, &maxpipekva, 0,
   1481 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
   1482 	sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
   1483 		       CTLTYPE_INT, "maxloankvasz", NULL,
   1484 		       NULL, 0, &limitpipekva, 0,
   1485 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
   1486 	sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
   1487 		       CTLTYPE_INT, "maxbigpipes", NULL,
   1488 		       NULL, 0, &maxbigpipes, 0,
   1489 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1490 	sysctl_createv(SYSCTL_PERMANENT,
   1491 		       CTLTYPE_INT, "nbigpipes", NULL,
   1492 		       NULL, 0, &nbigpipe, 0,
   1493 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1494 	sysctl_createv(SYSCTL_PERMANENT,
   1495 		       CTLTYPE_INT, "kvasize", NULL,
   1496 		       NULL, 0, &amountpipekva, 0,
   1497 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1498 }
   1499 
   1500 /*
   1501  * Initialize pipe structs.
   1502  */
   1503 void
   1504 pipe_init(void)
   1505 {
   1506 	pool_init(&pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl", NULL);
   1507 }
   1508