sys_pipe.c revision 1.55.2.2.2.1 1 /* $NetBSD: sys_pipe.c,v 1.55.2.2.2.1 2005/09/13 23:04:57 riz Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.55.2.2.2.1 2005/09/13 23:04:57 riz Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/ttycom.h>
98 #include <sys/stat.h>
99 #include <sys/malloc.h>
100 #include <sys/poll.h>
101 #include <sys/signalvar.h>
102 #include <sys/vnode.h>
103 #include <sys/uio.h>
104 #include <sys/lock.h>
105 #include <sys/select.h>
106 #include <sys/mount.h>
107 #include <sys/sa.h>
108 #include <sys/syscallargs.h>
109 #include <uvm/uvm.h>
110 #include <sys/sysctl.h>
111 #include <sys/kernel.h>
112
113 #include <sys/pipe.h>
114
115 /*
116 * Avoid microtime(9), it's slow. We don't guard the read from time(9)
117 * with splclock(9) since we don't actually need to be THAT sure the access
118 * is atomic.
119 */
120 #define PIPE_TIMESTAMP(tvp) (*(tvp) = time)
121
122
123 /*
124 * Use this define if you want to disable *fancy* VM things. Expect an
125 * approx 30% decrease in transfer rate.
126 */
127 /* #define PIPE_NODIRECT */
128
129 /*
130 * interfaces to the outside world
131 */
132 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
133 struct ucred *cred, int flags);
134 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
135 struct ucred *cred, int flags);
136 static int pipe_close(struct file *fp, struct proc *p);
137 static int pipe_poll(struct file *fp, int events, struct proc *p);
138 static int pipe_fcntl(struct file *fp, u_int com, void *data,
139 struct proc *p);
140 static int pipe_kqfilter(struct file *fp, struct knote *kn);
141 static int pipe_stat(struct file *fp, struct stat *sb, struct proc *p);
142 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
143 struct proc *p);
144
145 static struct fileops pipeops = {
146 pipe_read, pipe_write, pipe_ioctl, pipe_fcntl, pipe_poll,
147 pipe_stat, pipe_close, pipe_kqfilter
148 };
149
150 /*
151 * Default pipe buffer size(s), this can be kind-of large now because pipe
152 * space is pageable. The pipe code will try to maintain locality of
153 * reference for performance reasons, so small amounts of outstanding I/O
154 * will not wipe the cache.
155 */
156 #define MINPIPESIZE (PIPE_SIZE/3)
157 #define MAXPIPESIZE (2*PIPE_SIZE/3)
158
159 /*
160 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
161 * is there so that on large systems, we don't exhaust it.
162 */
163 #define MAXPIPEKVA (8*1024*1024)
164 static int maxpipekva = MAXPIPEKVA;
165
166 /*
167 * Limit for direct transfers, we cannot, of course limit
168 * the amount of kva for pipes in general though.
169 */
170 #define LIMITPIPEKVA (16*1024*1024)
171 static int limitpipekva = LIMITPIPEKVA;
172
173 /*
174 * Limit the number of "big" pipes
175 */
176 #define LIMITBIGPIPES 32
177 static int maxbigpipes = LIMITBIGPIPES;
178 static int nbigpipe = 0;
179
180 /*
181 * Amount of KVA consumed by pipe buffers.
182 */
183 static int amountpipekva = 0;
184
185 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
186
187 static void pipeclose(struct file *fp, struct pipe *pipe);
188 static void pipe_free_kmem(struct pipe *pipe);
189 static int pipe_create(struct pipe **pipep, int allockva);
190 static int pipelock(struct pipe *pipe, int catch);
191 static __inline void pipeunlock(struct pipe *pipe);
192 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
193 #ifndef PIPE_NODIRECT
194 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
195 struct uio *uio);
196 #endif
197 static int pipespace(struct pipe *pipe, int size);
198
199 #ifndef PIPE_NODIRECT
200 static int pipe_loan_alloc(struct pipe *, int);
201 static void pipe_loan_free(struct pipe *);
202 #endif /* PIPE_NODIRECT */
203
204 static struct pool pipe_pool;
205
206 /*
207 * The pipe system call for the DTYPE_PIPE type of pipes
208 */
209
210 /* ARGSUSED */
211 int
212 sys_pipe(l, v, retval)
213 struct lwp *l;
214 void *v;
215 register_t *retval;
216 {
217 struct file *rf, *wf;
218 struct pipe *rpipe, *wpipe;
219 int fd, error;
220 struct proc *p;
221
222 p = l->l_proc;
223 rpipe = wpipe = NULL;
224 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
225 pipeclose(NULL, rpipe);
226 pipeclose(NULL, wpipe);
227 return (ENFILE);
228 }
229
230 /*
231 * Note: the file structure returned from falloc() is marked
232 * as 'larval' initially. Unless we mark it as 'mature' by
233 * FILE_SET_MATURE(), any attempt to do anything with it would
234 * return EBADF, including e.g. dup(2) or close(2). This avoids
235 * file descriptor races if we block in the second falloc().
236 */
237
238 error = falloc(p, &rf, &fd);
239 if (error)
240 goto free2;
241 retval[0] = fd;
242 rf->f_flag = FREAD;
243 rf->f_type = DTYPE_PIPE;
244 rf->f_data = (caddr_t)rpipe;
245 rf->f_ops = &pipeops;
246
247 error = falloc(p, &wf, &fd);
248 if (error)
249 goto free3;
250 retval[1] = fd;
251 wf->f_flag = FWRITE;
252 wf->f_type = DTYPE_PIPE;
253 wf->f_data = (caddr_t)wpipe;
254 wf->f_ops = &pipeops;
255
256 rpipe->pipe_peer = wpipe;
257 wpipe->pipe_peer = rpipe;
258
259 FILE_SET_MATURE(rf);
260 FILE_SET_MATURE(wf);
261 FILE_UNUSE(rf, p);
262 FILE_UNUSE(wf, p);
263 return (0);
264 free3:
265 FILE_UNUSE(rf, p);
266 ffree(rf);
267 fdremove(p->p_fd, retval[0]);
268 free2:
269 pipeclose(NULL, wpipe);
270 pipeclose(NULL, rpipe);
271
272 return (error);
273 }
274
275 /*
276 * Allocate kva for pipe circular buffer, the space is pageable
277 * This routine will 'realloc' the size of a pipe safely, if it fails
278 * it will retain the old buffer.
279 * If it fails it will return ENOMEM.
280 */
281 static int
282 pipespace(pipe, size)
283 struct pipe *pipe;
284 int size;
285 {
286 caddr_t buffer;
287 /*
288 * Allocate pageable virtual address space. Physical memory is
289 * allocated on demand.
290 */
291 buffer = (caddr_t) uvm_km_valloc(kernel_map, round_page(size));
292 if (buffer == NULL)
293 return (ENOMEM);
294
295 /* free old resources if we're resizing */
296 pipe_free_kmem(pipe);
297 pipe->pipe_buffer.buffer = buffer;
298 pipe->pipe_buffer.size = size;
299 pipe->pipe_buffer.in = 0;
300 pipe->pipe_buffer.out = 0;
301 pipe->pipe_buffer.cnt = 0;
302 amountpipekva += pipe->pipe_buffer.size;
303 return (0);
304 }
305
306 /*
307 * Initialize and allocate VM and memory for pipe.
308 */
309 static int
310 pipe_create(pipep, allockva)
311 struct pipe **pipep;
312 int allockva;
313 {
314 struct pipe *pipe;
315 int error;
316
317 pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
318
319 /* Initialize */
320 memset(pipe, 0, sizeof(struct pipe));
321 pipe->pipe_state = PIPE_SIGNALR;
322
323 PIPE_TIMESTAMP(&pipe->pipe_ctime);
324 pipe->pipe_atime = pipe->pipe_ctime;
325 pipe->pipe_mtime = pipe->pipe_ctime;
326 simple_lock_init(&pipe->pipe_slock);
327 lockinit(&pipe->pipe_lock, PSOCK | PCATCH, "pipelk", 0, 0);
328
329 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
330 return (error);
331
332 return (0);
333 }
334
335
336 /*
337 * Lock a pipe for I/O, blocking other access
338 * Called with pipe spin lock held.
339 * Return with pipe spin lock released on success.
340 */
341 static int
342 pipelock(pipe, catch)
343 struct pipe *pipe;
344 int catch;
345 {
346 int error;
347
348 LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
349
350 while (1) {
351 error = lockmgr(&pipe->pipe_lock, LK_EXCLUSIVE | LK_INTERLOCK,
352 &pipe->pipe_slock);
353 if (error == 0)
354 break;
355
356 simple_lock(&pipe->pipe_slock);
357 if (catch || (error != EINTR && error != ERESTART))
358 break;
359 /*
360 * XXX XXX XXX
361 * The pipe lock is initialised with PCATCH on and we cannot
362 * override this in a lockmgr() call. Thus a pending signal
363 * will cause lockmgr() to return with EINTR or ERESTART.
364 * We cannot simply re-enter lockmgr() at this point since
365 * the pending signals have not yet been posted and would
366 * cause an immediate EINTR/ERESTART return again.
367 * As a workaround we pause for a while here, giving the lock
368 * a chance to drain, before trying again.
369 * XXX XXX XXX
370 *
371 * NOTE: Consider dropping PCATCH from this lock; in practice
372 * it is never held for long enough periods for having it
373 * interruptable at the start of pipe_read/pipe_write to be
374 * beneficial.
375 */
376 (void) ltsleep(&lbolt, PSOCK, "rstrtpipelock", hz,
377 &pipe->pipe_slock);
378 }
379 return (error);
380 }
381
382 /*
383 * unlock a pipe I/O lock
384 */
385 static __inline void
386 pipeunlock(pipe)
387 struct pipe *pipe;
388 {
389
390 lockmgr(&pipe->pipe_lock, LK_RELEASE, NULL);
391 }
392
393 /*
394 * Select/poll wakup. This also sends SIGIO to peer connected to
395 * 'sigpipe' side of pipe.
396 */
397 static void
398 pipeselwakeup(selp, sigp, code)
399 struct pipe *selp, *sigp;
400 int code;
401 {
402 int band;
403
404 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
405
406 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
407 return;
408
409 switch (code) {
410 case POLL_IN:
411 band = POLLIN|POLLRDNORM;
412 break;
413 case POLL_OUT:
414 band = POLLOUT|POLLWRNORM;
415 break;
416 case POLL_HUP:
417 band = POLLHUP;
418 break;
419 #if POLL_HUP != POLL_ERR
420 case POLL_ERR:
421 band = POLLERR;
422 break;
423 #endif
424 default:
425 band = 0;
426 #ifdef DIAGNOSTIC
427 printf("bad siginfo code %d in pipe notification.\n", code);
428 #endif
429 break;
430 }
431
432 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
433 }
434
435 /* ARGSUSED */
436 static int
437 pipe_read(fp, offset, uio, cred, flags)
438 struct file *fp;
439 off_t *offset;
440 struct uio *uio;
441 struct ucred *cred;
442 int flags;
443 {
444 struct pipe *rpipe = (struct pipe *) fp->f_data;
445 struct pipebuf *bp = &rpipe->pipe_buffer;
446 int error;
447 size_t nread = 0;
448 size_t size;
449 size_t ocnt;
450
451 PIPE_LOCK(rpipe);
452 ++rpipe->pipe_busy;
453 ocnt = bp->cnt;
454
455 again:
456 error = pipelock(rpipe, 1);
457 if (error)
458 goto unlocked_error;
459
460 while (uio->uio_resid) {
461 /*
462 * normal pipe buffer receive
463 */
464 if (bp->cnt > 0) {
465 size = bp->size - bp->out;
466 if (size > bp->cnt)
467 size = bp->cnt;
468 if (size > uio->uio_resid)
469 size = uio->uio_resid;
470
471 error = uiomove(&bp->buffer[bp->out], size, uio);
472 if (error)
473 break;
474
475 bp->out += size;
476 if (bp->out >= bp->size)
477 bp->out = 0;
478
479 bp->cnt -= size;
480
481 /*
482 * If there is no more to read in the pipe, reset
483 * its pointers to the beginning. This improves
484 * cache hit stats.
485 */
486 if (bp->cnt == 0) {
487 bp->in = 0;
488 bp->out = 0;
489 }
490 nread += size;
491 #ifndef PIPE_NODIRECT
492 } else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
493 /*
494 * Direct copy, bypassing a kernel buffer.
495 */
496 caddr_t va;
497
498 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
499
500 size = rpipe->pipe_map.cnt;
501 if (size > uio->uio_resid)
502 size = uio->uio_resid;
503
504 va = (caddr_t) rpipe->pipe_map.kva +
505 rpipe->pipe_map.pos;
506 error = uiomove(va, size, uio);
507 if (error)
508 break;
509 nread += size;
510 rpipe->pipe_map.pos += size;
511 rpipe->pipe_map.cnt -= size;
512 if (rpipe->pipe_map.cnt == 0) {
513 PIPE_LOCK(rpipe);
514 rpipe->pipe_state &= ~PIPE_DIRECTR;
515 wakeup(rpipe);
516 PIPE_UNLOCK(rpipe);
517 }
518 #endif
519 } else {
520 /*
521 * Break if some data was read.
522 */
523 if (nread > 0)
524 break;
525
526 PIPE_LOCK(rpipe);
527
528 /*
529 * detect EOF condition
530 * read returns 0 on EOF, no need to set error
531 */
532 if (rpipe->pipe_state & PIPE_EOF) {
533 PIPE_UNLOCK(rpipe);
534 break;
535 }
536
537 /*
538 * don't block on non-blocking I/O
539 */
540 if (fp->f_flag & FNONBLOCK) {
541 PIPE_UNLOCK(rpipe);
542 error = EAGAIN;
543 break;
544 }
545
546 /*
547 * Unlock the pipe buffer for our remaining processing.
548 * We will either break out with an error or we will
549 * sleep and relock to loop.
550 */
551 pipeunlock(rpipe);
552
553 /*
554 * The PIPE_DIRECTR flag is not under the control
555 * of the long-term lock (see pipe_direct_write()),
556 * so re-check now while holding the spin lock.
557 */
558 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
559 goto again;
560
561 /*
562 * We want to read more, wake up select/poll.
563 */
564 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
565
566 /*
567 * If the "write-side" is blocked, wake it up now.
568 */
569 if (rpipe->pipe_state & PIPE_WANTW) {
570 rpipe->pipe_state &= ~PIPE_WANTW;
571 wakeup(rpipe);
572 }
573
574 /* Now wait until the pipe is filled */
575 rpipe->pipe_state |= PIPE_WANTR;
576 error = ltsleep(rpipe, PSOCK | PCATCH,
577 "piperd", 0, &rpipe->pipe_slock);
578 if (error != 0)
579 goto unlocked_error;
580 goto again;
581 }
582 }
583
584 if (error == 0)
585 PIPE_TIMESTAMP(&rpipe->pipe_atime);
586
587 PIPE_LOCK(rpipe);
588 pipeunlock(rpipe);
589
590 unlocked_error:
591 --rpipe->pipe_busy;
592
593 /*
594 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
595 */
596 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
597 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
598 wakeup(rpipe);
599 } else if (bp->cnt < MINPIPESIZE) {
600 /*
601 * Handle write blocking hysteresis.
602 */
603 if (rpipe->pipe_state & PIPE_WANTW) {
604 rpipe->pipe_state &= ~PIPE_WANTW;
605 wakeup(rpipe);
606 }
607 }
608
609 /*
610 * If anything was read off the buffer, signal to the writer it's
611 * possible to write more data. Also send signal if we are here for the
612 * first time after last write.
613 */
614 if ((bp->size - bp->cnt) >= PIPE_BUF
615 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
616 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
617 rpipe->pipe_state &= ~PIPE_SIGNALR;
618 }
619
620 PIPE_UNLOCK(rpipe);
621 return (error);
622 }
623
624 #ifndef PIPE_NODIRECT
625 /*
626 * Allocate structure for loan transfer.
627 */
628 static int
629 pipe_loan_alloc(wpipe, npages)
630 struct pipe *wpipe;
631 int npages;
632 {
633 vsize_t len;
634
635 len = (vsize_t)npages << PAGE_SHIFT;
636 wpipe->pipe_map.kva = uvm_km_valloc_wait(kernel_map, len);
637 if (wpipe->pipe_map.kva == 0)
638 return (ENOMEM);
639
640 amountpipekva += len;
641 wpipe->pipe_map.npages = npages;
642 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
643 M_WAITOK);
644 return (0);
645 }
646
647 /*
648 * Free resources allocated for loan transfer.
649 */
650 static void
651 pipe_loan_free(wpipe)
652 struct pipe *wpipe;
653 {
654 vsize_t len;
655
656 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
657 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len);
658 wpipe->pipe_map.kva = 0;
659 amountpipekva -= len;
660 free(wpipe->pipe_map.pgs, M_PIPE);
661 wpipe->pipe_map.pgs = NULL;
662 }
663
664 /*
665 * NetBSD direct write, using uvm_loan() mechanism.
666 * This implements the pipe buffer write mechanism. Note that only
667 * a direct write OR a normal pipe write can be pending at any given time.
668 * If there are any characters in the pipe buffer, the direct write will
669 * be deferred until the receiving process grabs all of the bytes from
670 * the pipe buffer. Then the direct mapping write is set-up.
671 *
672 * Called with the long-term pipe lock held.
673 */
674 static int
675 pipe_direct_write(fp, wpipe, uio)
676 struct file *fp;
677 struct pipe *wpipe;
678 struct uio *uio;
679 {
680 int error, npages, j;
681 struct vm_page **pgs;
682 vaddr_t bbase, kva, base, bend;
683 vsize_t blen, bcnt;
684 voff_t bpos;
685
686 KASSERT(wpipe->pipe_map.cnt == 0);
687
688 /*
689 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
690 * not aligned to PAGE_SIZE.
691 */
692 bbase = (vaddr_t)uio->uio_iov->iov_base;
693 base = trunc_page(bbase);
694 bend = round_page(bbase + uio->uio_iov->iov_len);
695 blen = bend - base;
696 bpos = bbase - base;
697
698 if (blen > PIPE_DIRECT_CHUNK) {
699 blen = PIPE_DIRECT_CHUNK;
700 bend = base + blen;
701 bcnt = PIPE_DIRECT_CHUNK - bpos;
702 } else {
703 bcnt = uio->uio_iov->iov_len;
704 }
705 npages = blen >> PAGE_SHIFT;
706
707 /*
708 * Free the old kva if we need more pages than we have
709 * allocated.
710 */
711 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
712 pipe_loan_free(wpipe);
713
714 /* Allocate new kva. */
715 if (wpipe->pipe_map.kva == 0) {
716 error = pipe_loan_alloc(wpipe, npages);
717 if (error)
718 return (error);
719 }
720
721 /* Loan the write buffer memory from writer process */
722 pgs = wpipe->pipe_map.pgs;
723 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
724 pgs, UVM_LOAN_TOPAGE);
725 if (error) {
726 pipe_loan_free(wpipe);
727 return (error);
728 }
729
730 /* Enter the loaned pages to kva */
731 kva = wpipe->pipe_map.kva;
732 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
733 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
734 }
735 pmap_update(pmap_kernel());
736
737 /* Now we can put the pipe in direct write mode */
738 wpipe->pipe_map.pos = bpos;
739 wpipe->pipe_map.cnt = bcnt;
740 wpipe->pipe_state |= PIPE_DIRECTW;
741
742 /*
743 * But before we can let someone do a direct read,
744 * we have to wait until the pipe is drained.
745 */
746
747 /* Relase the pipe lock while we wait */
748 PIPE_LOCK(wpipe);
749 pipeunlock(wpipe);
750
751 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
752 if (wpipe->pipe_state & PIPE_WANTR) {
753 wpipe->pipe_state &= ~PIPE_WANTR;
754 wakeup(wpipe);
755 }
756
757 wpipe->pipe_state |= PIPE_WANTW;
758 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0,
759 &wpipe->pipe_slock);
760 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
761 error = EPIPE;
762 }
763
764 /* Pipe is drained; next read will off the direct buffer */
765 wpipe->pipe_state |= PIPE_DIRECTR;
766
767 /* Wait until the reader is done */
768 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
769 if (wpipe->pipe_state & PIPE_WANTR) {
770 wpipe->pipe_state &= ~PIPE_WANTR;
771 wakeup(wpipe);
772 }
773 pipeselwakeup(wpipe, wpipe, POLL_IN);
774 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0,
775 &wpipe->pipe_slock);
776 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
777 error = EPIPE;
778 }
779
780 /* Take pipe out of direct write mode */
781 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
782
783 /* Acquire the pipe lock and cleanup */
784 (void)pipelock(wpipe, 0);
785 if (pgs != NULL) {
786 pmap_kremove(wpipe->pipe_map.kva, blen);
787 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
788 }
789 if (error || amountpipekva > maxpipekva)
790 pipe_loan_free(wpipe);
791
792 if (error) {
793 pipeselwakeup(wpipe, wpipe, POLL_ERR);
794
795 /*
796 * If nothing was read from what we offered, return error
797 * straight on. Otherwise update uio resid first. Caller
798 * will deal with the error condition, returning short
799 * write, error, or restarting the write(2) as appropriate.
800 */
801 if (wpipe->pipe_map.cnt == bcnt) {
802 wpipe->pipe_map.cnt = 0;
803 wakeup(wpipe);
804 return (error);
805 }
806
807 bcnt -= wpipe->pipe_map.cnt;
808 }
809
810 uio->uio_resid -= bcnt;
811 /* uio_offset not updated, not set/used for write(2) */
812 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
813 uio->uio_iov->iov_len -= bcnt;
814 if (uio->uio_iov->iov_len == 0) {
815 uio->uio_iov++;
816 uio->uio_iovcnt--;
817 }
818
819 wpipe->pipe_map.cnt = 0;
820 return (error);
821 }
822 #endif /* !PIPE_NODIRECT */
823
824 static int
825 pipe_write(fp, offset, uio, cred, flags)
826 struct file *fp;
827 off_t *offset;
828 struct uio *uio;
829 struct ucred *cred;
830 int flags;
831 {
832 struct pipe *wpipe, *rpipe;
833 struct pipebuf *bp;
834 int error;
835
836 /* We want to write to our peer */
837 rpipe = (struct pipe *) fp->f_data;
838
839 retry:
840 error = 0;
841 PIPE_LOCK(rpipe);
842 wpipe = rpipe->pipe_peer;
843
844 /*
845 * Detect loss of pipe read side, issue SIGPIPE if lost.
846 */
847 if (wpipe == NULL)
848 error = EPIPE;
849 else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
850 /* Deal with race for peer */
851 PIPE_UNLOCK(rpipe);
852 goto retry;
853 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
854 PIPE_UNLOCK(wpipe);
855 error = EPIPE;
856 }
857
858 PIPE_UNLOCK(rpipe);
859 if (error != 0)
860 return (error);
861
862 ++wpipe->pipe_busy;
863
864 /* Aquire the long-term pipe lock */
865 if ((error = pipelock(wpipe,1)) != 0) {
866 --wpipe->pipe_busy;
867 if (wpipe->pipe_busy == 0
868 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
869 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
870 wakeup(wpipe);
871 }
872 PIPE_UNLOCK(wpipe);
873 return (error);
874 }
875
876 bp = &wpipe->pipe_buffer;
877
878 /*
879 * If it is advantageous to resize the pipe buffer, do so.
880 */
881 if ((uio->uio_resid > PIPE_SIZE) &&
882 (nbigpipe < maxbigpipes) &&
883 #ifndef PIPE_NODIRECT
884 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
885 #endif
886 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
887
888 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
889 nbigpipe++;
890 }
891
892 while (uio->uio_resid) {
893 size_t space;
894
895 #ifndef PIPE_NODIRECT
896 /*
897 * Pipe buffered writes cannot be coincidental with
898 * direct writes. Also, only one direct write can be
899 * in progress at any one time. We wait until the currently
900 * executing direct write is completed before continuing.
901 *
902 * We break out if a signal occurs or the reader goes away.
903 */
904 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
905 PIPE_LOCK(wpipe);
906 if (wpipe->pipe_state & PIPE_WANTR) {
907 wpipe->pipe_state &= ~PIPE_WANTR;
908 wakeup(wpipe);
909 }
910 pipeunlock(wpipe);
911 error = ltsleep(wpipe, PSOCK | PCATCH,
912 "pipbww", 0, &wpipe->pipe_slock);
913
914 (void)pipelock(wpipe, 0);
915 if (wpipe->pipe_state & PIPE_EOF)
916 error = EPIPE;
917 }
918 if (error)
919 break;
920
921 /*
922 * If the transfer is large, we can gain performance if
923 * we do process-to-process copies directly.
924 * If the write is non-blocking, we don't use the
925 * direct write mechanism.
926 *
927 * The direct write mechanism will detect the reader going
928 * away on us.
929 */
930 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
931 (fp->f_flag & FNONBLOCK) == 0 &&
932 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
933 error = pipe_direct_write(fp, wpipe, uio);
934
935 /*
936 * Break out if error occurred, unless it's ENOMEM.
937 * ENOMEM means we failed to allocate some resources
938 * for direct write, so we just fallback to ordinary
939 * write. If the direct write was successful,
940 * process rest of data via ordinary write.
941 */
942 if (error == 0)
943 continue;
944
945 if (error != ENOMEM)
946 break;
947 }
948 #endif /* PIPE_NODIRECT */
949
950 space = bp->size - bp->cnt;
951
952 /* Writes of size <= PIPE_BUF must be atomic. */
953 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
954 space = 0;
955
956 if (space > 0) {
957 int size; /* Transfer size */
958 int segsize; /* first segment to transfer */
959
960 /*
961 * Transfer size is minimum of uio transfer
962 * and free space in pipe buffer.
963 */
964 if (space > uio->uio_resid)
965 size = uio->uio_resid;
966 else
967 size = space;
968 /*
969 * First segment to transfer is minimum of
970 * transfer size and contiguous space in
971 * pipe buffer. If first segment to transfer
972 * is less than the transfer size, we've got
973 * a wraparound in the buffer.
974 */
975 segsize = bp->size - bp->in;
976 if (segsize > size)
977 segsize = size;
978
979 /* Transfer first segment */
980 error = uiomove(&bp->buffer[bp->in], segsize, uio);
981
982 if (error == 0 && segsize < size) {
983 /*
984 * Transfer remaining part now, to
985 * support atomic writes. Wraparound
986 * happened.
987 */
988 #ifdef DEBUG
989 if (bp->in + segsize != bp->size)
990 panic("Expected pipe buffer wraparound disappeared");
991 #endif
992
993 error = uiomove(&bp->buffer[0],
994 size - segsize, uio);
995 }
996 if (error)
997 break;
998
999 bp->in += size;
1000 if (bp->in >= bp->size) {
1001 #ifdef DEBUG
1002 if (bp->in != size - segsize + bp->size)
1003 panic("Expected wraparound bad");
1004 #endif
1005 bp->in = size - segsize;
1006 }
1007
1008 bp->cnt += size;
1009 #ifdef DEBUG
1010 if (bp->cnt > bp->size)
1011 panic("Pipe buffer overflow");
1012 #endif
1013 } else {
1014 /*
1015 * If the "read-side" has been blocked, wake it up now.
1016 */
1017 PIPE_LOCK(wpipe);
1018 if (wpipe->pipe_state & PIPE_WANTR) {
1019 wpipe->pipe_state &= ~PIPE_WANTR;
1020 wakeup(wpipe);
1021 }
1022 PIPE_UNLOCK(wpipe);
1023
1024 /*
1025 * don't block on non-blocking I/O
1026 */
1027 if (fp->f_flag & FNONBLOCK) {
1028 error = EAGAIN;
1029 break;
1030 }
1031
1032 /*
1033 * We have no more space and have something to offer,
1034 * wake up select/poll.
1035 */
1036 if (bp->cnt)
1037 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1038
1039 PIPE_LOCK(wpipe);
1040 pipeunlock(wpipe);
1041 wpipe->pipe_state |= PIPE_WANTW;
1042 error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0,
1043 &wpipe->pipe_slock);
1044 (void)pipelock(wpipe, 0);
1045 if (error != 0)
1046 break;
1047 /*
1048 * If read side wants to go away, we just issue a signal
1049 * to ourselves.
1050 */
1051 if (wpipe->pipe_state & PIPE_EOF) {
1052 error = EPIPE;
1053 break;
1054 }
1055 }
1056 }
1057
1058 PIPE_LOCK(wpipe);
1059 --wpipe->pipe_busy;
1060 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1061 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1062 wakeup(wpipe);
1063 } else if (bp->cnt > 0) {
1064 /*
1065 * If we have put any characters in the buffer, we wake up
1066 * the reader.
1067 */
1068 if (wpipe->pipe_state & PIPE_WANTR) {
1069 wpipe->pipe_state &= ~PIPE_WANTR;
1070 wakeup(wpipe);
1071 }
1072 }
1073
1074 /*
1075 * Don't return EPIPE if I/O was successful
1076 */
1077 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1078 error = 0;
1079
1080 if (error == 0)
1081 PIPE_TIMESTAMP(&wpipe->pipe_mtime);
1082
1083 /*
1084 * We have something to offer, wake up select/poll.
1085 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1086 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1087 */
1088 if (bp->cnt)
1089 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1090
1091 /*
1092 * Arrange for next read(2) to do a signal.
1093 */
1094 wpipe->pipe_state |= PIPE_SIGNALR;
1095
1096 pipeunlock(wpipe);
1097 PIPE_UNLOCK(wpipe);
1098 return (error);
1099 }
1100
1101 /*
1102 * we implement a very minimal set of ioctls for compatibility with sockets.
1103 */
1104 int
1105 pipe_ioctl(fp, cmd, data, p)
1106 struct file *fp;
1107 u_long cmd;
1108 void *data;
1109 struct proc *p;
1110 {
1111 struct pipe *pipe = (struct pipe *)fp->f_data;
1112
1113 switch (cmd) {
1114
1115 case FIONBIO:
1116 return (0);
1117
1118 case FIOASYNC:
1119 PIPE_LOCK(pipe);
1120 if (*(int *)data) {
1121 pipe->pipe_state |= PIPE_ASYNC;
1122 } else {
1123 pipe->pipe_state &= ~PIPE_ASYNC;
1124 }
1125 PIPE_UNLOCK(pipe);
1126 return (0);
1127
1128 case FIONREAD:
1129 PIPE_LOCK(pipe);
1130 #ifndef PIPE_NODIRECT
1131 if (pipe->pipe_state & PIPE_DIRECTW)
1132 *(int *)data = pipe->pipe_map.cnt;
1133 else
1134 #endif
1135 *(int *)data = pipe->pipe_buffer.cnt;
1136 PIPE_UNLOCK(pipe);
1137 return (0);
1138
1139 case TIOCSPGRP:
1140 case FIOSETOWN:
1141 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1142
1143 case TIOCGPGRP:
1144 case FIOGETOWN:
1145 return fgetown(p, pipe->pipe_pgid, cmd, data);
1146
1147 }
1148 return (EPASSTHROUGH);
1149 }
1150
1151 int
1152 pipe_poll(fp, events, td)
1153 struct file *fp;
1154 int events;
1155 struct proc *td;
1156 {
1157 struct pipe *rpipe = (struct pipe *)fp->f_data;
1158 struct pipe *wpipe;
1159 int eof = 0;
1160 int revents = 0;
1161
1162 retry:
1163 PIPE_LOCK(rpipe);
1164 wpipe = rpipe->pipe_peer;
1165 if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
1166 /* Deal with race for peer */
1167 PIPE_UNLOCK(rpipe);
1168 goto retry;
1169 }
1170
1171 if (events & (POLLIN | POLLRDNORM))
1172 if ((rpipe->pipe_buffer.cnt > 0) ||
1173 #ifndef PIPE_NODIRECT
1174 (rpipe->pipe_state & PIPE_DIRECTR) ||
1175 #endif
1176 (rpipe->pipe_state & PIPE_EOF))
1177 revents |= events & (POLLIN | POLLRDNORM);
1178
1179 eof |= (rpipe->pipe_state & PIPE_EOF);
1180 PIPE_UNLOCK(rpipe);
1181
1182 if (wpipe == NULL)
1183 revents |= events & (POLLOUT | POLLWRNORM);
1184 else {
1185 if (events & (POLLOUT | POLLWRNORM))
1186 if ((wpipe->pipe_state & PIPE_EOF) || (
1187 #ifndef PIPE_NODIRECT
1188 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1189 #endif
1190 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1191 revents |= events & (POLLOUT | POLLWRNORM);
1192
1193 eof |= (wpipe->pipe_state & PIPE_EOF);
1194 PIPE_UNLOCK(wpipe);
1195 }
1196
1197 if (wpipe == NULL || eof)
1198 revents |= POLLHUP;
1199
1200 if (revents == 0) {
1201 if (events & (POLLIN | POLLRDNORM))
1202 selrecord(td, &rpipe->pipe_sel);
1203
1204 if (events & (POLLOUT | POLLWRNORM))
1205 selrecord(td, &wpipe->pipe_sel);
1206 }
1207
1208 return (revents);
1209 }
1210
1211 static int
1212 pipe_stat(fp, ub, td)
1213 struct file *fp;
1214 struct stat *ub;
1215 struct proc *td;
1216 {
1217 struct pipe *pipe = (struct pipe *)fp->f_data;
1218
1219 memset((caddr_t)ub, 0, sizeof(*ub));
1220 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1221 ub->st_blksize = pipe->pipe_buffer.size;
1222 ub->st_size = pipe->pipe_buffer.cnt;
1223 ub->st_blocks = (ub->st_size) ? 1 : 0;
1224 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec)
1225 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1226 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1227 ub->st_uid = fp->f_cred->cr_uid;
1228 ub->st_gid = fp->f_cred->cr_gid;
1229 /*
1230 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1231 * XXX (st_dev, st_ino) should be unique.
1232 */
1233 return (0);
1234 }
1235
1236 /* ARGSUSED */
1237 static int
1238 pipe_close(fp, td)
1239 struct file *fp;
1240 struct proc *td;
1241 {
1242 struct pipe *pipe = (struct pipe *)fp->f_data;
1243
1244 fp->f_data = NULL;
1245 pipeclose(fp, pipe);
1246 return (0);
1247 }
1248
1249 static void
1250 pipe_free_kmem(pipe)
1251 struct pipe *pipe;
1252 {
1253
1254 if (pipe->pipe_buffer.buffer != NULL) {
1255 if (pipe->pipe_buffer.size > PIPE_SIZE)
1256 --nbigpipe;
1257 amountpipekva -= pipe->pipe_buffer.size;
1258 uvm_km_free(kernel_map,
1259 (vaddr_t)pipe->pipe_buffer.buffer,
1260 pipe->pipe_buffer.size);
1261 pipe->pipe_buffer.buffer = NULL;
1262 }
1263 #ifndef PIPE_NODIRECT
1264 if (pipe->pipe_map.kva != 0) {
1265 pipe_loan_free(pipe);
1266 pipe->pipe_map.cnt = 0;
1267 pipe->pipe_map.kva = 0;
1268 pipe->pipe_map.pos = 0;
1269 pipe->pipe_map.npages = 0;
1270 }
1271 #endif /* !PIPE_NODIRECT */
1272 }
1273
1274 /*
1275 * shutdown the pipe
1276 */
1277 static void
1278 pipeclose(fp, pipe)
1279 struct file *fp;
1280 struct pipe *pipe;
1281 {
1282 struct pipe *ppipe;
1283
1284 if (pipe == NULL)
1285 return;
1286
1287 retry:
1288 PIPE_LOCK(pipe);
1289
1290 pipeselwakeup(pipe, pipe, POLL_HUP);
1291
1292 /*
1293 * If the other side is blocked, wake it up saying that
1294 * we want to close it down.
1295 */
1296 pipe->pipe_state |= PIPE_EOF;
1297 while (pipe->pipe_busy) {
1298 wakeup(pipe);
1299 pipe->pipe_state |= PIPE_WANTCLOSE;
1300 ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock);
1301 }
1302
1303 /*
1304 * Disconnect from peer
1305 */
1306 if ((ppipe = pipe->pipe_peer) != NULL) {
1307 /* Deal with race for peer */
1308 if (simple_lock_try(&ppipe->pipe_slock) == 0) {
1309 PIPE_UNLOCK(pipe);
1310 goto retry;
1311 }
1312 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1313
1314 ppipe->pipe_state |= PIPE_EOF;
1315 wakeup(ppipe);
1316 ppipe->pipe_peer = NULL;
1317 PIPE_UNLOCK(ppipe);
1318 }
1319
1320 (void)lockmgr(&pipe->pipe_lock, LK_DRAIN | LK_INTERLOCK,
1321 &pipe->pipe_slock);
1322
1323 /*
1324 * free resources
1325 */
1326 pipe_free_kmem(pipe);
1327 pool_put(&pipe_pool, pipe);
1328 }
1329
1330 static void
1331 filt_pipedetach(struct knote *kn)
1332 {
1333 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1334
1335 switch(kn->kn_filter) {
1336 case EVFILT_WRITE:
1337 /* need the peer structure, not our own */
1338 pipe = pipe->pipe_peer;
1339 /* XXXSMP: race for peer */
1340
1341 /* if reader end already closed, just return */
1342 if (pipe == NULL)
1343 return;
1344
1345 break;
1346 default:
1347 /* nothing to do */
1348 break;
1349 }
1350
1351 #ifdef DIAGNOSTIC
1352 if (kn->kn_hook != pipe)
1353 panic("filt_pipedetach: inconsistent knote");
1354 #endif
1355
1356 PIPE_LOCK(pipe);
1357 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1358 PIPE_UNLOCK(pipe);
1359 }
1360
1361 /*ARGSUSED*/
1362 static int
1363 filt_piperead(struct knote *kn, long hint)
1364 {
1365 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1366 struct pipe *wpipe = rpipe->pipe_peer;
1367
1368 if ((hint & NOTE_SUBMIT) == 0)
1369 PIPE_LOCK(rpipe);
1370 kn->kn_data = rpipe->pipe_buffer.cnt;
1371 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1372 kn->kn_data = rpipe->pipe_map.cnt;
1373
1374 /* XXXSMP: race for peer */
1375 if ((rpipe->pipe_state & PIPE_EOF) ||
1376 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1377 kn->kn_flags |= EV_EOF;
1378 if ((hint & NOTE_SUBMIT) == 0)
1379 PIPE_UNLOCK(rpipe);
1380 return (1);
1381 }
1382 if ((hint & NOTE_SUBMIT) == 0)
1383 PIPE_UNLOCK(rpipe);
1384 return (kn->kn_data > 0);
1385 }
1386
1387 /*ARGSUSED*/
1388 static int
1389 filt_pipewrite(struct knote *kn, long hint)
1390 {
1391 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1392 struct pipe *wpipe = rpipe->pipe_peer;
1393
1394 if ((hint & NOTE_SUBMIT) == 0)
1395 PIPE_LOCK(rpipe);
1396 /* XXXSMP: race for peer */
1397 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1398 kn->kn_data = 0;
1399 kn->kn_flags |= EV_EOF;
1400 if ((hint & NOTE_SUBMIT) == 0)
1401 PIPE_UNLOCK(rpipe);
1402 return (1);
1403 }
1404 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1405 if (wpipe->pipe_state & PIPE_DIRECTW)
1406 kn->kn_data = 0;
1407
1408 if ((hint & NOTE_SUBMIT) == 0)
1409 PIPE_UNLOCK(rpipe);
1410 return (kn->kn_data >= PIPE_BUF);
1411 }
1412
1413 static const struct filterops pipe_rfiltops =
1414 { 1, NULL, filt_pipedetach, filt_piperead };
1415 static const struct filterops pipe_wfiltops =
1416 { 1, NULL, filt_pipedetach, filt_pipewrite };
1417
1418 /*ARGSUSED*/
1419 static int
1420 pipe_kqfilter(struct file *fp, struct knote *kn)
1421 {
1422 struct pipe *pipe;
1423
1424 pipe = (struct pipe *)kn->kn_fp->f_data;
1425 switch (kn->kn_filter) {
1426 case EVFILT_READ:
1427 kn->kn_fop = &pipe_rfiltops;
1428 break;
1429 case EVFILT_WRITE:
1430 kn->kn_fop = &pipe_wfiltops;
1431 /* XXXSMP: race for peer */
1432 pipe = pipe->pipe_peer;
1433 if (pipe == NULL) {
1434 /* other end of pipe has been closed */
1435 return (EBADF);
1436 }
1437 break;
1438 default:
1439 return (1);
1440 }
1441 kn->kn_hook = pipe;
1442
1443 PIPE_LOCK(pipe);
1444 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1445 PIPE_UNLOCK(pipe);
1446 return (0);
1447 }
1448
1449 static int
1450 pipe_fcntl(fp, cmd, data, p)
1451 struct file *fp;
1452 u_int cmd;
1453 void *data;
1454 struct proc *p;
1455 {
1456 if (cmd == F_SETFL)
1457 return (0);
1458 else
1459 return (EOPNOTSUPP);
1460 }
1461
1462 /*
1463 * Handle pipe sysctls.
1464 */
1465 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1466 {
1467
1468 sysctl_createv(clog, 0, NULL, NULL,
1469 CTLFLAG_PERMANENT,
1470 CTLTYPE_NODE, "kern", NULL,
1471 NULL, 0, NULL, 0,
1472 CTL_KERN, CTL_EOL);
1473 sysctl_createv(clog, 0, NULL, NULL,
1474 CTLFLAG_PERMANENT,
1475 CTLTYPE_NODE, "pipe",
1476 SYSCTL_DESCR("Pipe settings"),
1477 NULL, 0, NULL, 0,
1478 CTL_KERN, KERN_PIPE, CTL_EOL);
1479
1480 sysctl_createv(clog, 0, NULL, NULL,
1481 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1482 CTLTYPE_INT, "maxkvasz",
1483 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1484 "used for pipes"),
1485 NULL, 0, &maxpipekva, 0,
1486 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1487 sysctl_createv(clog, 0, NULL, NULL,
1488 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1489 CTLTYPE_INT, "maxloankvasz",
1490 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1491 NULL, 0, &limitpipekva, 0,
1492 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1493 sysctl_createv(clog, 0, NULL, NULL,
1494 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1495 CTLTYPE_INT, "maxbigpipes",
1496 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1497 NULL, 0, &maxbigpipes, 0,
1498 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1499 sysctl_createv(clog, 0, NULL, NULL,
1500 CTLFLAG_PERMANENT,
1501 CTLTYPE_INT, "nbigpipes",
1502 SYSCTL_DESCR("Number of \"big\" pipes"),
1503 NULL, 0, &nbigpipe, 0,
1504 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1505 sysctl_createv(clog, 0, NULL, NULL,
1506 CTLFLAG_PERMANENT,
1507 CTLTYPE_INT, "kvasize",
1508 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1509 "buffers"),
1510 NULL, 0, &amountpipekva, 0,
1511 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1512 }
1513
1514 /*
1515 * Initialize pipe structs.
1516 */
1517 void
1518 pipe_init(void)
1519 {
1520
1521 pool_init(&pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
1522 &pool_allocator_nointr);
1523 }
1524