sys_pipe.c revision 1.63 1 /* $NetBSD: sys_pipe.c,v 1.63 2005/02/26 21:34:55 perry Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.63 2005/02/26 21:34:55 perry Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/ttycom.h>
98 #include <sys/stat.h>
99 #include <sys/malloc.h>
100 #include <sys/poll.h>
101 #include <sys/signalvar.h>
102 #include <sys/vnode.h>
103 #include <sys/uio.h>
104 #include <sys/lock.h>
105 #include <sys/select.h>
106 #include <sys/mount.h>
107 #include <sys/sa.h>
108 #include <sys/syscallargs.h>
109 #include <uvm/uvm.h>
110 #include <sys/sysctl.h>
111 #include <sys/kernel.h>
112
113 #include <sys/pipe.h>
114
115 /*
116 * Avoid microtime(9), it's slow. We don't guard the read from time(9)
117 * with splclock(9) since we don't actually need to be THAT sure the access
118 * is atomic.
119 */
120 #define PIPE_TIMESTAMP(tvp) (*(tvp) = time)
121
122
123 /*
124 * Use this define if you want to disable *fancy* VM things. Expect an
125 * approx 30% decrease in transfer rate.
126 */
127 /* #define PIPE_NODIRECT */
128
129 /*
130 * interfaces to the outside world
131 */
132 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
133 struct ucred *cred, int flags);
134 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
135 struct ucred *cred, int flags);
136 static int pipe_close(struct file *fp, struct proc *p);
137 static int pipe_poll(struct file *fp, int events, struct proc *p);
138 static int pipe_kqfilter(struct file *fp, struct knote *kn);
139 static int pipe_stat(struct file *fp, struct stat *sb, struct proc *p);
140 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
141 struct proc *p);
142
143 static const struct fileops pipeops = {
144 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
145 pipe_stat, pipe_close, pipe_kqfilter
146 };
147
148 /*
149 * Default pipe buffer size(s), this can be kind-of large now because pipe
150 * space is pageable. The pipe code will try to maintain locality of
151 * reference for performance reasons, so small amounts of outstanding I/O
152 * will not wipe the cache.
153 */
154 #define MINPIPESIZE (PIPE_SIZE/3)
155 #define MAXPIPESIZE (2*PIPE_SIZE/3)
156
157 /*
158 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
159 * is there so that on large systems, we don't exhaust it.
160 */
161 #define MAXPIPEKVA (8*1024*1024)
162 static int maxpipekva = MAXPIPEKVA;
163
164 /*
165 * Limit for direct transfers, we cannot, of course limit
166 * the amount of kva for pipes in general though.
167 */
168 #define LIMITPIPEKVA (16*1024*1024)
169 static int limitpipekva = LIMITPIPEKVA;
170
171 /*
172 * Limit the number of "big" pipes
173 */
174 #define LIMITBIGPIPES 32
175 static int maxbigpipes = LIMITBIGPIPES;
176 static int nbigpipe = 0;
177
178 /*
179 * Amount of KVA consumed by pipe buffers.
180 */
181 static int amountpipekva = 0;
182
183 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
184
185 static void pipeclose(struct file *fp, struct pipe *pipe);
186 static void pipe_free_kmem(struct pipe *pipe);
187 static int pipe_create(struct pipe **pipep, int allockva);
188 static int pipelock(struct pipe *pipe, int catch);
189 static __inline void pipeunlock(struct pipe *pipe);
190 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, void *data,
191 int code);
192 #ifndef PIPE_NODIRECT
193 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
194 struct uio *uio);
195 #endif
196 static int pipespace(struct pipe *pipe, int size);
197
198 #ifndef PIPE_NODIRECT
199 static int pipe_loan_alloc(struct pipe *, int);
200 static void pipe_loan_free(struct pipe *);
201 #endif /* PIPE_NODIRECT */
202
203 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
204 &pool_allocator_nointr);
205
206 /*
207 * The pipe system call for the DTYPE_PIPE type of pipes
208 */
209
210 /* ARGSUSED */
211 int
212 sys_pipe(l, v, retval)
213 struct lwp *l;
214 void *v;
215 register_t *retval;
216 {
217 struct file *rf, *wf;
218 struct pipe *rpipe, *wpipe;
219 int fd, error;
220 struct proc *p;
221
222 p = l->l_proc;
223 rpipe = wpipe = NULL;
224 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
225 pipeclose(NULL, rpipe);
226 pipeclose(NULL, wpipe);
227 return (ENFILE);
228 }
229
230 /*
231 * Note: the file structure returned from falloc() is marked
232 * as 'larval' initially. Unless we mark it as 'mature' by
233 * FILE_SET_MATURE(), any attempt to do anything with it would
234 * return EBADF, including e.g. dup(2) or close(2). This avoids
235 * file descriptor races if we block in the second falloc().
236 */
237
238 error = falloc(p, &rf, &fd);
239 if (error)
240 goto free2;
241 retval[0] = fd;
242 rf->f_flag = FREAD;
243 rf->f_type = DTYPE_PIPE;
244 rf->f_data = (caddr_t)rpipe;
245 rf->f_ops = &pipeops;
246
247 error = falloc(p, &wf, &fd);
248 if (error)
249 goto free3;
250 retval[1] = fd;
251 wf->f_flag = FWRITE;
252 wf->f_type = DTYPE_PIPE;
253 wf->f_data = (caddr_t)wpipe;
254 wf->f_ops = &pipeops;
255
256 rpipe->pipe_peer = wpipe;
257 wpipe->pipe_peer = rpipe;
258
259 FILE_SET_MATURE(rf);
260 FILE_SET_MATURE(wf);
261 FILE_UNUSE(rf, p);
262 FILE_UNUSE(wf, p);
263 return (0);
264 free3:
265 FILE_UNUSE(rf, p);
266 ffree(rf);
267 fdremove(p->p_fd, retval[0]);
268 free2:
269 pipeclose(NULL, wpipe);
270 pipeclose(NULL, rpipe);
271
272 return (error);
273 }
274
275 /*
276 * Allocate kva for pipe circular buffer, the space is pageable
277 * This routine will 'realloc' the size of a pipe safely, if it fails
278 * it will retain the old buffer.
279 * If it fails it will return ENOMEM.
280 */
281 static int
282 pipespace(pipe, size)
283 struct pipe *pipe;
284 int size;
285 {
286 caddr_t buffer;
287 /*
288 * Allocate pageable virtual address space. Physical memory is
289 * allocated on demand.
290 */
291 buffer = (caddr_t) uvm_km_valloc(kernel_map, round_page(size));
292 if (buffer == NULL)
293 return (ENOMEM);
294
295 /* free old resources if we're resizing */
296 pipe_free_kmem(pipe);
297 pipe->pipe_buffer.buffer = buffer;
298 pipe->pipe_buffer.size = size;
299 pipe->pipe_buffer.in = 0;
300 pipe->pipe_buffer.out = 0;
301 pipe->pipe_buffer.cnt = 0;
302 amountpipekva += pipe->pipe_buffer.size;
303 return (0);
304 }
305
306 /*
307 * Initialize and allocate VM and memory for pipe.
308 */
309 static int
310 pipe_create(pipep, allockva)
311 struct pipe **pipep;
312 int allockva;
313 {
314 struct pipe *pipe;
315 int error;
316
317 pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
318
319 /* Initialize */
320 memset(pipe, 0, sizeof(struct pipe));
321 pipe->pipe_state = PIPE_SIGNALR;
322
323 PIPE_TIMESTAMP(&pipe->pipe_ctime);
324 pipe->pipe_atime = pipe->pipe_ctime;
325 pipe->pipe_mtime = pipe->pipe_ctime;
326 simple_lock_init(&pipe->pipe_slock);
327 lockinit(&pipe->pipe_lock, PSOCK | PCATCH, "pipelk", 0, 0);
328
329 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
330 return (error);
331
332 return (0);
333 }
334
335
336 /*
337 * Lock a pipe for I/O, blocking other access
338 * Called with pipe spin lock held.
339 * Return with pipe spin lock released on success.
340 */
341 static int
342 pipelock(pipe, catch)
343 struct pipe *pipe;
344 int catch;
345 {
346 int error;
347
348 LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
349
350 while (1) {
351 error = lockmgr(&pipe->pipe_lock, LK_EXCLUSIVE | LK_INTERLOCK,
352 &pipe->pipe_slock);
353 if (error == 0)
354 break;
355
356 simple_lock(&pipe->pipe_slock);
357 if (catch || (error != EINTR && error != ERESTART))
358 break;
359 /*
360 * XXX XXX XXX
361 * The pipe lock is initialised with PCATCH on and we cannot
362 * override this in a lockmgr() call. Thus a pending signal
363 * will cause lockmgr() to return with EINTR or ERESTART.
364 * We cannot simply re-enter lockmgr() at this point since
365 * the pending signals have not yet been posted and would
366 * cause an immediate EINTR/ERESTART return again.
367 * As a workaround we pause for a while here, giving the lock
368 * a chance to drain, before trying again.
369 * XXX XXX XXX
370 *
371 * NOTE: Consider dropping PCATCH from this lock; in practice
372 * it is never held for long enough periods for having it
373 * interruptable at the start of pipe_read/pipe_write to be
374 * beneficial.
375 */
376 (void) ltsleep(&lbolt, PSOCK, "rstrtpipelock", hz,
377 &pipe->pipe_slock);
378 }
379 return (error);
380 }
381
382 /*
383 * unlock a pipe I/O lock
384 */
385 static __inline void
386 pipeunlock(pipe)
387 struct pipe *pipe;
388 {
389
390 lockmgr(&pipe->pipe_lock, LK_RELEASE, NULL);
391 }
392
393 /*
394 * Select/poll wakup. This also sends SIGIO to peer connected to
395 * 'sigpipe' side of pipe.
396 */
397 static void
398 pipeselwakeup(selp, sigp, data, code)
399 struct pipe *selp, *sigp;
400 void *data;
401 int code;
402 {
403 int band;
404
405 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
406
407 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
408 return;
409
410 switch (code) {
411 case POLL_IN:
412 band = POLLIN|POLLRDNORM;
413 break;
414 case POLL_OUT:
415 band = POLLOUT|POLLWRNORM;
416 break;
417 case POLL_HUP:
418 band = POLLHUP;
419 break;
420 #if POLL_HUP != POLL_ERR
421 case POLL_ERR:
422 band = POLLERR;
423 break;
424 #endif
425 default:
426 band = 0;
427 #ifdef DIAGNOSTIC
428 printf("bad siginfo code %d in pipe notification.\n", code);
429 #endif
430 break;
431 }
432
433 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
434 }
435
436 /* ARGSUSED */
437 static int
438 pipe_read(fp, offset, uio, cred, flags)
439 struct file *fp;
440 off_t *offset;
441 struct uio *uio;
442 struct ucred *cred;
443 int flags;
444 {
445 struct pipe *rpipe = (struct pipe *) fp->f_data;
446 struct pipebuf *bp = &rpipe->pipe_buffer;
447 int error;
448 size_t nread = 0;
449 size_t size;
450 size_t ocnt;
451
452 PIPE_LOCK(rpipe);
453 ++rpipe->pipe_busy;
454 ocnt = bp->cnt;
455
456 again:
457 error = pipelock(rpipe, 1);
458 if (error)
459 goto unlocked_error;
460
461 while (uio->uio_resid) {
462 /*
463 * normal pipe buffer receive
464 */
465 if (bp->cnt > 0) {
466 size = bp->size - bp->out;
467 if (size > bp->cnt)
468 size = bp->cnt;
469 if (size > uio->uio_resid)
470 size = uio->uio_resid;
471
472 error = uiomove(&bp->buffer[bp->out], size, uio);
473 if (error)
474 break;
475
476 bp->out += size;
477 if (bp->out >= bp->size)
478 bp->out = 0;
479
480 bp->cnt -= size;
481
482 /*
483 * If there is no more to read in the pipe, reset
484 * its pointers to the beginning. This improves
485 * cache hit stats.
486 */
487 if (bp->cnt == 0) {
488 bp->in = 0;
489 bp->out = 0;
490 }
491 nread += size;
492 #ifndef PIPE_NODIRECT
493 } else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
494 /*
495 * Direct copy, bypassing a kernel buffer.
496 */
497 caddr_t va;
498
499 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
500
501 size = rpipe->pipe_map.cnt;
502 if (size > uio->uio_resid)
503 size = uio->uio_resid;
504
505 va = (caddr_t) rpipe->pipe_map.kva +
506 rpipe->pipe_map.pos;
507 error = uiomove(va, size, uio);
508 if (error)
509 break;
510 nread += size;
511 rpipe->pipe_map.pos += size;
512 rpipe->pipe_map.cnt -= size;
513 if (rpipe->pipe_map.cnt == 0) {
514 PIPE_LOCK(rpipe);
515 rpipe->pipe_state &= ~PIPE_DIRECTR;
516 wakeup(rpipe);
517 PIPE_UNLOCK(rpipe);
518 }
519 #endif
520 } else {
521 /*
522 * Break if some data was read.
523 */
524 if (nread > 0)
525 break;
526
527 PIPE_LOCK(rpipe);
528
529 /*
530 * detect EOF condition
531 * read returns 0 on EOF, no need to set error
532 */
533 if (rpipe->pipe_state & PIPE_EOF) {
534 PIPE_UNLOCK(rpipe);
535 break;
536 }
537
538 /*
539 * don't block on non-blocking I/O
540 */
541 if (fp->f_flag & FNONBLOCK) {
542 PIPE_UNLOCK(rpipe);
543 error = EAGAIN;
544 break;
545 }
546
547 /*
548 * Unlock the pipe buffer for our remaining processing.
549 * We will either break out with an error or we will
550 * sleep and relock to loop.
551 */
552 pipeunlock(rpipe);
553
554 /*
555 * The PIPE_DIRECTR flag is not under the control
556 * of the long-term lock (see pipe_direct_write()),
557 * so re-check now while holding the spin lock.
558 */
559 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
560 goto again;
561
562 /*
563 * We want to read more, wake up select/poll.
564 */
565 pipeselwakeup(rpipe, rpipe->pipe_peer, fp->f_data,
566 POLL_IN);
567
568 /*
569 * If the "write-side" is blocked, wake it up now.
570 */
571 if (rpipe->pipe_state & PIPE_WANTW) {
572 rpipe->pipe_state &= ~PIPE_WANTW;
573 wakeup(rpipe);
574 }
575
576 /* Now wait until the pipe is filled */
577 rpipe->pipe_state |= PIPE_WANTR;
578 error = ltsleep(rpipe, PSOCK | PCATCH,
579 "piperd", 0, &rpipe->pipe_slock);
580 if (error != 0)
581 goto unlocked_error;
582 goto again;
583 }
584 }
585
586 if (error == 0)
587 PIPE_TIMESTAMP(&rpipe->pipe_atime);
588
589 PIPE_LOCK(rpipe);
590 pipeunlock(rpipe);
591
592 unlocked_error:
593 --rpipe->pipe_busy;
594
595 /*
596 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
597 */
598 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
599 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
600 wakeup(rpipe);
601 } else if (bp->cnt < MINPIPESIZE) {
602 /*
603 * Handle write blocking hysteresis.
604 */
605 if (rpipe->pipe_state & PIPE_WANTW) {
606 rpipe->pipe_state &= ~PIPE_WANTW;
607 wakeup(rpipe);
608 }
609 }
610
611 /*
612 * If anything was read off the buffer, signal to the writer it's
613 * possible to write more data. Also send signal if we are here for the
614 * first time after last write.
615 */
616 if ((bp->size - bp->cnt) >= PIPE_BUF
617 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
618 pipeselwakeup(rpipe, rpipe->pipe_peer, fp->f_data, POLL_OUT);
619 rpipe->pipe_state &= ~PIPE_SIGNALR;
620 }
621
622 PIPE_UNLOCK(rpipe);
623 return (error);
624 }
625
626 #ifndef PIPE_NODIRECT
627 /*
628 * Allocate structure for loan transfer.
629 */
630 static int
631 pipe_loan_alloc(wpipe, npages)
632 struct pipe *wpipe;
633 int npages;
634 {
635 vsize_t len;
636
637 len = (vsize_t)npages << PAGE_SHIFT;
638 wpipe->pipe_map.kva = uvm_km_valloc_wait(kernel_map, len);
639 if (wpipe->pipe_map.kva == 0)
640 return (ENOMEM);
641
642 amountpipekva += len;
643 wpipe->pipe_map.npages = npages;
644 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
645 M_WAITOK);
646 return (0);
647 }
648
649 /*
650 * Free resources allocated for loan transfer.
651 */
652 static void
653 pipe_loan_free(wpipe)
654 struct pipe *wpipe;
655 {
656 vsize_t len;
657
658 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
659 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len);
660 wpipe->pipe_map.kva = 0;
661 amountpipekva -= len;
662 free(wpipe->pipe_map.pgs, M_PIPE);
663 wpipe->pipe_map.pgs = NULL;
664 }
665
666 /*
667 * NetBSD direct write, using uvm_loan() mechanism.
668 * This implements the pipe buffer write mechanism. Note that only
669 * a direct write OR a normal pipe write can be pending at any given time.
670 * If there are any characters in the pipe buffer, the direct write will
671 * be deferred until the receiving process grabs all of the bytes from
672 * the pipe buffer. Then the direct mapping write is set-up.
673 *
674 * Called with the long-term pipe lock held.
675 */
676 static int
677 pipe_direct_write(fp, wpipe, uio)
678 struct file *fp;
679 struct pipe *wpipe;
680 struct uio *uio;
681 {
682 int error, npages, j;
683 struct vm_page **pgs;
684 vaddr_t bbase, kva, base, bend;
685 vsize_t blen, bcnt;
686 voff_t bpos;
687
688 KASSERT(wpipe->pipe_map.cnt == 0);
689
690 /*
691 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
692 * not aligned to PAGE_SIZE.
693 */
694 bbase = (vaddr_t)uio->uio_iov->iov_base;
695 base = trunc_page(bbase);
696 bend = round_page(bbase + uio->uio_iov->iov_len);
697 blen = bend - base;
698 bpos = bbase - base;
699
700 if (blen > PIPE_DIRECT_CHUNK) {
701 blen = PIPE_DIRECT_CHUNK;
702 bend = base + blen;
703 bcnt = PIPE_DIRECT_CHUNK - bpos;
704 } else {
705 bcnt = uio->uio_iov->iov_len;
706 }
707 npages = blen >> PAGE_SHIFT;
708
709 /*
710 * Free the old kva if we need more pages than we have
711 * allocated.
712 */
713 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
714 pipe_loan_free(wpipe);
715
716 /* Allocate new kva. */
717 if (wpipe->pipe_map.kva == 0) {
718 error = pipe_loan_alloc(wpipe, npages);
719 if (error)
720 return (error);
721 }
722
723 /* Loan the write buffer memory from writer process */
724 pgs = wpipe->pipe_map.pgs;
725 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
726 pgs, UVM_LOAN_TOPAGE);
727 if (error) {
728 pipe_loan_free(wpipe);
729 return (ENOMEM); /* so that caller fallback to ordinary write */
730 }
731
732 /* Enter the loaned pages to kva */
733 kva = wpipe->pipe_map.kva;
734 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
735 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
736 }
737 pmap_update(pmap_kernel());
738
739 /* Now we can put the pipe in direct write mode */
740 wpipe->pipe_map.pos = bpos;
741 wpipe->pipe_map.cnt = bcnt;
742 wpipe->pipe_state |= PIPE_DIRECTW;
743
744 /*
745 * But before we can let someone do a direct read,
746 * we have to wait until the pipe is drained.
747 */
748
749 /* Relase the pipe lock while we wait */
750 PIPE_LOCK(wpipe);
751 pipeunlock(wpipe);
752
753 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
754 if (wpipe->pipe_state & PIPE_WANTR) {
755 wpipe->pipe_state &= ~PIPE_WANTR;
756 wakeup(wpipe);
757 }
758
759 wpipe->pipe_state |= PIPE_WANTW;
760 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0,
761 &wpipe->pipe_slock);
762 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
763 error = EPIPE;
764 }
765
766 /* Pipe is drained; next read will off the direct buffer */
767 wpipe->pipe_state |= PIPE_DIRECTR;
768
769 /* Wait until the reader is done */
770 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
771 if (wpipe->pipe_state & PIPE_WANTR) {
772 wpipe->pipe_state &= ~PIPE_WANTR;
773 wakeup(wpipe);
774 }
775 pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_IN);
776 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0,
777 &wpipe->pipe_slock);
778 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
779 error = EPIPE;
780 }
781
782 /* Take pipe out of direct write mode */
783 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
784
785 /* Acquire the pipe lock and cleanup */
786 (void)pipelock(wpipe, 0);
787 if (pgs != NULL) {
788 pmap_kremove(wpipe->pipe_map.kva, blen);
789 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
790 }
791 if (error || amountpipekva > maxpipekva)
792 pipe_loan_free(wpipe);
793
794 if (error) {
795 pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_ERR);
796
797 /*
798 * If nothing was read from what we offered, return error
799 * straight on. Otherwise update uio resid first. Caller
800 * will deal with the error condition, returning short
801 * write, error, or restarting the write(2) as appropriate.
802 */
803 if (wpipe->pipe_map.cnt == bcnt) {
804 wpipe->pipe_map.cnt = 0;
805 wakeup(wpipe);
806 return (error);
807 }
808
809 bcnt -= wpipe->pipe_map.cnt;
810 }
811
812 uio->uio_resid -= bcnt;
813 /* uio_offset not updated, not set/used for write(2) */
814 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
815 uio->uio_iov->iov_len -= bcnt;
816 if (uio->uio_iov->iov_len == 0) {
817 uio->uio_iov++;
818 uio->uio_iovcnt--;
819 }
820
821 wpipe->pipe_map.cnt = 0;
822 return (error);
823 }
824 #endif /* !PIPE_NODIRECT */
825
826 static int
827 pipe_write(fp, offset, uio, cred, flags)
828 struct file *fp;
829 off_t *offset;
830 struct uio *uio;
831 struct ucred *cred;
832 int flags;
833 {
834 struct pipe *wpipe, *rpipe;
835 struct pipebuf *bp;
836 int error;
837
838 /* We want to write to our peer */
839 rpipe = (struct pipe *) fp->f_data;
840
841 retry:
842 error = 0;
843 PIPE_LOCK(rpipe);
844 wpipe = rpipe->pipe_peer;
845
846 /*
847 * Detect loss of pipe read side, issue SIGPIPE if lost.
848 */
849 if (wpipe == NULL)
850 error = EPIPE;
851 else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
852 /* Deal with race for peer */
853 PIPE_UNLOCK(rpipe);
854 goto retry;
855 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
856 PIPE_UNLOCK(wpipe);
857 error = EPIPE;
858 }
859
860 PIPE_UNLOCK(rpipe);
861 if (error != 0)
862 return (error);
863
864 ++wpipe->pipe_busy;
865
866 /* Aquire the long-term pipe lock */
867 if ((error = pipelock(wpipe,1)) != 0) {
868 --wpipe->pipe_busy;
869 if (wpipe->pipe_busy == 0
870 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
871 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
872 wakeup(wpipe);
873 }
874 PIPE_UNLOCK(wpipe);
875 return (error);
876 }
877
878 bp = &wpipe->pipe_buffer;
879
880 /*
881 * If it is advantageous to resize the pipe buffer, do so.
882 */
883 if ((uio->uio_resid > PIPE_SIZE) &&
884 (nbigpipe < maxbigpipes) &&
885 #ifndef PIPE_NODIRECT
886 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
887 #endif
888 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
889
890 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
891 nbigpipe++;
892 }
893
894 while (uio->uio_resid) {
895 size_t space;
896
897 #ifndef PIPE_NODIRECT
898 /*
899 * Pipe buffered writes cannot be coincidental with
900 * direct writes. Also, only one direct write can be
901 * in progress at any one time. We wait until the currently
902 * executing direct write is completed before continuing.
903 *
904 * We break out if a signal occurs or the reader goes away.
905 */
906 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
907 PIPE_LOCK(wpipe);
908 if (wpipe->pipe_state & PIPE_WANTR) {
909 wpipe->pipe_state &= ~PIPE_WANTR;
910 wakeup(wpipe);
911 }
912 pipeunlock(wpipe);
913 error = ltsleep(wpipe, PSOCK | PCATCH,
914 "pipbww", 0, &wpipe->pipe_slock);
915
916 (void)pipelock(wpipe, 0);
917 if (wpipe->pipe_state & PIPE_EOF)
918 error = EPIPE;
919 }
920 if (error)
921 break;
922
923 /*
924 * If the transfer is large, we can gain performance if
925 * we do process-to-process copies directly.
926 * If the write is non-blocking, we don't use the
927 * direct write mechanism.
928 *
929 * The direct write mechanism will detect the reader going
930 * away on us.
931 */
932 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
933 (fp->f_flag & FNONBLOCK) == 0 &&
934 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
935 error = pipe_direct_write(fp, wpipe, uio);
936
937 /*
938 * Break out if error occurred, unless it's ENOMEM.
939 * ENOMEM means we failed to allocate some resources
940 * for direct write, so we just fallback to ordinary
941 * write. If the direct write was successful,
942 * process rest of data via ordinary write.
943 */
944 if (error == 0)
945 continue;
946
947 if (error != ENOMEM)
948 break;
949 }
950 #endif /* PIPE_NODIRECT */
951
952 space = bp->size - bp->cnt;
953
954 /* Writes of size <= PIPE_BUF must be atomic. */
955 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
956 space = 0;
957
958 if (space > 0) {
959 int size; /* Transfer size */
960 int segsize; /* first segment to transfer */
961
962 /*
963 * Transfer size is minimum of uio transfer
964 * and free space in pipe buffer.
965 */
966 if (space > uio->uio_resid)
967 size = uio->uio_resid;
968 else
969 size = space;
970 /*
971 * First segment to transfer is minimum of
972 * transfer size and contiguous space in
973 * pipe buffer. If first segment to transfer
974 * is less than the transfer size, we've got
975 * a wraparound in the buffer.
976 */
977 segsize = bp->size - bp->in;
978 if (segsize > size)
979 segsize = size;
980
981 /* Transfer first segment */
982 error = uiomove(&bp->buffer[bp->in], segsize, uio);
983
984 if (error == 0 && segsize < size) {
985 /*
986 * Transfer remaining part now, to
987 * support atomic writes. Wraparound
988 * happened.
989 */
990 #ifdef DEBUG
991 if (bp->in + segsize != bp->size)
992 panic("Expected pipe buffer wraparound disappeared");
993 #endif
994
995 error = uiomove(&bp->buffer[0],
996 size - segsize, uio);
997 }
998 if (error)
999 break;
1000
1001 bp->in += size;
1002 if (bp->in >= bp->size) {
1003 #ifdef DEBUG
1004 if (bp->in != size - segsize + bp->size)
1005 panic("Expected wraparound bad");
1006 #endif
1007 bp->in = size - segsize;
1008 }
1009
1010 bp->cnt += size;
1011 #ifdef DEBUG
1012 if (bp->cnt > bp->size)
1013 panic("Pipe buffer overflow");
1014 #endif
1015 } else {
1016 /*
1017 * If the "read-side" has been blocked, wake it up now.
1018 */
1019 PIPE_LOCK(wpipe);
1020 if (wpipe->pipe_state & PIPE_WANTR) {
1021 wpipe->pipe_state &= ~PIPE_WANTR;
1022 wakeup(wpipe);
1023 }
1024 PIPE_UNLOCK(wpipe);
1025
1026 /*
1027 * don't block on non-blocking I/O
1028 */
1029 if (fp->f_flag & FNONBLOCK) {
1030 error = EAGAIN;
1031 break;
1032 }
1033
1034 /*
1035 * We have no more space and have something to offer,
1036 * wake up select/poll.
1037 */
1038 if (bp->cnt)
1039 pipeselwakeup(wpipe, wpipe, fp->f_data,
1040 POLL_OUT);
1041
1042 PIPE_LOCK(wpipe);
1043 pipeunlock(wpipe);
1044 wpipe->pipe_state |= PIPE_WANTW;
1045 error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0,
1046 &wpipe->pipe_slock);
1047 (void)pipelock(wpipe, 0);
1048 if (error != 0)
1049 break;
1050 /*
1051 * If read side wants to go away, we just issue a signal
1052 * to ourselves.
1053 */
1054 if (wpipe->pipe_state & PIPE_EOF) {
1055 error = EPIPE;
1056 break;
1057 }
1058 }
1059 }
1060
1061 PIPE_LOCK(wpipe);
1062 --wpipe->pipe_busy;
1063 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1064 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1065 wakeup(wpipe);
1066 } else if (bp->cnt > 0) {
1067 /*
1068 * If we have put any characters in the buffer, we wake up
1069 * the reader.
1070 */
1071 if (wpipe->pipe_state & PIPE_WANTR) {
1072 wpipe->pipe_state &= ~PIPE_WANTR;
1073 wakeup(wpipe);
1074 }
1075 }
1076
1077 /*
1078 * Don't return EPIPE if I/O was successful
1079 */
1080 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1081 error = 0;
1082
1083 if (error == 0)
1084 PIPE_TIMESTAMP(&wpipe->pipe_mtime);
1085
1086 /*
1087 * We have something to offer, wake up select/poll.
1088 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1089 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1090 */
1091 if (bp->cnt)
1092 pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_OUT);
1093
1094 /*
1095 * Arrange for next read(2) to do a signal.
1096 */
1097 wpipe->pipe_state |= PIPE_SIGNALR;
1098
1099 pipeunlock(wpipe);
1100 PIPE_UNLOCK(wpipe);
1101 return (error);
1102 }
1103
1104 /*
1105 * we implement a very minimal set of ioctls for compatibility with sockets.
1106 */
1107 int
1108 pipe_ioctl(fp, cmd, data, p)
1109 struct file *fp;
1110 u_long cmd;
1111 void *data;
1112 struct proc *p;
1113 {
1114 struct pipe *pipe = (struct pipe *)fp->f_data;
1115
1116 switch (cmd) {
1117
1118 case FIONBIO:
1119 return (0);
1120
1121 case FIOASYNC:
1122 PIPE_LOCK(pipe);
1123 if (*(int *)data) {
1124 pipe->pipe_state |= PIPE_ASYNC;
1125 } else {
1126 pipe->pipe_state &= ~PIPE_ASYNC;
1127 }
1128 PIPE_UNLOCK(pipe);
1129 return (0);
1130
1131 case FIONREAD:
1132 PIPE_LOCK(pipe);
1133 #ifndef PIPE_NODIRECT
1134 if (pipe->pipe_state & PIPE_DIRECTW)
1135 *(int *)data = pipe->pipe_map.cnt;
1136 else
1137 #endif
1138 *(int *)data = pipe->pipe_buffer.cnt;
1139 PIPE_UNLOCK(pipe);
1140 return (0);
1141
1142 case FIONWRITE:
1143 /* Look at other side */
1144 pipe = pipe->pipe_peer;
1145 PIPE_LOCK(pipe);
1146 #ifndef PIPE_NODIRECT
1147 if (pipe->pipe_state & PIPE_DIRECTW)
1148 *(int *)data = pipe->pipe_map.cnt;
1149 else
1150 #endif
1151 *(int *)data = pipe->pipe_buffer.cnt;
1152 PIPE_UNLOCK(pipe);
1153 return (0);
1154
1155 case FIONSPACE:
1156 /* Look at other side */
1157 pipe = pipe->pipe_peer;
1158 PIPE_LOCK(pipe);
1159 #ifndef PIPE_NODIRECT
1160 /*
1161 * If we're in direct-mode, we don't really have a
1162 * send queue, and any other write will block. Thus
1163 * zero seems like the best answer.
1164 */
1165 if (pipe->pipe_state & PIPE_DIRECTW)
1166 *(int *)data = 0;
1167 else
1168 #endif
1169 *(int *)data = pipe->pipe_buffer.size -
1170 pipe->pipe_buffer.cnt;
1171 PIPE_UNLOCK(pipe);
1172 return (0);
1173
1174 case TIOCSPGRP:
1175 case FIOSETOWN:
1176 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1177
1178 case TIOCGPGRP:
1179 case FIOGETOWN:
1180 return fgetown(p, pipe->pipe_pgid, cmd, data);
1181
1182 }
1183 return (EPASSTHROUGH);
1184 }
1185
1186 int
1187 pipe_poll(fp, events, td)
1188 struct file *fp;
1189 int events;
1190 struct proc *td;
1191 {
1192 struct pipe *rpipe = (struct pipe *)fp->f_data;
1193 struct pipe *wpipe;
1194 int eof = 0;
1195 int revents = 0;
1196
1197 retry:
1198 PIPE_LOCK(rpipe);
1199 wpipe = rpipe->pipe_peer;
1200 if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
1201 /* Deal with race for peer */
1202 PIPE_UNLOCK(rpipe);
1203 goto retry;
1204 }
1205
1206 if (events & (POLLIN | POLLRDNORM))
1207 if ((rpipe->pipe_buffer.cnt > 0) ||
1208 #ifndef PIPE_NODIRECT
1209 (rpipe->pipe_state & PIPE_DIRECTR) ||
1210 #endif
1211 (rpipe->pipe_state & PIPE_EOF))
1212 revents |= events & (POLLIN | POLLRDNORM);
1213
1214 eof |= (rpipe->pipe_state & PIPE_EOF);
1215 PIPE_UNLOCK(rpipe);
1216
1217 if (wpipe == NULL)
1218 revents |= events & (POLLOUT | POLLWRNORM);
1219 else {
1220 if (events & (POLLOUT | POLLWRNORM))
1221 if ((wpipe->pipe_state & PIPE_EOF) || (
1222 #ifndef PIPE_NODIRECT
1223 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1224 #endif
1225 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1226 revents |= events & (POLLOUT | POLLWRNORM);
1227
1228 eof |= (wpipe->pipe_state & PIPE_EOF);
1229 PIPE_UNLOCK(wpipe);
1230 }
1231
1232 if (wpipe == NULL || eof)
1233 revents |= POLLHUP;
1234
1235 if (revents == 0) {
1236 if (events & (POLLIN | POLLRDNORM))
1237 selrecord(td, &rpipe->pipe_sel);
1238
1239 if (events & (POLLOUT | POLLWRNORM))
1240 selrecord(td, &wpipe->pipe_sel);
1241 }
1242
1243 return (revents);
1244 }
1245
1246 static int
1247 pipe_stat(fp, ub, td)
1248 struct file *fp;
1249 struct stat *ub;
1250 struct proc *td;
1251 {
1252 struct pipe *pipe = (struct pipe *)fp->f_data;
1253
1254 memset((caddr_t)ub, 0, sizeof(*ub));
1255 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1256 ub->st_blksize = pipe->pipe_buffer.size;
1257 ub->st_size = pipe->pipe_buffer.cnt;
1258 ub->st_blocks = (ub->st_size) ? 1 : 0;
1259 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1260 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1261 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1262 ub->st_uid = fp->f_cred->cr_uid;
1263 ub->st_gid = fp->f_cred->cr_gid;
1264 /*
1265 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1266 * XXX (st_dev, st_ino) should be unique.
1267 */
1268 return (0);
1269 }
1270
1271 /* ARGSUSED */
1272 static int
1273 pipe_close(fp, td)
1274 struct file *fp;
1275 struct proc *td;
1276 {
1277 struct pipe *pipe = (struct pipe *)fp->f_data;
1278
1279 fp->f_data = NULL;
1280 pipeclose(fp, pipe);
1281 return (0);
1282 }
1283
1284 static void
1285 pipe_free_kmem(pipe)
1286 struct pipe *pipe;
1287 {
1288
1289 if (pipe->pipe_buffer.buffer != NULL) {
1290 if (pipe->pipe_buffer.size > PIPE_SIZE)
1291 --nbigpipe;
1292 amountpipekva -= pipe->pipe_buffer.size;
1293 uvm_km_free(kernel_map,
1294 (vaddr_t)pipe->pipe_buffer.buffer,
1295 pipe->pipe_buffer.size);
1296 pipe->pipe_buffer.buffer = NULL;
1297 }
1298 #ifndef PIPE_NODIRECT
1299 if (pipe->pipe_map.kva != 0) {
1300 pipe_loan_free(pipe);
1301 pipe->pipe_map.cnt = 0;
1302 pipe->pipe_map.kva = 0;
1303 pipe->pipe_map.pos = 0;
1304 pipe->pipe_map.npages = 0;
1305 }
1306 #endif /* !PIPE_NODIRECT */
1307 }
1308
1309 /*
1310 * shutdown the pipe
1311 */
1312 static void
1313 pipeclose(fp, pipe)
1314 struct file *fp;
1315 struct pipe *pipe;
1316 {
1317 struct pipe *ppipe;
1318
1319 if (pipe == NULL)
1320 return;
1321
1322 retry:
1323 PIPE_LOCK(pipe);
1324
1325 if (fp)
1326 pipeselwakeup(pipe, pipe, fp->f_data, POLL_HUP);
1327
1328 /*
1329 * If the other side is blocked, wake it up saying that
1330 * we want to close it down.
1331 */
1332 while (pipe->pipe_busy) {
1333 wakeup(pipe);
1334 pipe->pipe_state |= PIPE_WANTCLOSE | PIPE_EOF;
1335 ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock);
1336 }
1337
1338 /*
1339 * Disconnect from peer
1340 */
1341 if ((ppipe = pipe->pipe_peer) != NULL) {
1342 /* Deal with race for peer */
1343 if (simple_lock_try(&ppipe->pipe_slock) == 0) {
1344 PIPE_UNLOCK(pipe);
1345 goto retry;
1346 }
1347 if (fp)
1348 pipeselwakeup(ppipe, ppipe, fp->f_data, POLL_HUP);
1349
1350 ppipe->pipe_state |= PIPE_EOF;
1351 wakeup(ppipe);
1352 ppipe->pipe_peer = NULL;
1353 PIPE_UNLOCK(ppipe);
1354 }
1355
1356 (void)lockmgr(&pipe->pipe_lock, LK_DRAIN | LK_INTERLOCK,
1357 &pipe->pipe_slock);
1358
1359 /*
1360 * free resources
1361 */
1362 pipe_free_kmem(pipe);
1363 pool_put(&pipe_pool, pipe);
1364 }
1365
1366 static void
1367 filt_pipedetach(struct knote *kn)
1368 {
1369 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1370
1371 switch(kn->kn_filter) {
1372 case EVFILT_WRITE:
1373 /* need the peer structure, not our own */
1374 pipe = pipe->pipe_peer;
1375 /* XXXSMP: race for peer */
1376
1377 /* if reader end already closed, just return */
1378 if (pipe == NULL)
1379 return;
1380
1381 break;
1382 default:
1383 /* nothing to do */
1384 break;
1385 }
1386
1387 #ifdef DIAGNOSTIC
1388 if (kn->kn_hook != pipe)
1389 panic("filt_pipedetach: inconsistent knote");
1390 #endif
1391
1392 PIPE_LOCK(pipe);
1393 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1394 PIPE_UNLOCK(pipe);
1395 }
1396
1397 /*ARGSUSED*/
1398 static int
1399 filt_piperead(struct knote *kn, long hint)
1400 {
1401 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1402 struct pipe *wpipe = rpipe->pipe_peer;
1403
1404 if ((hint & NOTE_SUBMIT) == 0)
1405 PIPE_LOCK(rpipe);
1406 kn->kn_data = rpipe->pipe_buffer.cnt;
1407 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1408 kn->kn_data = rpipe->pipe_map.cnt;
1409
1410 /* XXXSMP: race for peer */
1411 if ((rpipe->pipe_state & PIPE_EOF) ||
1412 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1413 kn->kn_flags |= EV_EOF;
1414 if ((hint & NOTE_SUBMIT) == 0)
1415 PIPE_UNLOCK(rpipe);
1416 return (1);
1417 }
1418 if ((hint & NOTE_SUBMIT) == 0)
1419 PIPE_UNLOCK(rpipe);
1420 return (kn->kn_data > 0);
1421 }
1422
1423 /*ARGSUSED*/
1424 static int
1425 filt_pipewrite(struct knote *kn, long hint)
1426 {
1427 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1428 struct pipe *wpipe = rpipe->pipe_peer;
1429
1430 if ((hint & NOTE_SUBMIT) == 0)
1431 PIPE_LOCK(rpipe);
1432 /* XXXSMP: race for peer */
1433 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1434 kn->kn_data = 0;
1435 kn->kn_flags |= EV_EOF;
1436 if ((hint & NOTE_SUBMIT) == 0)
1437 PIPE_UNLOCK(rpipe);
1438 return (1);
1439 }
1440 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1441 if (wpipe->pipe_state & PIPE_DIRECTW)
1442 kn->kn_data = 0;
1443
1444 if ((hint & NOTE_SUBMIT) == 0)
1445 PIPE_UNLOCK(rpipe);
1446 return (kn->kn_data >= PIPE_BUF);
1447 }
1448
1449 static const struct filterops pipe_rfiltops =
1450 { 1, NULL, filt_pipedetach, filt_piperead };
1451 static const struct filterops pipe_wfiltops =
1452 { 1, NULL, filt_pipedetach, filt_pipewrite };
1453
1454 /*ARGSUSED*/
1455 static int
1456 pipe_kqfilter(struct file *fp, struct knote *kn)
1457 {
1458 struct pipe *pipe;
1459
1460 pipe = (struct pipe *)kn->kn_fp->f_data;
1461 switch (kn->kn_filter) {
1462 case EVFILT_READ:
1463 kn->kn_fop = &pipe_rfiltops;
1464 break;
1465 case EVFILT_WRITE:
1466 kn->kn_fop = &pipe_wfiltops;
1467 /* XXXSMP: race for peer */
1468 pipe = pipe->pipe_peer;
1469 if (pipe == NULL) {
1470 /* other end of pipe has been closed */
1471 return (EBADF);
1472 }
1473 break;
1474 default:
1475 return (1);
1476 }
1477 kn->kn_hook = pipe;
1478
1479 PIPE_LOCK(pipe);
1480 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1481 PIPE_UNLOCK(pipe);
1482 return (0);
1483 }
1484
1485 /*
1486 * Handle pipe sysctls.
1487 */
1488 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1489 {
1490
1491 sysctl_createv(clog, 0, NULL, NULL,
1492 CTLFLAG_PERMANENT,
1493 CTLTYPE_NODE, "kern", NULL,
1494 NULL, 0, NULL, 0,
1495 CTL_KERN, CTL_EOL);
1496 sysctl_createv(clog, 0, NULL, NULL,
1497 CTLFLAG_PERMANENT,
1498 CTLTYPE_NODE, "pipe",
1499 SYSCTL_DESCR("Pipe settings"),
1500 NULL, 0, NULL, 0,
1501 CTL_KERN, KERN_PIPE, CTL_EOL);
1502
1503 sysctl_createv(clog, 0, NULL, NULL,
1504 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1505 CTLTYPE_INT, "maxkvasz",
1506 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1507 "used for pipes"),
1508 NULL, 0, &maxpipekva, 0,
1509 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1510 sysctl_createv(clog, 0, NULL, NULL,
1511 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1512 CTLTYPE_INT, "maxloankvasz",
1513 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1514 NULL, 0, &limitpipekva, 0,
1515 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1516 sysctl_createv(clog, 0, NULL, NULL,
1517 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1518 CTLTYPE_INT, "maxbigpipes",
1519 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1520 NULL, 0, &maxbigpipes, 0,
1521 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1522 sysctl_createv(clog, 0, NULL, NULL,
1523 CTLFLAG_PERMANENT,
1524 CTLTYPE_INT, "nbigpipes",
1525 SYSCTL_DESCR("Number of \"big\" pipes"),
1526 NULL, 0, &nbigpipe, 0,
1527 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1528 sysctl_createv(clog, 0, NULL, NULL,
1529 CTLFLAG_PERMANENT,
1530 CTLTYPE_INT, "kvasize",
1531 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1532 "buffers"),
1533 NULL, 0, &amountpipekva, 0,
1534 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1535 }
1536