Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.65
      1 /*	$NetBSD: sys_pipe.c,v 1.65 2005/04/01 11:59:37 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1996 John S. Dyson
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice immediately at the beginning of the file, without modification,
     48  *    this list of conditions, and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Absolutely no warranty of function or purpose is made by the author
     53  *    John S. Dyson.
     54  * 4. Modifications may be freely made to this file if the above conditions
     55  *    are met.
     56  *
     57  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
     58  */
     59 
     60 /*
     61  * This file contains a high-performance replacement for the socket-based
     62  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
     63  * all features of sockets, but does do everything that pipes normally
     64  * do.
     65  *
     66  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
     67  * written by Jaromir Dolecek.
     68  */
     69 
     70 /*
     71  * This code has two modes of operation, a small write mode and a large
     72  * write mode.  The small write mode acts like conventional pipes with
     73  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     74  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     75  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
     76  * using the UVM page loan facility from where the receiving process can copy
     77  * the data directly from the pages in the sending process.
     78  *
     79  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     80  * happen for small transfers so that the system will not spend all of
     81  * its time context switching.  PIPE_SIZE is constrained by the
     82  * amount of kernel virtual memory.
     83  */
     84 
     85 #include <sys/cdefs.h>
     86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.65 2005/04/01 11:59:37 yamt Exp $");
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/proc.h>
     91 #include <sys/fcntl.h>
     92 #include <sys/file.h>
     93 #include <sys/filedesc.h>
     94 #include <sys/filio.h>
     95 #include <sys/kernel.h>
     96 #include <sys/lock.h>
     97 #include <sys/ttycom.h>
     98 #include <sys/stat.h>
     99 #include <sys/malloc.h>
    100 #include <sys/poll.h>
    101 #include <sys/signalvar.h>
    102 #include <sys/vnode.h>
    103 #include <sys/uio.h>
    104 #include <sys/lock.h>
    105 #include <sys/select.h>
    106 #include <sys/mount.h>
    107 #include <sys/sa.h>
    108 #include <sys/syscallargs.h>
    109 #include <uvm/uvm.h>
    110 #include <sys/sysctl.h>
    111 #include <sys/kernel.h>
    112 
    113 #include <sys/pipe.h>
    114 
    115 /*
    116  * Avoid microtime(9), it's slow. We don't guard the read from time(9)
    117  * with splclock(9) since we don't actually need to be THAT sure the access
    118  * is atomic.
    119  */
    120 #define PIPE_TIMESTAMP(tvp)	(*(tvp) = time)
    121 
    122 
    123 /*
    124  * Use this define if you want to disable *fancy* VM things.  Expect an
    125  * approx 30% decrease in transfer rate.
    126  */
    127 /* #define PIPE_NODIRECT */
    128 
    129 /*
    130  * interfaces to the outside world
    131  */
    132 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
    133 		struct ucred *cred, int flags);
    134 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
    135 		struct ucred *cred, int flags);
    136 static int pipe_close(struct file *fp, struct proc *p);
    137 static int pipe_poll(struct file *fp, int events, struct proc *p);
    138 static int pipe_kqfilter(struct file *fp, struct knote *kn);
    139 static int pipe_stat(struct file *fp, struct stat *sb, struct proc *p);
    140 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
    141 		struct proc *p);
    142 
    143 static const struct fileops pipeops = {
    144 	pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
    145 	pipe_stat, pipe_close, pipe_kqfilter
    146 };
    147 
    148 /*
    149  * Default pipe buffer size(s), this can be kind-of large now because pipe
    150  * space is pageable.  The pipe code will try to maintain locality of
    151  * reference for performance reasons, so small amounts of outstanding I/O
    152  * will not wipe the cache.
    153  */
    154 #define MINPIPESIZE (PIPE_SIZE/3)
    155 #define MAXPIPESIZE (2*PIPE_SIZE/3)
    156 
    157 /*
    158  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    159  * is there so that on large systems, we don't exhaust it.
    160  */
    161 #define MAXPIPEKVA (8*1024*1024)
    162 static int maxpipekva = MAXPIPEKVA;
    163 
    164 /*
    165  * Limit for direct transfers, we cannot, of course limit
    166  * the amount of kva for pipes in general though.
    167  */
    168 #define LIMITPIPEKVA (16*1024*1024)
    169 static int limitpipekva = LIMITPIPEKVA;
    170 
    171 /*
    172  * Limit the number of "big" pipes
    173  */
    174 #define LIMITBIGPIPES  32
    175 static int maxbigpipes = LIMITBIGPIPES;
    176 static int nbigpipe = 0;
    177 
    178 /*
    179  * Amount of KVA consumed by pipe buffers.
    180  */
    181 static int amountpipekva = 0;
    182 
    183 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
    184 
    185 static void pipeclose(struct file *fp, struct pipe *pipe);
    186 static void pipe_free_kmem(struct pipe *pipe);
    187 static int pipe_create(struct pipe **pipep, int allockva);
    188 static int pipelock(struct pipe *pipe, int catch);
    189 static __inline void pipeunlock(struct pipe *pipe);
    190 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, void *data,
    191     int code);
    192 #ifndef PIPE_NODIRECT
    193 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
    194     struct uio *uio);
    195 #endif
    196 static int pipespace(struct pipe *pipe, int size);
    197 
    198 #ifndef PIPE_NODIRECT
    199 static int pipe_loan_alloc(struct pipe *, int);
    200 static void pipe_loan_free(struct pipe *);
    201 #endif /* PIPE_NODIRECT */
    202 
    203 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
    204     &pool_allocator_nointr);
    205 
    206 /*
    207  * The pipe system call for the DTYPE_PIPE type of pipes
    208  */
    209 
    210 /* ARGSUSED */
    211 int
    212 sys_pipe(l, v, retval)
    213 	struct lwp *l;
    214 	void *v;
    215 	register_t *retval;
    216 {
    217 	struct file *rf, *wf;
    218 	struct pipe *rpipe, *wpipe;
    219 	int fd, error;
    220 	struct proc *p;
    221 
    222 	p = l->l_proc;
    223 	rpipe = wpipe = NULL;
    224 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
    225 		pipeclose(NULL, rpipe);
    226 		pipeclose(NULL, wpipe);
    227 		return (ENFILE);
    228 	}
    229 
    230 	/*
    231 	 * Note: the file structure returned from falloc() is marked
    232 	 * as 'larval' initially. Unless we mark it as 'mature' by
    233 	 * FILE_SET_MATURE(), any attempt to do anything with it would
    234 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
    235 	 * file descriptor races if we block in the second falloc().
    236 	 */
    237 
    238 	error = falloc(p, &rf, &fd);
    239 	if (error)
    240 		goto free2;
    241 	retval[0] = fd;
    242 	rf->f_flag = FREAD;
    243 	rf->f_type = DTYPE_PIPE;
    244 	rf->f_data = (caddr_t)rpipe;
    245 	rf->f_ops = &pipeops;
    246 
    247 	error = falloc(p, &wf, &fd);
    248 	if (error)
    249 		goto free3;
    250 	retval[1] = fd;
    251 	wf->f_flag = FWRITE;
    252 	wf->f_type = DTYPE_PIPE;
    253 	wf->f_data = (caddr_t)wpipe;
    254 	wf->f_ops = &pipeops;
    255 
    256 	rpipe->pipe_peer = wpipe;
    257 	wpipe->pipe_peer = rpipe;
    258 
    259 	FILE_SET_MATURE(rf);
    260 	FILE_SET_MATURE(wf);
    261 	FILE_UNUSE(rf, p);
    262 	FILE_UNUSE(wf, p);
    263 	return (0);
    264 free3:
    265 	FILE_UNUSE(rf, p);
    266 	ffree(rf);
    267 	fdremove(p->p_fd, retval[0]);
    268 free2:
    269 	pipeclose(NULL, wpipe);
    270 	pipeclose(NULL, rpipe);
    271 
    272 	return (error);
    273 }
    274 
    275 /*
    276  * Allocate kva for pipe circular buffer, the space is pageable
    277  * This routine will 'realloc' the size of a pipe safely, if it fails
    278  * it will retain the old buffer.
    279  * If it fails it will return ENOMEM.
    280  */
    281 static int
    282 pipespace(pipe, size)
    283 	struct pipe *pipe;
    284 	int size;
    285 {
    286 	caddr_t buffer;
    287 	/*
    288 	 * Allocate pageable virtual address space. Physical memory is
    289 	 * allocated on demand.
    290 	 */
    291 	buffer = (caddr_t) uvm_km_alloc(kernel_map, round_page(size), 0,
    292 	    UVM_KMF_PAGEABLE);
    293 	if (buffer == NULL)
    294 		return (ENOMEM);
    295 
    296 	/* free old resources if we're resizing */
    297 	pipe_free_kmem(pipe);
    298 	pipe->pipe_buffer.buffer = buffer;
    299 	pipe->pipe_buffer.size = size;
    300 	pipe->pipe_buffer.in = 0;
    301 	pipe->pipe_buffer.out = 0;
    302 	pipe->pipe_buffer.cnt = 0;
    303 	amountpipekva += pipe->pipe_buffer.size;
    304 	return (0);
    305 }
    306 
    307 /*
    308  * Initialize and allocate VM and memory for pipe.
    309  */
    310 static int
    311 pipe_create(pipep, allockva)
    312 	struct pipe **pipep;
    313 	int allockva;
    314 {
    315 	struct pipe *pipe;
    316 	int error;
    317 
    318 	pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
    319 
    320 	/* Initialize */
    321 	memset(pipe, 0, sizeof(struct pipe));
    322 	pipe->pipe_state = PIPE_SIGNALR;
    323 
    324 	PIPE_TIMESTAMP(&pipe->pipe_ctime);
    325 	pipe->pipe_atime = pipe->pipe_ctime;
    326 	pipe->pipe_mtime = pipe->pipe_ctime;
    327 	simple_lock_init(&pipe->pipe_slock);
    328 	lockinit(&pipe->pipe_lock, PSOCK | PCATCH, "pipelk", 0, 0);
    329 
    330 	if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
    331 		return (error);
    332 
    333 	return (0);
    334 }
    335 
    336 
    337 /*
    338  * Lock a pipe for I/O, blocking other access
    339  * Called with pipe spin lock held.
    340  * Return with pipe spin lock released on success.
    341  */
    342 static int
    343 pipelock(pipe, catch)
    344 	struct pipe *pipe;
    345 	int catch;
    346 {
    347 	int error;
    348 
    349 	LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
    350 
    351 	while (1) {
    352 		error = lockmgr(&pipe->pipe_lock, LK_EXCLUSIVE | LK_INTERLOCK,
    353 				&pipe->pipe_slock);
    354 		if (error == 0)
    355 			break;
    356 
    357 		simple_lock(&pipe->pipe_slock);
    358 		if (catch || (error != EINTR && error != ERESTART))
    359 			break;
    360 		/*
    361 		 * XXX XXX XXX
    362 		 * The pipe lock is initialised with PCATCH on and we cannot
    363 		 * override this in a lockmgr() call. Thus a pending signal
    364 		 * will cause lockmgr() to return with EINTR or ERESTART.
    365 		 * We cannot simply re-enter lockmgr() at this point since
    366 		 * the pending signals have not yet been posted and would
    367 		 * cause an immediate EINTR/ERESTART return again.
    368 		 * As a workaround we pause for a while here, giving the lock
    369 		 * a chance to drain, before trying again.
    370 		 * XXX XXX XXX
    371 		 *
    372 		 * NOTE: Consider dropping PCATCH from this lock; in practice
    373 		 * it is never held for long enough periods for having it
    374 		 * interruptable at the start of pipe_read/pipe_write to be
    375 		 * beneficial.
    376 		 */
    377 		(void) ltsleep(&lbolt, PSOCK, "rstrtpipelock", hz,
    378 		    &pipe->pipe_slock);
    379 	}
    380 	return (error);
    381 }
    382 
    383 /*
    384  * unlock a pipe I/O lock
    385  */
    386 static __inline void
    387 pipeunlock(pipe)
    388 	struct pipe *pipe;
    389 {
    390 
    391 	lockmgr(&pipe->pipe_lock, LK_RELEASE, NULL);
    392 }
    393 
    394 /*
    395  * Select/poll wakup. This also sends SIGIO to peer connected to
    396  * 'sigpipe' side of pipe.
    397  */
    398 static void
    399 pipeselwakeup(selp, sigp, data, code)
    400 	struct pipe *selp, *sigp;
    401 	void *data;
    402 	int code;
    403 {
    404 	int band;
    405 
    406 	selnotify(&selp->pipe_sel, NOTE_SUBMIT);
    407 
    408 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    409 		return;
    410 
    411 	switch (code) {
    412 	case POLL_IN:
    413 		band = POLLIN|POLLRDNORM;
    414 		break;
    415 	case POLL_OUT:
    416 		band = POLLOUT|POLLWRNORM;
    417 		break;
    418 	case POLL_HUP:
    419 		band = POLLHUP;
    420 		break;
    421 #if POLL_HUP != POLL_ERR
    422 	case POLL_ERR:
    423 		band = POLLERR;
    424 		break;
    425 #endif
    426 	default:
    427 		band = 0;
    428 #ifdef DIAGNOSTIC
    429 		printf("bad siginfo code %d in pipe notification.\n", code);
    430 #endif
    431 		break;
    432 	}
    433 
    434 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    435 }
    436 
    437 /* ARGSUSED */
    438 static int
    439 pipe_read(fp, offset, uio, cred, flags)
    440 	struct file *fp;
    441 	off_t *offset;
    442 	struct uio *uio;
    443 	struct ucred *cred;
    444 	int flags;
    445 {
    446 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    447 	struct pipebuf *bp = &rpipe->pipe_buffer;
    448 	int error;
    449 	size_t nread = 0;
    450 	size_t size;
    451 	size_t ocnt;
    452 
    453 	PIPE_LOCK(rpipe);
    454 	++rpipe->pipe_busy;
    455 	ocnt = bp->cnt;
    456 
    457 again:
    458 	error = pipelock(rpipe, 1);
    459 	if (error)
    460 		goto unlocked_error;
    461 
    462 	while (uio->uio_resid) {
    463 		/*
    464 		 * normal pipe buffer receive
    465 		 */
    466 		if (bp->cnt > 0) {
    467 			size = bp->size - bp->out;
    468 			if (size > bp->cnt)
    469 				size = bp->cnt;
    470 			if (size > uio->uio_resid)
    471 				size = uio->uio_resid;
    472 
    473 			error = uiomove(&bp->buffer[bp->out], size, uio);
    474 			if (error)
    475 				break;
    476 
    477 			bp->out += size;
    478 			if (bp->out >= bp->size)
    479 				bp->out = 0;
    480 
    481 			bp->cnt -= size;
    482 
    483 			/*
    484 			 * If there is no more to read in the pipe, reset
    485 			 * its pointers to the beginning.  This improves
    486 			 * cache hit stats.
    487 			 */
    488 			if (bp->cnt == 0) {
    489 				bp->in = 0;
    490 				bp->out = 0;
    491 			}
    492 			nread += size;
    493 #ifndef PIPE_NODIRECT
    494 		} else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
    495 			/*
    496 			 * Direct copy, bypassing a kernel buffer.
    497 			 */
    498 			caddr_t	va;
    499 
    500 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
    501 
    502 			size = rpipe->pipe_map.cnt;
    503 			if (size > uio->uio_resid)
    504 				size = uio->uio_resid;
    505 
    506 			va = (caddr_t) rpipe->pipe_map.kva +
    507 			    rpipe->pipe_map.pos;
    508 			error = uiomove(va, size, uio);
    509 			if (error)
    510 				break;
    511 			nread += size;
    512 			rpipe->pipe_map.pos += size;
    513 			rpipe->pipe_map.cnt -= size;
    514 			if (rpipe->pipe_map.cnt == 0) {
    515 				PIPE_LOCK(rpipe);
    516 				rpipe->pipe_state &= ~PIPE_DIRECTR;
    517 				wakeup(rpipe);
    518 				PIPE_UNLOCK(rpipe);
    519 			}
    520 #endif
    521 		} else {
    522 			/*
    523 			 * Break if some data was read.
    524 			 */
    525 			if (nread > 0)
    526 				break;
    527 
    528 			PIPE_LOCK(rpipe);
    529 
    530 			/*
    531 			 * detect EOF condition
    532 			 * read returns 0 on EOF, no need to set error
    533 			 */
    534 			if (rpipe->pipe_state & PIPE_EOF) {
    535 				PIPE_UNLOCK(rpipe);
    536 				break;
    537 			}
    538 
    539 			/*
    540 			 * don't block on non-blocking I/O
    541 			 */
    542 			if (fp->f_flag & FNONBLOCK) {
    543 				PIPE_UNLOCK(rpipe);
    544 				error = EAGAIN;
    545 				break;
    546 			}
    547 
    548 			/*
    549 			 * Unlock the pipe buffer for our remaining processing.
    550 			 * We will either break out with an error or we will
    551 			 * sleep and relock to loop.
    552 			 */
    553 			pipeunlock(rpipe);
    554 
    555 			/*
    556 			 * The PIPE_DIRECTR flag is not under the control
    557 			 * of the long-term lock (see pipe_direct_write()),
    558 			 * so re-check now while holding the spin lock.
    559 			 */
    560 			if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
    561 				goto again;
    562 
    563 			/*
    564 			 * We want to read more, wake up select/poll.
    565 			 */
    566 			pipeselwakeup(rpipe, rpipe->pipe_peer, fp->f_data,
    567 			    POLL_IN);
    568 
    569 			/*
    570 			 * If the "write-side" is blocked, wake it up now.
    571 			 */
    572 			if (rpipe->pipe_state & PIPE_WANTW) {
    573 				rpipe->pipe_state &= ~PIPE_WANTW;
    574 				wakeup(rpipe);
    575 			}
    576 
    577 			/* Now wait until the pipe is filled */
    578 			rpipe->pipe_state |= PIPE_WANTR;
    579 			error = ltsleep(rpipe, PSOCK | PCATCH,
    580 					"piperd", 0, &rpipe->pipe_slock);
    581 			if (error != 0)
    582 				goto unlocked_error;
    583 			goto again;
    584 		}
    585 	}
    586 
    587 	if (error == 0)
    588 		PIPE_TIMESTAMP(&rpipe->pipe_atime);
    589 
    590 	PIPE_LOCK(rpipe);
    591 	pipeunlock(rpipe);
    592 
    593 unlocked_error:
    594 	--rpipe->pipe_busy;
    595 
    596 	/*
    597 	 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
    598 	 */
    599 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
    600 		rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
    601 		wakeup(rpipe);
    602 	} else if (bp->cnt < MINPIPESIZE) {
    603 		/*
    604 		 * Handle write blocking hysteresis.
    605 		 */
    606 		if (rpipe->pipe_state & PIPE_WANTW) {
    607 			rpipe->pipe_state &= ~PIPE_WANTW;
    608 			wakeup(rpipe);
    609 		}
    610 	}
    611 
    612 	/*
    613 	 * If anything was read off the buffer, signal to the writer it's
    614 	 * possible to write more data. Also send signal if we are here for the
    615 	 * first time after last write.
    616 	 */
    617 	if ((bp->size - bp->cnt) >= PIPE_BUF
    618 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    619 		pipeselwakeup(rpipe, rpipe->pipe_peer, fp->f_data, POLL_OUT);
    620 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    621 	}
    622 
    623 	PIPE_UNLOCK(rpipe);
    624 	return (error);
    625 }
    626 
    627 #ifndef PIPE_NODIRECT
    628 /*
    629  * Allocate structure for loan transfer.
    630  */
    631 static int
    632 pipe_loan_alloc(wpipe, npages)
    633 	struct pipe *wpipe;
    634 	int npages;
    635 {
    636 	vsize_t len;
    637 
    638 	len = (vsize_t)npages << PAGE_SHIFT;
    639 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
    640 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    641 	if (wpipe->pipe_map.kva == 0)
    642 		return (ENOMEM);
    643 
    644 	amountpipekva += len;
    645 	wpipe->pipe_map.npages = npages;
    646 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
    647 	    M_WAITOK);
    648 	return (0);
    649 }
    650 
    651 /*
    652  * Free resources allocated for loan transfer.
    653  */
    654 static void
    655 pipe_loan_free(wpipe)
    656 	struct pipe *wpipe;
    657 {
    658 	vsize_t len;
    659 
    660 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    661 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
    662 	wpipe->pipe_map.kva = 0;
    663 	amountpipekva -= len;
    664 	free(wpipe->pipe_map.pgs, M_PIPE);
    665 	wpipe->pipe_map.pgs = NULL;
    666 }
    667 
    668 /*
    669  * NetBSD direct write, using uvm_loan() mechanism.
    670  * This implements the pipe buffer write mechanism.  Note that only
    671  * a direct write OR a normal pipe write can be pending at any given time.
    672  * If there are any characters in the pipe buffer, the direct write will
    673  * be deferred until the receiving process grabs all of the bytes from
    674  * the pipe buffer.  Then the direct mapping write is set-up.
    675  *
    676  * Called with the long-term pipe lock held.
    677  */
    678 static int
    679 pipe_direct_write(fp, wpipe, uio)
    680 	struct file *fp;
    681 	struct pipe *wpipe;
    682 	struct uio *uio;
    683 {
    684 	int error, npages, j;
    685 	struct vm_page **pgs;
    686 	vaddr_t bbase, kva, base, bend;
    687 	vsize_t blen, bcnt;
    688 	voff_t bpos;
    689 
    690 	KASSERT(wpipe->pipe_map.cnt == 0);
    691 
    692 	/*
    693 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
    694 	 * not aligned to PAGE_SIZE.
    695 	 */
    696 	bbase = (vaddr_t)uio->uio_iov->iov_base;
    697 	base = trunc_page(bbase);
    698 	bend = round_page(bbase + uio->uio_iov->iov_len);
    699 	blen = bend - base;
    700 	bpos = bbase - base;
    701 
    702 	if (blen > PIPE_DIRECT_CHUNK) {
    703 		blen = PIPE_DIRECT_CHUNK;
    704 		bend = base + blen;
    705 		bcnt = PIPE_DIRECT_CHUNK - bpos;
    706 	} else {
    707 		bcnt = uio->uio_iov->iov_len;
    708 	}
    709 	npages = blen >> PAGE_SHIFT;
    710 
    711 	/*
    712 	 * Free the old kva if we need more pages than we have
    713 	 * allocated.
    714 	 */
    715 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
    716 		pipe_loan_free(wpipe);
    717 
    718 	/* Allocate new kva. */
    719 	if (wpipe->pipe_map.kva == 0) {
    720 		error = pipe_loan_alloc(wpipe, npages);
    721 		if (error)
    722 			return (error);
    723 	}
    724 
    725 	/* Loan the write buffer memory from writer process */
    726 	pgs = wpipe->pipe_map.pgs;
    727 	error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
    728 			 pgs, UVM_LOAN_TOPAGE);
    729 	if (error) {
    730 		pipe_loan_free(wpipe);
    731 		return (ENOMEM); /* so that caller fallback to ordinary write */
    732 	}
    733 
    734 	/* Enter the loaned pages to kva */
    735 	kva = wpipe->pipe_map.kva;
    736 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
    737 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
    738 	}
    739 	pmap_update(pmap_kernel());
    740 
    741 	/* Now we can put the pipe in direct write mode */
    742 	wpipe->pipe_map.pos = bpos;
    743 	wpipe->pipe_map.cnt = bcnt;
    744 	wpipe->pipe_state |= PIPE_DIRECTW;
    745 
    746 	/*
    747 	 * But before we can let someone do a direct read,
    748 	 * we have to wait until the pipe is drained.
    749 	 */
    750 
    751 	/* Relase the pipe lock while we wait */
    752 	PIPE_LOCK(wpipe);
    753 	pipeunlock(wpipe);
    754 
    755 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
    756 		if (wpipe->pipe_state & PIPE_WANTR) {
    757 			wpipe->pipe_state &= ~PIPE_WANTR;
    758 			wakeup(wpipe);
    759 		}
    760 
    761 		wpipe->pipe_state |= PIPE_WANTW;
    762 		error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0,
    763 				&wpipe->pipe_slock);
    764 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    765 			error = EPIPE;
    766 	}
    767 
    768 	/* Pipe is drained; next read will off the direct buffer */
    769 	wpipe->pipe_state |= PIPE_DIRECTR;
    770 
    771 	/* Wait until the reader is done */
    772 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
    773 		if (wpipe->pipe_state & PIPE_WANTR) {
    774 			wpipe->pipe_state &= ~PIPE_WANTR;
    775 			wakeup(wpipe);
    776 		}
    777 		pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_IN);
    778 		error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0,
    779 				&wpipe->pipe_slock);
    780 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    781 			error = EPIPE;
    782 	}
    783 
    784 	/* Take pipe out of direct write mode */
    785 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
    786 
    787 	/* Acquire the pipe lock and cleanup */
    788 	(void)pipelock(wpipe, 0);
    789 	if (pgs != NULL) {
    790 		pmap_kremove(wpipe->pipe_map.kva, blen);
    791 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
    792 	}
    793 	if (error || amountpipekva > maxpipekva)
    794 		pipe_loan_free(wpipe);
    795 
    796 	if (error) {
    797 		pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_ERR);
    798 
    799 		/*
    800 		 * If nothing was read from what we offered, return error
    801 		 * straight on. Otherwise update uio resid first. Caller
    802 		 * will deal with the error condition, returning short
    803 		 * write, error, or restarting the write(2) as appropriate.
    804 		 */
    805 		if (wpipe->pipe_map.cnt == bcnt) {
    806 			wpipe->pipe_map.cnt = 0;
    807 			wakeup(wpipe);
    808 			return (error);
    809 		}
    810 
    811 		bcnt -= wpipe->pipe_map.cnt;
    812 	}
    813 
    814 	uio->uio_resid -= bcnt;
    815 	/* uio_offset not updated, not set/used for write(2) */
    816 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
    817 	uio->uio_iov->iov_len -= bcnt;
    818 	if (uio->uio_iov->iov_len == 0) {
    819 		uio->uio_iov++;
    820 		uio->uio_iovcnt--;
    821 	}
    822 
    823 	wpipe->pipe_map.cnt = 0;
    824 	return (error);
    825 }
    826 #endif /* !PIPE_NODIRECT */
    827 
    828 static int
    829 pipe_write(fp, offset, uio, cred, flags)
    830 	struct file *fp;
    831 	off_t *offset;
    832 	struct uio *uio;
    833 	struct ucred *cred;
    834 	int flags;
    835 {
    836 	struct pipe *wpipe, *rpipe;
    837 	struct pipebuf *bp;
    838 	int error;
    839 
    840 	/* We want to write to our peer */
    841 	rpipe = (struct pipe *) fp->f_data;
    842 
    843 retry:
    844 	error = 0;
    845 	PIPE_LOCK(rpipe);
    846 	wpipe = rpipe->pipe_peer;
    847 
    848 	/*
    849 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    850 	 */
    851 	if (wpipe == NULL)
    852 		error = EPIPE;
    853 	else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
    854 		/* Deal with race for peer */
    855 		PIPE_UNLOCK(rpipe);
    856 		goto retry;
    857 	} else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
    858 		PIPE_UNLOCK(wpipe);
    859 		error = EPIPE;
    860 	}
    861 
    862 	PIPE_UNLOCK(rpipe);
    863 	if (error != 0)
    864 		return (error);
    865 
    866 	++wpipe->pipe_busy;
    867 
    868 	/* Aquire the long-term pipe lock */
    869 	if ((error = pipelock(wpipe,1)) != 0) {
    870 		--wpipe->pipe_busy;
    871 		if (wpipe->pipe_busy == 0
    872 		    && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
    873 			wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
    874 			wakeup(wpipe);
    875 		}
    876 		PIPE_UNLOCK(wpipe);
    877 		return (error);
    878 	}
    879 
    880 	bp = &wpipe->pipe_buffer;
    881 
    882 	/*
    883 	 * If it is advantageous to resize the pipe buffer, do so.
    884 	 */
    885 	if ((uio->uio_resid > PIPE_SIZE) &&
    886 	    (nbigpipe < maxbigpipes) &&
    887 #ifndef PIPE_NODIRECT
    888 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    889 #endif
    890 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    891 
    892 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    893 			nbigpipe++;
    894 	}
    895 
    896 	while (uio->uio_resid) {
    897 		size_t space;
    898 
    899 #ifndef PIPE_NODIRECT
    900 		/*
    901 		 * Pipe buffered writes cannot be coincidental with
    902 		 * direct writes.  Also, only one direct write can be
    903 		 * in progress at any one time.  We wait until the currently
    904 		 * executing direct write is completed before continuing.
    905 		 *
    906 		 * We break out if a signal occurs or the reader goes away.
    907 		 */
    908 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
    909 			PIPE_LOCK(wpipe);
    910 			if (wpipe->pipe_state & PIPE_WANTR) {
    911 				wpipe->pipe_state &= ~PIPE_WANTR;
    912 				wakeup(wpipe);
    913 			}
    914 			pipeunlock(wpipe);
    915 			error = ltsleep(wpipe, PSOCK | PCATCH,
    916 					"pipbww", 0, &wpipe->pipe_slock);
    917 
    918 			(void)pipelock(wpipe, 0);
    919 			if (wpipe->pipe_state & PIPE_EOF)
    920 				error = EPIPE;
    921 		}
    922 		if (error)
    923 			break;
    924 
    925 		/*
    926 		 * If the transfer is large, we can gain performance if
    927 		 * we do process-to-process copies directly.
    928 		 * If the write is non-blocking, we don't use the
    929 		 * direct write mechanism.
    930 		 *
    931 		 * The direct write mechanism will detect the reader going
    932 		 * away on us.
    933 		 */
    934 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    935 		    (fp->f_flag & FNONBLOCK) == 0 &&
    936 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
    937 			error = pipe_direct_write(fp, wpipe, uio);
    938 
    939 			/*
    940 			 * Break out if error occurred, unless it's ENOMEM.
    941 			 * ENOMEM means we failed to allocate some resources
    942 			 * for direct write, so we just fallback to ordinary
    943 			 * write. If the direct write was successful,
    944 			 * process rest of data via ordinary write.
    945 			 */
    946 			if (error == 0)
    947 				continue;
    948 
    949 			if (error != ENOMEM)
    950 				break;
    951 		}
    952 #endif /* PIPE_NODIRECT */
    953 
    954 		space = bp->size - bp->cnt;
    955 
    956 		/* Writes of size <= PIPE_BUF must be atomic. */
    957 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    958 			space = 0;
    959 
    960 		if (space > 0) {
    961 			int size;	/* Transfer size */
    962 			int segsize;	/* first segment to transfer */
    963 
    964 			/*
    965 			 * Transfer size is minimum of uio transfer
    966 			 * and free space in pipe buffer.
    967 			 */
    968 			if (space > uio->uio_resid)
    969 				size = uio->uio_resid;
    970 			else
    971 				size = space;
    972 			/*
    973 			 * First segment to transfer is minimum of
    974 			 * transfer size and contiguous space in
    975 			 * pipe buffer.  If first segment to transfer
    976 			 * is less than the transfer size, we've got
    977 			 * a wraparound in the buffer.
    978 			 */
    979 			segsize = bp->size - bp->in;
    980 			if (segsize > size)
    981 				segsize = size;
    982 
    983 			/* Transfer first segment */
    984 			error = uiomove(&bp->buffer[bp->in], segsize, uio);
    985 
    986 			if (error == 0 && segsize < size) {
    987 				/*
    988 				 * Transfer remaining part now, to
    989 				 * support atomic writes.  Wraparound
    990 				 * happened.
    991 				 */
    992 #ifdef DEBUG
    993 				if (bp->in + segsize != bp->size)
    994 					panic("Expected pipe buffer wraparound disappeared");
    995 #endif
    996 
    997 				error = uiomove(&bp->buffer[0],
    998 						size - segsize, uio);
    999 			}
   1000 			if (error)
   1001 				break;
   1002 
   1003 			bp->in += size;
   1004 			if (bp->in >= bp->size) {
   1005 #ifdef DEBUG
   1006 				if (bp->in != size - segsize + bp->size)
   1007 					panic("Expected wraparound bad");
   1008 #endif
   1009 				bp->in = size - segsize;
   1010 			}
   1011 
   1012 			bp->cnt += size;
   1013 #ifdef DEBUG
   1014 			if (bp->cnt > bp->size)
   1015 				panic("Pipe buffer overflow");
   1016 #endif
   1017 		} else {
   1018 			/*
   1019 			 * If the "read-side" has been blocked, wake it up now.
   1020 			 */
   1021 			PIPE_LOCK(wpipe);
   1022 			if (wpipe->pipe_state & PIPE_WANTR) {
   1023 				wpipe->pipe_state &= ~PIPE_WANTR;
   1024 				wakeup(wpipe);
   1025 			}
   1026 			PIPE_UNLOCK(wpipe);
   1027 
   1028 			/*
   1029 			 * don't block on non-blocking I/O
   1030 			 */
   1031 			if (fp->f_flag & FNONBLOCK) {
   1032 				error = EAGAIN;
   1033 				break;
   1034 			}
   1035 
   1036 			/*
   1037 			 * We have no more space and have something to offer,
   1038 			 * wake up select/poll.
   1039 			 */
   1040 			if (bp->cnt)
   1041 				pipeselwakeup(wpipe, wpipe, fp->f_data,
   1042 				    POLL_OUT);
   1043 
   1044 			PIPE_LOCK(wpipe);
   1045 			pipeunlock(wpipe);
   1046 			wpipe->pipe_state |= PIPE_WANTW;
   1047 			error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0,
   1048 					&wpipe->pipe_slock);
   1049 			(void)pipelock(wpipe, 0);
   1050 			if (error != 0)
   1051 				break;
   1052 			/*
   1053 			 * If read side wants to go away, we just issue a signal
   1054 			 * to ourselves.
   1055 			 */
   1056 			if (wpipe->pipe_state & PIPE_EOF) {
   1057 				error = EPIPE;
   1058 				break;
   1059 			}
   1060 		}
   1061 	}
   1062 
   1063 	PIPE_LOCK(wpipe);
   1064 	--wpipe->pipe_busy;
   1065 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1066 		wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1067 		wakeup(wpipe);
   1068 	} else if (bp->cnt > 0) {
   1069 		/*
   1070 		 * If we have put any characters in the buffer, we wake up
   1071 		 * the reader.
   1072 		 */
   1073 		if (wpipe->pipe_state & PIPE_WANTR) {
   1074 			wpipe->pipe_state &= ~PIPE_WANTR;
   1075 			wakeup(wpipe);
   1076 		}
   1077 	}
   1078 
   1079 	/*
   1080 	 * Don't return EPIPE if I/O was successful
   1081 	 */
   1082 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
   1083 		error = 0;
   1084 
   1085 	if (error == 0)
   1086 		PIPE_TIMESTAMP(&wpipe->pipe_mtime);
   1087 
   1088 	/*
   1089 	 * We have something to offer, wake up select/poll.
   1090 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1091 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1092 	 */
   1093 	if (bp->cnt)
   1094 		pipeselwakeup(wpipe, wpipe, fp->f_data, POLL_OUT);
   1095 
   1096 	/*
   1097 	 * Arrange for next read(2) to do a signal.
   1098 	 */
   1099 	wpipe->pipe_state |= PIPE_SIGNALR;
   1100 
   1101 	pipeunlock(wpipe);
   1102 	PIPE_UNLOCK(wpipe);
   1103 	return (error);
   1104 }
   1105 
   1106 /*
   1107  * we implement a very minimal set of ioctls for compatibility with sockets.
   1108  */
   1109 int
   1110 pipe_ioctl(fp, cmd, data, p)
   1111 	struct file *fp;
   1112 	u_long cmd;
   1113 	void *data;
   1114 	struct proc *p;
   1115 {
   1116 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1117 
   1118 	switch (cmd) {
   1119 
   1120 	case FIONBIO:
   1121 		return (0);
   1122 
   1123 	case FIOASYNC:
   1124 		PIPE_LOCK(pipe);
   1125 		if (*(int *)data) {
   1126 			pipe->pipe_state |= PIPE_ASYNC;
   1127 		} else {
   1128 			pipe->pipe_state &= ~PIPE_ASYNC;
   1129 		}
   1130 		PIPE_UNLOCK(pipe);
   1131 		return (0);
   1132 
   1133 	case FIONREAD:
   1134 		PIPE_LOCK(pipe);
   1135 #ifndef PIPE_NODIRECT
   1136 		if (pipe->pipe_state & PIPE_DIRECTW)
   1137 			*(int *)data = pipe->pipe_map.cnt;
   1138 		else
   1139 #endif
   1140 			*(int *)data = pipe->pipe_buffer.cnt;
   1141 		PIPE_UNLOCK(pipe);
   1142 		return (0);
   1143 
   1144 	case FIONWRITE:
   1145 		/* Look at other side */
   1146 		pipe = pipe->pipe_peer;
   1147 		PIPE_LOCK(pipe);
   1148 #ifndef PIPE_NODIRECT
   1149 		if (pipe->pipe_state & PIPE_DIRECTW)
   1150 			*(int *)data = pipe->pipe_map.cnt;
   1151 		else
   1152 #endif
   1153 			*(int *)data = pipe->pipe_buffer.cnt;
   1154 		PIPE_UNLOCK(pipe);
   1155 		return (0);
   1156 
   1157 	case FIONSPACE:
   1158 		/* Look at other side */
   1159 		pipe = pipe->pipe_peer;
   1160 		PIPE_LOCK(pipe);
   1161 #ifndef PIPE_NODIRECT
   1162 		/*
   1163 		 * If we're in direct-mode, we don't really have a
   1164 		 * send queue, and any other write will block. Thus
   1165 		 * zero seems like the best answer.
   1166 		 */
   1167 		if (pipe->pipe_state & PIPE_DIRECTW)
   1168 			*(int *)data = 0;
   1169 		else
   1170 #endif
   1171 			*(int *)data = pipe->pipe_buffer.size -
   1172 					pipe->pipe_buffer.cnt;
   1173 		PIPE_UNLOCK(pipe);
   1174 		return (0);
   1175 
   1176 	case TIOCSPGRP:
   1177 	case FIOSETOWN:
   1178 		return fsetown(p, &pipe->pipe_pgid, cmd, data);
   1179 
   1180 	case TIOCGPGRP:
   1181 	case FIOGETOWN:
   1182 		return fgetown(p, pipe->pipe_pgid, cmd, data);
   1183 
   1184 	}
   1185 	return (EPASSTHROUGH);
   1186 }
   1187 
   1188 int
   1189 pipe_poll(fp, events, td)
   1190 	struct file *fp;
   1191 	int events;
   1192 	struct proc *td;
   1193 {
   1194 	struct pipe *rpipe = (struct pipe *)fp->f_data;
   1195 	struct pipe *wpipe;
   1196 	int eof = 0;
   1197 	int revents = 0;
   1198 
   1199 retry:
   1200 	PIPE_LOCK(rpipe);
   1201 	wpipe = rpipe->pipe_peer;
   1202 	if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
   1203 		/* Deal with race for peer */
   1204 		PIPE_UNLOCK(rpipe);
   1205 		goto retry;
   1206 	}
   1207 
   1208 	if (events & (POLLIN | POLLRDNORM))
   1209 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1210 #ifndef PIPE_NODIRECT
   1211 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
   1212 #endif
   1213 		    (rpipe->pipe_state & PIPE_EOF))
   1214 			revents |= events & (POLLIN | POLLRDNORM);
   1215 
   1216 	eof |= (rpipe->pipe_state & PIPE_EOF);
   1217 	PIPE_UNLOCK(rpipe);
   1218 
   1219 	if (wpipe == NULL)
   1220 		revents |= events & (POLLOUT | POLLWRNORM);
   1221 	else {
   1222 		if (events & (POLLOUT | POLLWRNORM))
   1223 			if ((wpipe->pipe_state & PIPE_EOF) || (
   1224 #ifndef PIPE_NODIRECT
   1225 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1226 #endif
   1227 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1228 				revents |= events & (POLLOUT | POLLWRNORM);
   1229 
   1230 		eof |= (wpipe->pipe_state & PIPE_EOF);
   1231 		PIPE_UNLOCK(wpipe);
   1232 	}
   1233 
   1234 	if (wpipe == NULL || eof)
   1235 		revents |= POLLHUP;
   1236 
   1237 	if (revents == 0) {
   1238 		if (events & (POLLIN | POLLRDNORM))
   1239 			selrecord(td, &rpipe->pipe_sel);
   1240 
   1241 		if (events & (POLLOUT | POLLWRNORM))
   1242 			selrecord(td, &wpipe->pipe_sel);
   1243 	}
   1244 
   1245 	return (revents);
   1246 }
   1247 
   1248 static int
   1249 pipe_stat(fp, ub, td)
   1250 	struct file *fp;
   1251 	struct stat *ub;
   1252 	struct proc *td;
   1253 {
   1254 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1255 
   1256 	memset((caddr_t)ub, 0, sizeof(*ub));
   1257 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1258 	ub->st_blksize = pipe->pipe_buffer.size;
   1259 	if (ub->st_blksize == 0 && pipe->pipe_peer)
   1260 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
   1261 	ub->st_size = pipe->pipe_buffer.cnt;
   1262 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1263 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
   1264 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
   1265 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
   1266 	ub->st_uid = fp->f_cred->cr_uid;
   1267 	ub->st_gid = fp->f_cred->cr_gid;
   1268 	/*
   1269 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1270 	 * XXX (st_dev, st_ino) should be unique.
   1271 	 */
   1272 	return (0);
   1273 }
   1274 
   1275 /* ARGSUSED */
   1276 static int
   1277 pipe_close(fp, td)
   1278 	struct file *fp;
   1279 	struct proc *td;
   1280 {
   1281 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1282 
   1283 	fp->f_data = NULL;
   1284 	pipeclose(fp, pipe);
   1285 	return (0);
   1286 }
   1287 
   1288 static void
   1289 pipe_free_kmem(pipe)
   1290 	struct pipe *pipe;
   1291 {
   1292 
   1293 	if (pipe->pipe_buffer.buffer != NULL) {
   1294 		if (pipe->pipe_buffer.size > PIPE_SIZE)
   1295 			--nbigpipe;
   1296 		amountpipekva -= pipe->pipe_buffer.size;
   1297 		uvm_km_free(kernel_map,
   1298 			(vaddr_t)pipe->pipe_buffer.buffer,
   1299 			pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
   1300 		pipe->pipe_buffer.buffer = NULL;
   1301 	}
   1302 #ifndef PIPE_NODIRECT
   1303 	if (pipe->pipe_map.kva != 0) {
   1304 		pipe_loan_free(pipe);
   1305 		pipe->pipe_map.cnt = 0;
   1306 		pipe->pipe_map.kva = 0;
   1307 		pipe->pipe_map.pos = 0;
   1308 		pipe->pipe_map.npages = 0;
   1309 	}
   1310 #endif /* !PIPE_NODIRECT */
   1311 }
   1312 
   1313 /*
   1314  * shutdown the pipe
   1315  */
   1316 static void
   1317 pipeclose(fp, pipe)
   1318 	struct file *fp;
   1319 	struct pipe *pipe;
   1320 {
   1321 	struct pipe *ppipe;
   1322 
   1323 	if (pipe == NULL)
   1324 		return;
   1325 
   1326 retry:
   1327 	PIPE_LOCK(pipe);
   1328 
   1329 	if (fp)
   1330 		pipeselwakeup(pipe, pipe, fp->f_data, POLL_HUP);
   1331 
   1332 	/*
   1333 	 * If the other side is blocked, wake it up saying that
   1334 	 * we want to close it down.
   1335 	 */
   1336 	while (pipe->pipe_busy) {
   1337 		wakeup(pipe);
   1338 		pipe->pipe_state |= PIPE_WANTCLOSE | PIPE_EOF;
   1339 		ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock);
   1340 	}
   1341 
   1342 	/*
   1343 	 * Disconnect from peer
   1344 	 */
   1345 	if ((ppipe = pipe->pipe_peer) != NULL) {
   1346 		/* Deal with race for peer */
   1347 		if (simple_lock_try(&ppipe->pipe_slock) == 0) {
   1348 			PIPE_UNLOCK(pipe);
   1349 			goto retry;
   1350 		}
   1351 		if (fp)
   1352 			pipeselwakeup(ppipe, ppipe, fp->f_data, POLL_HUP);
   1353 
   1354 		ppipe->pipe_state |= PIPE_EOF;
   1355 		wakeup(ppipe);
   1356 		ppipe->pipe_peer = NULL;
   1357 		PIPE_UNLOCK(ppipe);
   1358 	}
   1359 
   1360 	(void)lockmgr(&pipe->pipe_lock, LK_DRAIN | LK_INTERLOCK,
   1361 			&pipe->pipe_slock);
   1362 
   1363 	/*
   1364 	 * free resources
   1365 	 */
   1366 	pipe_free_kmem(pipe);
   1367 	pool_put(&pipe_pool, pipe);
   1368 }
   1369 
   1370 static void
   1371 filt_pipedetach(struct knote *kn)
   1372 {
   1373 	struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
   1374 
   1375 	switch(kn->kn_filter) {
   1376 	case EVFILT_WRITE:
   1377 		/* need the peer structure, not our own */
   1378 		pipe = pipe->pipe_peer;
   1379 		/* XXXSMP: race for peer */
   1380 
   1381 		/* if reader end already closed, just return */
   1382 		if (pipe == NULL)
   1383 			return;
   1384 
   1385 		break;
   1386 	default:
   1387 		/* nothing to do */
   1388 		break;
   1389 	}
   1390 
   1391 #ifdef DIAGNOSTIC
   1392 	if (kn->kn_hook != pipe)
   1393 		panic("filt_pipedetach: inconsistent knote");
   1394 #endif
   1395 
   1396 	PIPE_LOCK(pipe);
   1397 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
   1398 	PIPE_UNLOCK(pipe);
   1399 }
   1400 
   1401 /*ARGSUSED*/
   1402 static int
   1403 filt_piperead(struct knote *kn, long hint)
   1404 {
   1405 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1406 	struct pipe *wpipe = rpipe->pipe_peer;
   1407 
   1408 	if ((hint & NOTE_SUBMIT) == 0)
   1409 		PIPE_LOCK(rpipe);
   1410 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1411 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1412 		kn->kn_data = rpipe->pipe_map.cnt;
   1413 
   1414 	/* XXXSMP: race for peer */
   1415 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1416 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1417 		kn->kn_flags |= EV_EOF;
   1418 		if ((hint & NOTE_SUBMIT) == 0)
   1419 			PIPE_UNLOCK(rpipe);
   1420 		return (1);
   1421 	}
   1422 	if ((hint & NOTE_SUBMIT) == 0)
   1423 		PIPE_UNLOCK(rpipe);
   1424 	return (kn->kn_data > 0);
   1425 }
   1426 
   1427 /*ARGSUSED*/
   1428 static int
   1429 filt_pipewrite(struct knote *kn, long hint)
   1430 {
   1431 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1432 	struct pipe *wpipe = rpipe->pipe_peer;
   1433 
   1434 	if ((hint & NOTE_SUBMIT) == 0)
   1435 		PIPE_LOCK(rpipe);
   1436 	/* XXXSMP: race for peer */
   1437 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1438 		kn->kn_data = 0;
   1439 		kn->kn_flags |= EV_EOF;
   1440 		if ((hint & NOTE_SUBMIT) == 0)
   1441 			PIPE_UNLOCK(rpipe);
   1442 		return (1);
   1443 	}
   1444 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1445 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1446 		kn->kn_data = 0;
   1447 
   1448 	if ((hint & NOTE_SUBMIT) == 0)
   1449 		PIPE_UNLOCK(rpipe);
   1450 	return (kn->kn_data >= PIPE_BUF);
   1451 }
   1452 
   1453 static const struct filterops pipe_rfiltops =
   1454 	{ 1, NULL, filt_pipedetach, filt_piperead };
   1455 static const struct filterops pipe_wfiltops =
   1456 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
   1457 
   1458 /*ARGSUSED*/
   1459 static int
   1460 pipe_kqfilter(struct file *fp, struct knote *kn)
   1461 {
   1462 	struct pipe *pipe;
   1463 
   1464 	pipe = (struct pipe *)kn->kn_fp->f_data;
   1465 	switch (kn->kn_filter) {
   1466 	case EVFILT_READ:
   1467 		kn->kn_fop = &pipe_rfiltops;
   1468 		break;
   1469 	case EVFILT_WRITE:
   1470 		kn->kn_fop = &pipe_wfiltops;
   1471 		/* XXXSMP: race for peer */
   1472 		pipe = pipe->pipe_peer;
   1473 		if (pipe == NULL) {
   1474 			/* other end of pipe has been closed */
   1475 			return (EBADF);
   1476 		}
   1477 		break;
   1478 	default:
   1479 		return (1);
   1480 	}
   1481 	kn->kn_hook = pipe;
   1482 
   1483 	PIPE_LOCK(pipe);
   1484 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
   1485 	PIPE_UNLOCK(pipe);
   1486 	return (0);
   1487 }
   1488 
   1489 /*
   1490  * Handle pipe sysctls.
   1491  */
   1492 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1493 {
   1494 
   1495 	sysctl_createv(clog, 0, NULL, NULL,
   1496 		       CTLFLAG_PERMANENT,
   1497 		       CTLTYPE_NODE, "kern", NULL,
   1498 		       NULL, 0, NULL, 0,
   1499 		       CTL_KERN, CTL_EOL);
   1500 	sysctl_createv(clog, 0, NULL, NULL,
   1501 		       CTLFLAG_PERMANENT,
   1502 		       CTLTYPE_NODE, "pipe",
   1503 		       SYSCTL_DESCR("Pipe settings"),
   1504 		       NULL, 0, NULL, 0,
   1505 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1506 
   1507 	sysctl_createv(clog, 0, NULL, NULL,
   1508 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1509 		       CTLTYPE_INT, "maxkvasz",
   1510 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1511 				    "used for pipes"),
   1512 		       NULL, 0, &maxpipekva, 0,
   1513 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
   1514 	sysctl_createv(clog, 0, NULL, NULL,
   1515 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1516 		       CTLTYPE_INT, "maxloankvasz",
   1517 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
   1518 		       NULL, 0, &limitpipekva, 0,
   1519 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
   1520 	sysctl_createv(clog, 0, NULL, NULL,
   1521 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1522 		       CTLTYPE_INT, "maxbigpipes",
   1523 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
   1524 		       NULL, 0, &maxbigpipes, 0,
   1525 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1526 	sysctl_createv(clog, 0, NULL, NULL,
   1527 		       CTLFLAG_PERMANENT,
   1528 		       CTLTYPE_INT, "nbigpipes",
   1529 		       SYSCTL_DESCR("Number of \"big\" pipes"),
   1530 		       NULL, 0, &nbigpipe, 0,
   1531 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1532 	sysctl_createv(clog, 0, NULL, NULL,
   1533 		       CTLFLAG_PERMANENT,
   1534 		       CTLTYPE_INT, "kvasize",
   1535 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
   1536 				    "buffers"),
   1537 		       NULL, 0, &amountpipekva, 0,
   1538 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1539 }
   1540