sys_pipe.c revision 1.67 1 /* $NetBSD: sys_pipe.c,v 1.67 2005/10/29 12:31:07 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.67 2005/10/29 12:31:07 yamt Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/ttycom.h>
98 #include <sys/stat.h>
99 #include <sys/malloc.h>
100 #include <sys/poll.h>
101 #include <sys/signalvar.h>
102 #include <sys/vnode.h>
103 #include <sys/uio.h>
104 #include <sys/lock.h>
105 #include <sys/select.h>
106 #include <sys/mount.h>
107 #include <sys/sa.h>
108 #include <sys/syscallargs.h>
109 #include <uvm/uvm.h>
110 #include <sys/sysctl.h>
111 #include <sys/kernel.h>
112
113 #include <sys/pipe.h>
114
115 /*
116 * Avoid microtime(9), it's slow. We don't guard the read from time(9)
117 * with splclock(9) since we don't actually need to be THAT sure the access
118 * is atomic.
119 */
120 #define PIPE_TIMESTAMP(tvp) (*(tvp) = time)
121
122
123 /*
124 * Use this define if you want to disable *fancy* VM things. Expect an
125 * approx 30% decrease in transfer rate.
126 */
127 /* #define PIPE_NODIRECT */
128
129 /*
130 * interfaces to the outside world
131 */
132 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
133 struct ucred *cred, int flags);
134 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
135 struct ucred *cred, int flags);
136 static int pipe_close(struct file *fp, struct proc *p);
137 static int pipe_poll(struct file *fp, int events, struct proc *p);
138 static int pipe_kqfilter(struct file *fp, struct knote *kn);
139 static int pipe_stat(struct file *fp, struct stat *sb, struct proc *p);
140 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
141 struct proc *p);
142
143 static const struct fileops pipeops = {
144 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
145 pipe_stat, pipe_close, pipe_kqfilter
146 };
147
148 /*
149 * Default pipe buffer size(s), this can be kind-of large now because pipe
150 * space is pageable. The pipe code will try to maintain locality of
151 * reference for performance reasons, so small amounts of outstanding I/O
152 * will not wipe the cache.
153 */
154 #define MINPIPESIZE (PIPE_SIZE/3)
155 #define MAXPIPESIZE (2*PIPE_SIZE/3)
156
157 /*
158 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
159 * is there so that on large systems, we don't exhaust it.
160 */
161 #define MAXPIPEKVA (8*1024*1024)
162 static int maxpipekva = MAXPIPEKVA;
163
164 /*
165 * Limit for direct transfers, we cannot, of course limit
166 * the amount of kva for pipes in general though.
167 */
168 #define LIMITPIPEKVA (16*1024*1024)
169 static int limitpipekva = LIMITPIPEKVA;
170
171 /*
172 * Limit the number of "big" pipes
173 */
174 #define LIMITBIGPIPES 32
175 static int maxbigpipes = LIMITBIGPIPES;
176 static int nbigpipe = 0;
177
178 /*
179 * Amount of KVA consumed by pipe buffers.
180 */
181 static int amountpipekva = 0;
182
183 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
184
185 static void pipeclose(struct file *fp, struct pipe *pipe);
186 static void pipe_free_kmem(struct pipe *pipe);
187 static int pipe_create(struct pipe **pipep, int allockva);
188 static int pipelock(struct pipe *pipe, int catch);
189 static __inline void pipeunlock(struct pipe *pipe);
190 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
191 #ifndef PIPE_NODIRECT
192 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
193 struct uio *uio);
194 #endif
195 static int pipespace(struct pipe *pipe, int size);
196
197 #ifndef PIPE_NODIRECT
198 static int pipe_loan_alloc(struct pipe *, int);
199 static void pipe_loan_free(struct pipe *);
200 #endif /* PIPE_NODIRECT */
201
202 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
203 &pool_allocator_nointr);
204
205 /*
206 * The pipe system call for the DTYPE_PIPE type of pipes
207 */
208
209 /* ARGSUSED */
210 int
211 sys_pipe(l, v, retval)
212 struct lwp *l;
213 void *v;
214 register_t *retval;
215 {
216 struct file *rf, *wf;
217 struct pipe *rpipe, *wpipe;
218 int fd, error;
219 struct proc *p;
220
221 p = l->l_proc;
222 rpipe = wpipe = NULL;
223 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
224 pipeclose(NULL, rpipe);
225 pipeclose(NULL, wpipe);
226 return (ENFILE);
227 }
228
229 /*
230 * Note: the file structure returned from falloc() is marked
231 * as 'larval' initially. Unless we mark it as 'mature' by
232 * FILE_SET_MATURE(), any attempt to do anything with it would
233 * return EBADF, including e.g. dup(2) or close(2). This avoids
234 * file descriptor races if we block in the second falloc().
235 */
236
237 error = falloc(p, &rf, &fd);
238 if (error)
239 goto free2;
240 retval[0] = fd;
241 rf->f_flag = FREAD;
242 rf->f_type = DTYPE_PIPE;
243 rf->f_data = (caddr_t)rpipe;
244 rf->f_ops = &pipeops;
245
246 error = falloc(p, &wf, &fd);
247 if (error)
248 goto free3;
249 retval[1] = fd;
250 wf->f_flag = FWRITE;
251 wf->f_type = DTYPE_PIPE;
252 wf->f_data = (caddr_t)wpipe;
253 wf->f_ops = &pipeops;
254
255 rpipe->pipe_peer = wpipe;
256 wpipe->pipe_peer = rpipe;
257
258 FILE_SET_MATURE(rf);
259 FILE_SET_MATURE(wf);
260 FILE_UNUSE(rf, p);
261 FILE_UNUSE(wf, p);
262 return (0);
263 free3:
264 FILE_UNUSE(rf, p);
265 ffree(rf);
266 fdremove(p->p_fd, retval[0]);
267 free2:
268 pipeclose(NULL, wpipe);
269 pipeclose(NULL, rpipe);
270
271 return (error);
272 }
273
274 /*
275 * Allocate kva for pipe circular buffer, the space is pageable
276 * This routine will 'realloc' the size of a pipe safely, if it fails
277 * it will retain the old buffer.
278 * If it fails it will return ENOMEM.
279 */
280 static int
281 pipespace(pipe, size)
282 struct pipe *pipe;
283 int size;
284 {
285 caddr_t buffer;
286 /*
287 * Allocate pageable virtual address space. Physical memory is
288 * allocated on demand.
289 */
290 buffer = (caddr_t) uvm_km_alloc(kernel_map, round_page(size), 0,
291 UVM_KMF_PAGEABLE);
292 if (buffer == NULL)
293 return (ENOMEM);
294
295 /* free old resources if we're resizing */
296 pipe_free_kmem(pipe);
297 pipe->pipe_buffer.buffer = buffer;
298 pipe->pipe_buffer.size = size;
299 pipe->pipe_buffer.in = 0;
300 pipe->pipe_buffer.out = 0;
301 pipe->pipe_buffer.cnt = 0;
302 amountpipekva += pipe->pipe_buffer.size;
303 return (0);
304 }
305
306 /*
307 * Initialize and allocate VM and memory for pipe.
308 */
309 static int
310 pipe_create(pipep, allockva)
311 struct pipe **pipep;
312 int allockva;
313 {
314 struct pipe *pipe;
315 int error;
316
317 pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
318
319 /* Initialize */
320 memset(pipe, 0, sizeof(struct pipe));
321 pipe->pipe_state = PIPE_SIGNALR;
322
323 PIPE_TIMESTAMP(&pipe->pipe_ctime);
324 pipe->pipe_atime = pipe->pipe_ctime;
325 pipe->pipe_mtime = pipe->pipe_ctime;
326 simple_lock_init(&pipe->pipe_slock);
327
328 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
329 return (error);
330
331 return (0);
332 }
333
334
335 /*
336 * Lock a pipe for I/O, blocking other access
337 * Called with pipe spin lock held.
338 * Return with pipe spin lock released on success.
339 */
340 static int
341 pipelock(pipe, catch)
342 struct pipe *pipe;
343 int catch;
344 {
345
346 LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
347
348 while (pipe->pipe_state & PIPE_LOCKFL) {
349 int error;
350 const int pcatch = catch ? PCATCH : 0;
351
352 pipe->pipe_state |= PIPE_LWANT;
353 error = ltsleep(pipe, PSOCK | pcatch, "pipelk", 0,
354 &pipe->pipe_slock);
355 if (error != 0)
356 return error;
357 }
358
359 pipe->pipe_state |= PIPE_LOCKFL;
360 simple_unlock(&pipe->pipe_slock);
361
362 return 0;
363 }
364
365 /*
366 * unlock a pipe I/O lock
367 */
368 static __inline void
369 pipeunlock(pipe)
370 struct pipe *pipe;
371 {
372
373 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
374
375 pipe->pipe_state &= ~PIPE_LOCKFL;
376 if (pipe->pipe_state & PIPE_LWANT) {
377 pipe->pipe_state &= ~PIPE_LWANT;
378 wakeup(pipe);
379 }
380 }
381
382 /*
383 * Select/poll wakup. This also sends SIGIO to peer connected to
384 * 'sigpipe' side of pipe.
385 */
386 static void
387 pipeselwakeup(selp, sigp, code)
388 struct pipe *selp, *sigp;
389 int code;
390 {
391 int band;
392
393 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
394
395 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
396 return;
397
398 switch (code) {
399 case POLL_IN:
400 band = POLLIN|POLLRDNORM;
401 break;
402 case POLL_OUT:
403 band = POLLOUT|POLLWRNORM;
404 break;
405 case POLL_HUP:
406 band = POLLHUP;
407 break;
408 #if POLL_HUP != POLL_ERR
409 case POLL_ERR:
410 band = POLLERR;
411 break;
412 #endif
413 default:
414 band = 0;
415 #ifdef DIAGNOSTIC
416 printf("bad siginfo code %d in pipe notification.\n", code);
417 #endif
418 break;
419 }
420
421 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
422 }
423
424 /* ARGSUSED */
425 static int
426 pipe_read(fp, offset, uio, cred, flags)
427 struct file *fp;
428 off_t *offset;
429 struct uio *uio;
430 struct ucred *cred;
431 int flags;
432 {
433 struct pipe *rpipe = (struct pipe *) fp->f_data;
434 struct pipebuf *bp = &rpipe->pipe_buffer;
435 int error;
436 size_t nread = 0;
437 size_t size;
438 size_t ocnt;
439
440 PIPE_LOCK(rpipe);
441 ++rpipe->pipe_busy;
442 ocnt = bp->cnt;
443
444 again:
445 error = pipelock(rpipe, 1);
446 if (error)
447 goto unlocked_error;
448
449 while (uio->uio_resid) {
450 /*
451 * normal pipe buffer receive
452 */
453 if (bp->cnt > 0) {
454 size = bp->size - bp->out;
455 if (size > bp->cnt)
456 size = bp->cnt;
457 if (size > uio->uio_resid)
458 size = uio->uio_resid;
459
460 error = uiomove(&bp->buffer[bp->out], size, uio);
461 if (error)
462 break;
463
464 bp->out += size;
465 if (bp->out >= bp->size)
466 bp->out = 0;
467
468 bp->cnt -= size;
469
470 /*
471 * If there is no more to read in the pipe, reset
472 * its pointers to the beginning. This improves
473 * cache hit stats.
474 */
475 if (bp->cnt == 0) {
476 bp->in = 0;
477 bp->out = 0;
478 }
479 nread += size;
480 #ifndef PIPE_NODIRECT
481 } else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
482 /*
483 * Direct copy, bypassing a kernel buffer.
484 */
485 caddr_t va;
486
487 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
488
489 size = rpipe->pipe_map.cnt;
490 if (size > uio->uio_resid)
491 size = uio->uio_resid;
492
493 va = (caddr_t) rpipe->pipe_map.kva +
494 rpipe->pipe_map.pos;
495 error = uiomove(va, size, uio);
496 if (error)
497 break;
498 nread += size;
499 rpipe->pipe_map.pos += size;
500 rpipe->pipe_map.cnt -= size;
501 if (rpipe->pipe_map.cnt == 0) {
502 PIPE_LOCK(rpipe);
503 rpipe->pipe_state &= ~PIPE_DIRECTR;
504 wakeup(rpipe);
505 PIPE_UNLOCK(rpipe);
506 }
507 #endif
508 } else {
509 /*
510 * Break if some data was read.
511 */
512 if (nread > 0)
513 break;
514
515 PIPE_LOCK(rpipe);
516
517 /*
518 * detect EOF condition
519 * read returns 0 on EOF, no need to set error
520 */
521 if (rpipe->pipe_state & PIPE_EOF) {
522 PIPE_UNLOCK(rpipe);
523 break;
524 }
525
526 /*
527 * don't block on non-blocking I/O
528 */
529 if (fp->f_flag & FNONBLOCK) {
530 PIPE_UNLOCK(rpipe);
531 error = EAGAIN;
532 break;
533 }
534
535 /*
536 * Unlock the pipe buffer for our remaining processing.
537 * We will either break out with an error or we will
538 * sleep and relock to loop.
539 */
540 pipeunlock(rpipe);
541
542 /*
543 * The PIPE_DIRECTR flag is not under the control
544 * of the long-term lock (see pipe_direct_write()),
545 * so re-check now while holding the spin lock.
546 */
547 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
548 goto again;
549
550 /*
551 * We want to read more, wake up select/poll.
552 */
553 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
554
555 /*
556 * If the "write-side" is blocked, wake it up now.
557 */
558 if (rpipe->pipe_state & PIPE_WANTW) {
559 rpipe->pipe_state &= ~PIPE_WANTW;
560 wakeup(rpipe);
561 }
562
563 /* Now wait until the pipe is filled */
564 rpipe->pipe_state |= PIPE_WANTR;
565 error = ltsleep(rpipe, PSOCK | PCATCH,
566 "piperd", 0, &rpipe->pipe_slock);
567 if (error != 0)
568 goto unlocked_error;
569 goto again;
570 }
571 }
572
573 if (error == 0)
574 PIPE_TIMESTAMP(&rpipe->pipe_atime);
575
576 PIPE_LOCK(rpipe);
577 pipeunlock(rpipe);
578
579 unlocked_error:
580 --rpipe->pipe_busy;
581
582 /*
583 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
584 */
585 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
586 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
587 wakeup(rpipe);
588 } else if (bp->cnt < MINPIPESIZE) {
589 /*
590 * Handle write blocking hysteresis.
591 */
592 if (rpipe->pipe_state & PIPE_WANTW) {
593 rpipe->pipe_state &= ~PIPE_WANTW;
594 wakeup(rpipe);
595 }
596 }
597
598 /*
599 * If anything was read off the buffer, signal to the writer it's
600 * possible to write more data. Also send signal if we are here for the
601 * first time after last write.
602 */
603 if ((bp->size - bp->cnt) >= PIPE_BUF
604 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
605 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
606 rpipe->pipe_state &= ~PIPE_SIGNALR;
607 }
608
609 PIPE_UNLOCK(rpipe);
610 return (error);
611 }
612
613 #ifndef PIPE_NODIRECT
614 /*
615 * Allocate structure for loan transfer.
616 */
617 static int
618 pipe_loan_alloc(wpipe, npages)
619 struct pipe *wpipe;
620 int npages;
621 {
622 vsize_t len;
623
624 len = (vsize_t)npages << PAGE_SHIFT;
625 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
626 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
627 if (wpipe->pipe_map.kva == 0)
628 return (ENOMEM);
629
630 amountpipekva += len;
631 wpipe->pipe_map.npages = npages;
632 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
633 M_WAITOK);
634 return (0);
635 }
636
637 /*
638 * Free resources allocated for loan transfer.
639 */
640 static void
641 pipe_loan_free(wpipe)
642 struct pipe *wpipe;
643 {
644 vsize_t len;
645
646 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
647 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
648 wpipe->pipe_map.kva = 0;
649 amountpipekva -= len;
650 free(wpipe->pipe_map.pgs, M_PIPE);
651 wpipe->pipe_map.pgs = NULL;
652 }
653
654 /*
655 * NetBSD direct write, using uvm_loan() mechanism.
656 * This implements the pipe buffer write mechanism. Note that only
657 * a direct write OR a normal pipe write can be pending at any given time.
658 * If there are any characters in the pipe buffer, the direct write will
659 * be deferred until the receiving process grabs all of the bytes from
660 * the pipe buffer. Then the direct mapping write is set-up.
661 *
662 * Called with the long-term pipe lock held.
663 */
664 static int
665 pipe_direct_write(fp, wpipe, uio)
666 struct file *fp;
667 struct pipe *wpipe;
668 struct uio *uio;
669 {
670 int error, npages, j;
671 struct vm_page **pgs;
672 vaddr_t bbase, kva, base, bend;
673 vsize_t blen, bcnt;
674 voff_t bpos;
675
676 KASSERT(wpipe->pipe_map.cnt == 0);
677
678 /*
679 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
680 * not aligned to PAGE_SIZE.
681 */
682 bbase = (vaddr_t)uio->uio_iov->iov_base;
683 base = trunc_page(bbase);
684 bend = round_page(bbase + uio->uio_iov->iov_len);
685 blen = bend - base;
686 bpos = bbase - base;
687
688 if (blen > PIPE_DIRECT_CHUNK) {
689 blen = PIPE_DIRECT_CHUNK;
690 bend = base + blen;
691 bcnt = PIPE_DIRECT_CHUNK - bpos;
692 } else {
693 bcnt = uio->uio_iov->iov_len;
694 }
695 npages = blen >> PAGE_SHIFT;
696
697 /*
698 * Free the old kva if we need more pages than we have
699 * allocated.
700 */
701 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
702 pipe_loan_free(wpipe);
703
704 /* Allocate new kva. */
705 if (wpipe->pipe_map.kva == 0) {
706 error = pipe_loan_alloc(wpipe, npages);
707 if (error)
708 return (error);
709 }
710
711 /* Loan the write buffer memory from writer process */
712 pgs = wpipe->pipe_map.pgs;
713 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
714 pgs, UVM_LOAN_TOPAGE);
715 if (error) {
716 pipe_loan_free(wpipe);
717 return (ENOMEM); /* so that caller fallback to ordinary write */
718 }
719
720 /* Enter the loaned pages to kva */
721 kva = wpipe->pipe_map.kva;
722 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
723 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
724 }
725 pmap_update(pmap_kernel());
726
727 /* Now we can put the pipe in direct write mode */
728 wpipe->pipe_map.pos = bpos;
729 wpipe->pipe_map.cnt = bcnt;
730 wpipe->pipe_state |= PIPE_DIRECTW;
731
732 /*
733 * But before we can let someone do a direct read,
734 * we have to wait until the pipe is drained.
735 */
736
737 /* Relase the pipe lock while we wait */
738 PIPE_LOCK(wpipe);
739 pipeunlock(wpipe);
740
741 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
742 if (wpipe->pipe_state & PIPE_WANTR) {
743 wpipe->pipe_state &= ~PIPE_WANTR;
744 wakeup(wpipe);
745 }
746
747 wpipe->pipe_state |= PIPE_WANTW;
748 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0,
749 &wpipe->pipe_slock);
750 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
751 error = EPIPE;
752 }
753
754 /* Pipe is drained; next read will off the direct buffer */
755 wpipe->pipe_state |= PIPE_DIRECTR;
756
757 /* Wait until the reader is done */
758 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
759 if (wpipe->pipe_state & PIPE_WANTR) {
760 wpipe->pipe_state &= ~PIPE_WANTR;
761 wakeup(wpipe);
762 }
763 pipeselwakeup(wpipe, wpipe, POLL_IN);
764 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0,
765 &wpipe->pipe_slock);
766 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
767 error = EPIPE;
768 }
769
770 /* Take pipe out of direct write mode */
771 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
772
773 /* Acquire the pipe lock and cleanup */
774 (void)pipelock(wpipe, 0);
775 if (pgs != NULL) {
776 pmap_kremove(wpipe->pipe_map.kva, blen);
777 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
778 }
779 if (error || amountpipekva > maxpipekva)
780 pipe_loan_free(wpipe);
781
782 if (error) {
783 pipeselwakeup(wpipe, wpipe, POLL_ERR);
784
785 /*
786 * If nothing was read from what we offered, return error
787 * straight on. Otherwise update uio resid first. Caller
788 * will deal with the error condition, returning short
789 * write, error, or restarting the write(2) as appropriate.
790 */
791 if (wpipe->pipe_map.cnt == bcnt) {
792 wpipe->pipe_map.cnt = 0;
793 wakeup(wpipe);
794 return (error);
795 }
796
797 bcnt -= wpipe->pipe_map.cnt;
798 }
799
800 uio->uio_resid -= bcnt;
801 /* uio_offset not updated, not set/used for write(2) */
802 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
803 uio->uio_iov->iov_len -= bcnt;
804 if (uio->uio_iov->iov_len == 0) {
805 uio->uio_iov++;
806 uio->uio_iovcnt--;
807 }
808
809 wpipe->pipe_map.cnt = 0;
810 return (error);
811 }
812 #endif /* !PIPE_NODIRECT */
813
814 static int
815 pipe_write(fp, offset, uio, cred, flags)
816 struct file *fp;
817 off_t *offset;
818 struct uio *uio;
819 struct ucred *cred;
820 int flags;
821 {
822 struct pipe *wpipe, *rpipe;
823 struct pipebuf *bp;
824 int error;
825
826 /* We want to write to our peer */
827 rpipe = (struct pipe *) fp->f_data;
828
829 retry:
830 error = 0;
831 PIPE_LOCK(rpipe);
832 wpipe = rpipe->pipe_peer;
833
834 /*
835 * Detect loss of pipe read side, issue SIGPIPE if lost.
836 */
837 if (wpipe == NULL)
838 error = EPIPE;
839 else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
840 /* Deal with race for peer */
841 PIPE_UNLOCK(rpipe);
842 goto retry;
843 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
844 PIPE_UNLOCK(wpipe);
845 error = EPIPE;
846 }
847
848 PIPE_UNLOCK(rpipe);
849 if (error != 0)
850 return (error);
851
852 ++wpipe->pipe_busy;
853
854 /* Aquire the long-term pipe lock */
855 if ((error = pipelock(wpipe,1)) != 0) {
856 --wpipe->pipe_busy;
857 if (wpipe->pipe_busy == 0
858 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
859 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
860 wakeup(wpipe);
861 }
862 PIPE_UNLOCK(wpipe);
863 return (error);
864 }
865
866 bp = &wpipe->pipe_buffer;
867
868 /*
869 * If it is advantageous to resize the pipe buffer, do so.
870 */
871 if ((uio->uio_resid > PIPE_SIZE) &&
872 (nbigpipe < maxbigpipes) &&
873 #ifndef PIPE_NODIRECT
874 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
875 #endif
876 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
877
878 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
879 nbigpipe++;
880 }
881
882 while (uio->uio_resid) {
883 size_t space;
884
885 #ifndef PIPE_NODIRECT
886 /*
887 * Pipe buffered writes cannot be coincidental with
888 * direct writes. Also, only one direct write can be
889 * in progress at any one time. We wait until the currently
890 * executing direct write is completed before continuing.
891 *
892 * We break out if a signal occurs or the reader goes away.
893 */
894 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
895 PIPE_LOCK(wpipe);
896 if (wpipe->pipe_state & PIPE_WANTR) {
897 wpipe->pipe_state &= ~PIPE_WANTR;
898 wakeup(wpipe);
899 }
900 pipeunlock(wpipe);
901 error = ltsleep(wpipe, PSOCK | PCATCH,
902 "pipbww", 0, &wpipe->pipe_slock);
903
904 (void)pipelock(wpipe, 0);
905 if (wpipe->pipe_state & PIPE_EOF)
906 error = EPIPE;
907 }
908 if (error)
909 break;
910
911 /*
912 * If the transfer is large, we can gain performance if
913 * we do process-to-process copies directly.
914 * If the write is non-blocking, we don't use the
915 * direct write mechanism.
916 *
917 * The direct write mechanism will detect the reader going
918 * away on us.
919 */
920 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
921 (fp->f_flag & FNONBLOCK) == 0 &&
922 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
923 error = pipe_direct_write(fp, wpipe, uio);
924
925 /*
926 * Break out if error occurred, unless it's ENOMEM.
927 * ENOMEM means we failed to allocate some resources
928 * for direct write, so we just fallback to ordinary
929 * write. If the direct write was successful,
930 * process rest of data via ordinary write.
931 */
932 if (error == 0)
933 continue;
934
935 if (error != ENOMEM)
936 break;
937 }
938 #endif /* PIPE_NODIRECT */
939
940 space = bp->size - bp->cnt;
941
942 /* Writes of size <= PIPE_BUF must be atomic. */
943 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
944 space = 0;
945
946 if (space > 0) {
947 int size; /* Transfer size */
948 int segsize; /* first segment to transfer */
949
950 /*
951 * Transfer size is minimum of uio transfer
952 * and free space in pipe buffer.
953 */
954 if (space > uio->uio_resid)
955 size = uio->uio_resid;
956 else
957 size = space;
958 /*
959 * First segment to transfer is minimum of
960 * transfer size and contiguous space in
961 * pipe buffer. If first segment to transfer
962 * is less than the transfer size, we've got
963 * a wraparound in the buffer.
964 */
965 segsize = bp->size - bp->in;
966 if (segsize > size)
967 segsize = size;
968
969 /* Transfer first segment */
970 error = uiomove(&bp->buffer[bp->in], segsize, uio);
971
972 if (error == 0 && segsize < size) {
973 /*
974 * Transfer remaining part now, to
975 * support atomic writes. Wraparound
976 * happened.
977 */
978 #ifdef DEBUG
979 if (bp->in + segsize != bp->size)
980 panic("Expected pipe buffer wraparound disappeared");
981 #endif
982
983 error = uiomove(&bp->buffer[0],
984 size - segsize, uio);
985 }
986 if (error)
987 break;
988
989 bp->in += size;
990 if (bp->in >= bp->size) {
991 #ifdef DEBUG
992 if (bp->in != size - segsize + bp->size)
993 panic("Expected wraparound bad");
994 #endif
995 bp->in = size - segsize;
996 }
997
998 bp->cnt += size;
999 #ifdef DEBUG
1000 if (bp->cnt > bp->size)
1001 panic("Pipe buffer overflow");
1002 #endif
1003 } else {
1004 /*
1005 * If the "read-side" has been blocked, wake it up now.
1006 */
1007 PIPE_LOCK(wpipe);
1008 if (wpipe->pipe_state & PIPE_WANTR) {
1009 wpipe->pipe_state &= ~PIPE_WANTR;
1010 wakeup(wpipe);
1011 }
1012 PIPE_UNLOCK(wpipe);
1013
1014 /*
1015 * don't block on non-blocking I/O
1016 */
1017 if (fp->f_flag & FNONBLOCK) {
1018 error = EAGAIN;
1019 break;
1020 }
1021
1022 /*
1023 * We have no more space and have something to offer,
1024 * wake up select/poll.
1025 */
1026 if (bp->cnt)
1027 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1028
1029 PIPE_LOCK(wpipe);
1030 pipeunlock(wpipe);
1031 wpipe->pipe_state |= PIPE_WANTW;
1032 error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0,
1033 &wpipe->pipe_slock);
1034 (void)pipelock(wpipe, 0);
1035 if (error != 0)
1036 break;
1037 /*
1038 * If read side wants to go away, we just issue a signal
1039 * to ourselves.
1040 */
1041 if (wpipe->pipe_state & PIPE_EOF) {
1042 error = EPIPE;
1043 break;
1044 }
1045 }
1046 }
1047
1048 PIPE_LOCK(wpipe);
1049 --wpipe->pipe_busy;
1050 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1051 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1052 wakeup(wpipe);
1053 } else if (bp->cnt > 0) {
1054 /*
1055 * If we have put any characters in the buffer, we wake up
1056 * the reader.
1057 */
1058 if (wpipe->pipe_state & PIPE_WANTR) {
1059 wpipe->pipe_state &= ~PIPE_WANTR;
1060 wakeup(wpipe);
1061 }
1062 }
1063
1064 /*
1065 * Don't return EPIPE if I/O was successful
1066 */
1067 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1068 error = 0;
1069
1070 if (error == 0)
1071 PIPE_TIMESTAMP(&wpipe->pipe_mtime);
1072
1073 /*
1074 * We have something to offer, wake up select/poll.
1075 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1076 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1077 */
1078 if (bp->cnt)
1079 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1080
1081 /*
1082 * Arrange for next read(2) to do a signal.
1083 */
1084 wpipe->pipe_state |= PIPE_SIGNALR;
1085
1086 pipeunlock(wpipe);
1087 PIPE_UNLOCK(wpipe);
1088 return (error);
1089 }
1090
1091 /*
1092 * we implement a very minimal set of ioctls for compatibility with sockets.
1093 */
1094 int
1095 pipe_ioctl(fp, cmd, data, p)
1096 struct file *fp;
1097 u_long cmd;
1098 void *data;
1099 struct proc *p;
1100 {
1101 struct pipe *pipe = (struct pipe *)fp->f_data;
1102
1103 switch (cmd) {
1104
1105 case FIONBIO:
1106 return (0);
1107
1108 case FIOASYNC:
1109 PIPE_LOCK(pipe);
1110 if (*(int *)data) {
1111 pipe->pipe_state |= PIPE_ASYNC;
1112 } else {
1113 pipe->pipe_state &= ~PIPE_ASYNC;
1114 }
1115 PIPE_UNLOCK(pipe);
1116 return (0);
1117
1118 case FIONREAD:
1119 PIPE_LOCK(pipe);
1120 #ifndef PIPE_NODIRECT
1121 if (pipe->pipe_state & PIPE_DIRECTW)
1122 *(int *)data = pipe->pipe_map.cnt;
1123 else
1124 #endif
1125 *(int *)data = pipe->pipe_buffer.cnt;
1126 PIPE_UNLOCK(pipe);
1127 return (0);
1128
1129 case FIONWRITE:
1130 /* Look at other side */
1131 pipe = pipe->pipe_peer;
1132 PIPE_LOCK(pipe);
1133 #ifndef PIPE_NODIRECT
1134 if (pipe->pipe_state & PIPE_DIRECTW)
1135 *(int *)data = pipe->pipe_map.cnt;
1136 else
1137 #endif
1138 *(int *)data = pipe->pipe_buffer.cnt;
1139 PIPE_UNLOCK(pipe);
1140 return (0);
1141
1142 case FIONSPACE:
1143 /* Look at other side */
1144 pipe = pipe->pipe_peer;
1145 PIPE_LOCK(pipe);
1146 #ifndef PIPE_NODIRECT
1147 /*
1148 * If we're in direct-mode, we don't really have a
1149 * send queue, and any other write will block. Thus
1150 * zero seems like the best answer.
1151 */
1152 if (pipe->pipe_state & PIPE_DIRECTW)
1153 *(int *)data = 0;
1154 else
1155 #endif
1156 *(int *)data = pipe->pipe_buffer.size -
1157 pipe->pipe_buffer.cnt;
1158 PIPE_UNLOCK(pipe);
1159 return (0);
1160
1161 case TIOCSPGRP:
1162 case FIOSETOWN:
1163 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1164
1165 case TIOCGPGRP:
1166 case FIOGETOWN:
1167 return fgetown(p, pipe->pipe_pgid, cmd, data);
1168
1169 }
1170 return (EPASSTHROUGH);
1171 }
1172
1173 int
1174 pipe_poll(fp, events, td)
1175 struct file *fp;
1176 int events;
1177 struct proc *td;
1178 {
1179 struct pipe *rpipe = (struct pipe *)fp->f_data;
1180 struct pipe *wpipe;
1181 int eof = 0;
1182 int revents = 0;
1183
1184 retry:
1185 PIPE_LOCK(rpipe);
1186 wpipe = rpipe->pipe_peer;
1187 if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
1188 /* Deal with race for peer */
1189 PIPE_UNLOCK(rpipe);
1190 goto retry;
1191 }
1192
1193 if (events & (POLLIN | POLLRDNORM))
1194 if ((rpipe->pipe_buffer.cnt > 0) ||
1195 #ifndef PIPE_NODIRECT
1196 (rpipe->pipe_state & PIPE_DIRECTR) ||
1197 #endif
1198 (rpipe->pipe_state & PIPE_EOF))
1199 revents |= events & (POLLIN | POLLRDNORM);
1200
1201 eof |= (rpipe->pipe_state & PIPE_EOF);
1202 PIPE_UNLOCK(rpipe);
1203
1204 if (wpipe == NULL)
1205 revents |= events & (POLLOUT | POLLWRNORM);
1206 else {
1207 if (events & (POLLOUT | POLLWRNORM))
1208 if ((wpipe->pipe_state & PIPE_EOF) || (
1209 #ifndef PIPE_NODIRECT
1210 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1211 #endif
1212 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1213 revents |= events & (POLLOUT | POLLWRNORM);
1214
1215 eof |= (wpipe->pipe_state & PIPE_EOF);
1216 PIPE_UNLOCK(wpipe);
1217 }
1218
1219 if (wpipe == NULL || eof)
1220 revents |= POLLHUP;
1221
1222 if (revents == 0) {
1223 if (events & (POLLIN | POLLRDNORM))
1224 selrecord(td, &rpipe->pipe_sel);
1225
1226 if (events & (POLLOUT | POLLWRNORM))
1227 selrecord(td, &wpipe->pipe_sel);
1228 }
1229
1230 return (revents);
1231 }
1232
1233 static int
1234 pipe_stat(fp, ub, td)
1235 struct file *fp;
1236 struct stat *ub;
1237 struct proc *td;
1238 {
1239 struct pipe *pipe = (struct pipe *)fp->f_data;
1240
1241 memset((caddr_t)ub, 0, sizeof(*ub));
1242 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1243 ub->st_blksize = pipe->pipe_buffer.size;
1244 if (ub->st_blksize == 0 && pipe->pipe_peer)
1245 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1246 ub->st_size = pipe->pipe_buffer.cnt;
1247 ub->st_blocks = (ub->st_size) ? 1 : 0;
1248 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1249 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1250 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1251 ub->st_uid = fp->f_cred->cr_uid;
1252 ub->st_gid = fp->f_cred->cr_gid;
1253 /*
1254 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1255 * XXX (st_dev, st_ino) should be unique.
1256 */
1257 return (0);
1258 }
1259
1260 /* ARGSUSED */
1261 static int
1262 pipe_close(fp, td)
1263 struct file *fp;
1264 struct proc *td;
1265 {
1266 struct pipe *pipe = (struct pipe *)fp->f_data;
1267
1268 fp->f_data = NULL;
1269 pipeclose(fp, pipe);
1270 return (0);
1271 }
1272
1273 static void
1274 pipe_free_kmem(pipe)
1275 struct pipe *pipe;
1276 {
1277
1278 if (pipe->pipe_buffer.buffer != NULL) {
1279 if (pipe->pipe_buffer.size > PIPE_SIZE)
1280 --nbigpipe;
1281 amountpipekva -= pipe->pipe_buffer.size;
1282 uvm_km_free(kernel_map,
1283 (vaddr_t)pipe->pipe_buffer.buffer,
1284 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1285 pipe->pipe_buffer.buffer = NULL;
1286 }
1287 #ifndef PIPE_NODIRECT
1288 if (pipe->pipe_map.kva != 0) {
1289 pipe_loan_free(pipe);
1290 pipe->pipe_map.cnt = 0;
1291 pipe->pipe_map.kva = 0;
1292 pipe->pipe_map.pos = 0;
1293 pipe->pipe_map.npages = 0;
1294 }
1295 #endif /* !PIPE_NODIRECT */
1296 }
1297
1298 /*
1299 * shutdown the pipe
1300 */
1301 static void
1302 pipeclose(fp, pipe)
1303 struct file *fp;
1304 struct pipe *pipe;
1305 {
1306 struct pipe *ppipe;
1307
1308 if (pipe == NULL)
1309 return;
1310
1311 retry:
1312 PIPE_LOCK(pipe);
1313
1314 pipeselwakeup(pipe, pipe, POLL_HUP);
1315
1316 /*
1317 * If the other side is blocked, wake it up saying that
1318 * we want to close it down.
1319 */
1320 pipe->pipe_state |= PIPE_EOF;
1321 while (pipe->pipe_busy) {
1322 wakeup(pipe);
1323 pipe->pipe_state |= PIPE_WANTCLOSE;
1324 ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock);
1325 }
1326
1327 /*
1328 * Disconnect from peer
1329 */
1330 if ((ppipe = pipe->pipe_peer) != NULL) {
1331 /* Deal with race for peer */
1332 if (simple_lock_try(&ppipe->pipe_slock) == 0) {
1333 PIPE_UNLOCK(pipe);
1334 goto retry;
1335 }
1336 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1337
1338 ppipe->pipe_state |= PIPE_EOF;
1339 wakeup(ppipe);
1340 ppipe->pipe_peer = NULL;
1341 PIPE_UNLOCK(ppipe);
1342 }
1343
1344 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1345
1346 PIPE_UNLOCK(pipe);
1347
1348 /*
1349 * free resources
1350 */
1351 pipe_free_kmem(pipe);
1352 pool_put(&pipe_pool, pipe);
1353 }
1354
1355 static void
1356 filt_pipedetach(struct knote *kn)
1357 {
1358 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1359
1360 switch(kn->kn_filter) {
1361 case EVFILT_WRITE:
1362 /* need the peer structure, not our own */
1363 pipe = pipe->pipe_peer;
1364 /* XXXSMP: race for peer */
1365
1366 /* if reader end already closed, just return */
1367 if (pipe == NULL)
1368 return;
1369
1370 break;
1371 default:
1372 /* nothing to do */
1373 break;
1374 }
1375
1376 #ifdef DIAGNOSTIC
1377 if (kn->kn_hook != pipe)
1378 panic("filt_pipedetach: inconsistent knote");
1379 #endif
1380
1381 PIPE_LOCK(pipe);
1382 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1383 PIPE_UNLOCK(pipe);
1384 }
1385
1386 /*ARGSUSED*/
1387 static int
1388 filt_piperead(struct knote *kn, long hint)
1389 {
1390 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1391 struct pipe *wpipe = rpipe->pipe_peer;
1392
1393 if ((hint & NOTE_SUBMIT) == 0)
1394 PIPE_LOCK(rpipe);
1395 kn->kn_data = rpipe->pipe_buffer.cnt;
1396 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1397 kn->kn_data = rpipe->pipe_map.cnt;
1398
1399 /* XXXSMP: race for peer */
1400 if ((rpipe->pipe_state & PIPE_EOF) ||
1401 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1402 kn->kn_flags |= EV_EOF;
1403 if ((hint & NOTE_SUBMIT) == 0)
1404 PIPE_UNLOCK(rpipe);
1405 return (1);
1406 }
1407 if ((hint & NOTE_SUBMIT) == 0)
1408 PIPE_UNLOCK(rpipe);
1409 return (kn->kn_data > 0);
1410 }
1411
1412 /*ARGSUSED*/
1413 static int
1414 filt_pipewrite(struct knote *kn, long hint)
1415 {
1416 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1417 struct pipe *wpipe = rpipe->pipe_peer;
1418
1419 if ((hint & NOTE_SUBMIT) == 0)
1420 PIPE_LOCK(rpipe);
1421 /* XXXSMP: race for peer */
1422 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1423 kn->kn_data = 0;
1424 kn->kn_flags |= EV_EOF;
1425 if ((hint & NOTE_SUBMIT) == 0)
1426 PIPE_UNLOCK(rpipe);
1427 return (1);
1428 }
1429 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1430 if (wpipe->pipe_state & PIPE_DIRECTW)
1431 kn->kn_data = 0;
1432
1433 if ((hint & NOTE_SUBMIT) == 0)
1434 PIPE_UNLOCK(rpipe);
1435 return (kn->kn_data >= PIPE_BUF);
1436 }
1437
1438 static const struct filterops pipe_rfiltops =
1439 { 1, NULL, filt_pipedetach, filt_piperead };
1440 static const struct filterops pipe_wfiltops =
1441 { 1, NULL, filt_pipedetach, filt_pipewrite };
1442
1443 /*ARGSUSED*/
1444 static int
1445 pipe_kqfilter(struct file *fp, struct knote *kn)
1446 {
1447 struct pipe *pipe;
1448
1449 pipe = (struct pipe *)kn->kn_fp->f_data;
1450 switch (kn->kn_filter) {
1451 case EVFILT_READ:
1452 kn->kn_fop = &pipe_rfiltops;
1453 break;
1454 case EVFILT_WRITE:
1455 kn->kn_fop = &pipe_wfiltops;
1456 /* XXXSMP: race for peer */
1457 pipe = pipe->pipe_peer;
1458 if (pipe == NULL) {
1459 /* other end of pipe has been closed */
1460 return (EBADF);
1461 }
1462 break;
1463 default:
1464 return (1);
1465 }
1466 kn->kn_hook = pipe;
1467
1468 PIPE_LOCK(pipe);
1469 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1470 PIPE_UNLOCK(pipe);
1471 return (0);
1472 }
1473
1474 /*
1475 * Handle pipe sysctls.
1476 */
1477 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1478 {
1479
1480 sysctl_createv(clog, 0, NULL, NULL,
1481 CTLFLAG_PERMANENT,
1482 CTLTYPE_NODE, "kern", NULL,
1483 NULL, 0, NULL, 0,
1484 CTL_KERN, CTL_EOL);
1485 sysctl_createv(clog, 0, NULL, NULL,
1486 CTLFLAG_PERMANENT,
1487 CTLTYPE_NODE, "pipe",
1488 SYSCTL_DESCR("Pipe settings"),
1489 NULL, 0, NULL, 0,
1490 CTL_KERN, KERN_PIPE, CTL_EOL);
1491
1492 sysctl_createv(clog, 0, NULL, NULL,
1493 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1494 CTLTYPE_INT, "maxkvasz",
1495 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1496 "used for pipes"),
1497 NULL, 0, &maxpipekva, 0,
1498 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1499 sysctl_createv(clog, 0, NULL, NULL,
1500 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1501 CTLTYPE_INT, "maxloankvasz",
1502 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1503 NULL, 0, &limitpipekva, 0,
1504 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1505 sysctl_createv(clog, 0, NULL, NULL,
1506 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1507 CTLTYPE_INT, "maxbigpipes",
1508 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1509 NULL, 0, &maxbigpipes, 0,
1510 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1511 sysctl_createv(clog, 0, NULL, NULL,
1512 CTLFLAG_PERMANENT,
1513 CTLTYPE_INT, "nbigpipes",
1514 SYSCTL_DESCR("Number of \"big\" pipes"),
1515 NULL, 0, &nbigpipe, 0,
1516 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1517 sysctl_createv(clog, 0, NULL, NULL,
1518 CTLFLAG_PERMANENT,
1519 CTLTYPE_INT, "kvasize",
1520 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1521 "buffers"),
1522 NULL, 0, &amountpipekva, 0,
1523 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1524 }
1525