sys_pipe.c revision 1.68 1 /* $NetBSD: sys_pipe.c,v 1.68 2005/12/07 06:05:20 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.68 2005/12/07 06:05:20 thorpej Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/ttycom.h>
98 #include <sys/stat.h>
99 #include <sys/malloc.h>
100 #include <sys/poll.h>
101 #include <sys/signalvar.h>
102 #include <sys/vnode.h>
103 #include <sys/uio.h>
104 #include <sys/lock.h>
105 #include <sys/select.h>
106 #include <sys/mount.h>
107 #include <sys/sa.h>
108 #include <sys/syscallargs.h>
109 #include <uvm/uvm.h>
110 #include <sys/sysctl.h>
111 #include <sys/kernel.h>
112
113 #include <sys/pipe.h>
114
115 /*
116 * Avoid microtime(9), it's slow. We don't guard the read from time(9)
117 * with splclock(9) since we don't actually need to be THAT sure the access
118 * is atomic.
119 */
120 #define PIPE_TIMESTAMP(tvp) (*(tvp) = time)
121
122
123 /*
124 * Use this define if you want to disable *fancy* VM things. Expect an
125 * approx 30% decrease in transfer rate.
126 */
127 /* #define PIPE_NODIRECT */
128
129 /*
130 * interfaces to the outside world
131 */
132 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
133 struct ucred *cred, int flags);
134 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
135 struct ucred *cred, int flags);
136 static int pipe_close(struct file *fp, struct proc *p);
137 static int pipe_poll(struct file *fp, int events, struct proc *p);
138 static int pipe_kqfilter(struct file *fp, struct knote *kn);
139 static int pipe_stat(struct file *fp, struct stat *sb, struct proc *p);
140 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
141 struct proc *p);
142
143 static const struct fileops pipeops = {
144 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
145 pipe_stat, pipe_close, pipe_kqfilter
146 };
147
148 /*
149 * Default pipe buffer size(s), this can be kind-of large now because pipe
150 * space is pageable. The pipe code will try to maintain locality of
151 * reference for performance reasons, so small amounts of outstanding I/O
152 * will not wipe the cache.
153 */
154 #define MINPIPESIZE (PIPE_SIZE/3)
155 #define MAXPIPESIZE (2*PIPE_SIZE/3)
156
157 /*
158 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
159 * is there so that on large systems, we don't exhaust it.
160 */
161 #define MAXPIPEKVA (8*1024*1024)
162 static int maxpipekva = MAXPIPEKVA;
163
164 /*
165 * Limit for direct transfers, we cannot, of course limit
166 * the amount of kva for pipes in general though.
167 */
168 #define LIMITPIPEKVA (16*1024*1024)
169 static int limitpipekva = LIMITPIPEKVA;
170
171 /*
172 * Limit the number of "big" pipes
173 */
174 #define LIMITBIGPIPES 32
175 static int maxbigpipes = LIMITBIGPIPES;
176 static int nbigpipe = 0;
177
178 /*
179 * Amount of KVA consumed by pipe buffers.
180 */
181 static int amountpipekva = 0;
182
183 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
184
185 static void pipeclose(struct file *fp, struct pipe *pipe);
186 static void pipe_free_kmem(struct pipe *pipe);
187 static int pipe_create(struct pipe **pipep, int allockva);
188 static int pipelock(struct pipe *pipe, int catch);
189 static __inline void pipeunlock(struct pipe *pipe);
190 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
191 #ifndef PIPE_NODIRECT
192 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
193 struct uio *uio);
194 #endif
195 static int pipespace(struct pipe *pipe, int size);
196
197 #ifndef PIPE_NODIRECT
198 static int pipe_loan_alloc(struct pipe *, int);
199 static void pipe_loan_free(struct pipe *);
200 #endif /* PIPE_NODIRECT */
201
202 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
203 &pool_allocator_nointr);
204
205 /*
206 * The pipe system call for the DTYPE_PIPE type of pipes
207 */
208
209 /* ARGSUSED */
210 int
211 sys_pipe(struct lwp *l, void *v, register_t *retval)
212 {
213 struct file *rf, *wf;
214 struct pipe *rpipe, *wpipe;
215 int fd, error;
216 struct proc *p;
217
218 p = l->l_proc;
219 rpipe = wpipe = NULL;
220 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
221 pipeclose(NULL, rpipe);
222 pipeclose(NULL, wpipe);
223 return (ENFILE);
224 }
225
226 /*
227 * Note: the file structure returned from falloc() is marked
228 * as 'larval' initially. Unless we mark it as 'mature' by
229 * FILE_SET_MATURE(), any attempt to do anything with it would
230 * return EBADF, including e.g. dup(2) or close(2). This avoids
231 * file descriptor races if we block in the second falloc().
232 */
233
234 error = falloc(p, &rf, &fd);
235 if (error)
236 goto free2;
237 retval[0] = fd;
238 rf->f_flag = FREAD;
239 rf->f_type = DTYPE_PIPE;
240 rf->f_data = (caddr_t)rpipe;
241 rf->f_ops = &pipeops;
242
243 error = falloc(p, &wf, &fd);
244 if (error)
245 goto free3;
246 retval[1] = fd;
247 wf->f_flag = FWRITE;
248 wf->f_type = DTYPE_PIPE;
249 wf->f_data = (caddr_t)wpipe;
250 wf->f_ops = &pipeops;
251
252 rpipe->pipe_peer = wpipe;
253 wpipe->pipe_peer = rpipe;
254
255 FILE_SET_MATURE(rf);
256 FILE_SET_MATURE(wf);
257 FILE_UNUSE(rf, p);
258 FILE_UNUSE(wf, p);
259 return (0);
260 free3:
261 FILE_UNUSE(rf, p);
262 ffree(rf);
263 fdremove(p->p_fd, retval[0]);
264 free2:
265 pipeclose(NULL, wpipe);
266 pipeclose(NULL, rpipe);
267
268 return (error);
269 }
270
271 /*
272 * Allocate kva for pipe circular buffer, the space is pageable
273 * This routine will 'realloc' the size of a pipe safely, if it fails
274 * it will retain the old buffer.
275 * If it fails it will return ENOMEM.
276 */
277 static int
278 pipespace(struct pipe *pipe, int size)
279 {
280 caddr_t buffer;
281 /*
282 * Allocate pageable virtual address space. Physical memory is
283 * allocated on demand.
284 */
285 buffer = (caddr_t) uvm_km_alloc(kernel_map, round_page(size), 0,
286 UVM_KMF_PAGEABLE);
287 if (buffer == NULL)
288 return (ENOMEM);
289
290 /* free old resources if we're resizing */
291 pipe_free_kmem(pipe);
292 pipe->pipe_buffer.buffer = buffer;
293 pipe->pipe_buffer.size = size;
294 pipe->pipe_buffer.in = 0;
295 pipe->pipe_buffer.out = 0;
296 pipe->pipe_buffer.cnt = 0;
297 amountpipekva += pipe->pipe_buffer.size;
298 return (0);
299 }
300
301 /*
302 * Initialize and allocate VM and memory for pipe.
303 */
304 static int
305 pipe_create(struct pipe **pipep, int allockva)
306 {
307 struct pipe *pipe;
308 int error;
309
310 pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
311
312 /* Initialize */
313 memset(pipe, 0, sizeof(struct pipe));
314 pipe->pipe_state = PIPE_SIGNALR;
315
316 PIPE_TIMESTAMP(&pipe->pipe_ctime);
317 pipe->pipe_atime = pipe->pipe_ctime;
318 pipe->pipe_mtime = pipe->pipe_ctime;
319 simple_lock_init(&pipe->pipe_slock);
320
321 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
322 return (error);
323
324 return (0);
325 }
326
327
328 /*
329 * Lock a pipe for I/O, blocking other access
330 * Called with pipe spin lock held.
331 * Return with pipe spin lock released on success.
332 */
333 static int
334 pipelock(struct pipe *pipe, int catch)
335 {
336
337 LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
338
339 while (pipe->pipe_state & PIPE_LOCKFL) {
340 int error;
341 const int pcatch = catch ? PCATCH : 0;
342
343 pipe->pipe_state |= PIPE_LWANT;
344 error = ltsleep(pipe, PSOCK | pcatch, "pipelk", 0,
345 &pipe->pipe_slock);
346 if (error != 0)
347 return error;
348 }
349
350 pipe->pipe_state |= PIPE_LOCKFL;
351 simple_unlock(&pipe->pipe_slock);
352
353 return 0;
354 }
355
356 /*
357 * unlock a pipe I/O lock
358 */
359 static __inline void
360 pipeunlock(struct pipe *pipe)
361 {
362
363 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
364
365 pipe->pipe_state &= ~PIPE_LOCKFL;
366 if (pipe->pipe_state & PIPE_LWANT) {
367 pipe->pipe_state &= ~PIPE_LWANT;
368 wakeup(pipe);
369 }
370 }
371
372 /*
373 * Select/poll wakup. This also sends SIGIO to peer connected to
374 * 'sigpipe' side of pipe.
375 */
376 static void
377 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
378 {
379 int band;
380
381 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
382
383 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
384 return;
385
386 switch (code) {
387 case POLL_IN:
388 band = POLLIN|POLLRDNORM;
389 break;
390 case POLL_OUT:
391 band = POLLOUT|POLLWRNORM;
392 break;
393 case POLL_HUP:
394 band = POLLHUP;
395 break;
396 #if POLL_HUP != POLL_ERR
397 case POLL_ERR:
398 band = POLLERR;
399 break;
400 #endif
401 default:
402 band = 0;
403 #ifdef DIAGNOSTIC
404 printf("bad siginfo code %d in pipe notification.\n", code);
405 #endif
406 break;
407 }
408
409 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
410 }
411
412 /* ARGSUSED */
413 static int
414 pipe_read(struct file *fp, off_t *offset, struct uio *uio, struct ucred *cred,
415 int flags)
416 {
417 struct pipe *rpipe = (struct pipe *) fp->f_data;
418 struct pipebuf *bp = &rpipe->pipe_buffer;
419 int error;
420 size_t nread = 0;
421 size_t size;
422 size_t ocnt;
423
424 PIPE_LOCK(rpipe);
425 ++rpipe->pipe_busy;
426 ocnt = bp->cnt;
427
428 again:
429 error = pipelock(rpipe, 1);
430 if (error)
431 goto unlocked_error;
432
433 while (uio->uio_resid) {
434 /*
435 * normal pipe buffer receive
436 */
437 if (bp->cnt > 0) {
438 size = bp->size - bp->out;
439 if (size > bp->cnt)
440 size = bp->cnt;
441 if (size > uio->uio_resid)
442 size = uio->uio_resid;
443
444 error = uiomove(&bp->buffer[bp->out], size, uio);
445 if (error)
446 break;
447
448 bp->out += size;
449 if (bp->out >= bp->size)
450 bp->out = 0;
451
452 bp->cnt -= size;
453
454 /*
455 * If there is no more to read in the pipe, reset
456 * its pointers to the beginning. This improves
457 * cache hit stats.
458 */
459 if (bp->cnt == 0) {
460 bp->in = 0;
461 bp->out = 0;
462 }
463 nread += size;
464 #ifndef PIPE_NODIRECT
465 } else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
466 /*
467 * Direct copy, bypassing a kernel buffer.
468 */
469 caddr_t va;
470
471 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
472
473 size = rpipe->pipe_map.cnt;
474 if (size > uio->uio_resid)
475 size = uio->uio_resid;
476
477 va = (caddr_t) rpipe->pipe_map.kva +
478 rpipe->pipe_map.pos;
479 error = uiomove(va, size, uio);
480 if (error)
481 break;
482 nread += size;
483 rpipe->pipe_map.pos += size;
484 rpipe->pipe_map.cnt -= size;
485 if (rpipe->pipe_map.cnt == 0) {
486 PIPE_LOCK(rpipe);
487 rpipe->pipe_state &= ~PIPE_DIRECTR;
488 wakeup(rpipe);
489 PIPE_UNLOCK(rpipe);
490 }
491 #endif
492 } else {
493 /*
494 * Break if some data was read.
495 */
496 if (nread > 0)
497 break;
498
499 PIPE_LOCK(rpipe);
500
501 /*
502 * detect EOF condition
503 * read returns 0 on EOF, no need to set error
504 */
505 if (rpipe->pipe_state & PIPE_EOF) {
506 PIPE_UNLOCK(rpipe);
507 break;
508 }
509
510 /*
511 * don't block on non-blocking I/O
512 */
513 if (fp->f_flag & FNONBLOCK) {
514 PIPE_UNLOCK(rpipe);
515 error = EAGAIN;
516 break;
517 }
518
519 /*
520 * Unlock the pipe buffer for our remaining processing.
521 * We will either break out with an error or we will
522 * sleep and relock to loop.
523 */
524 pipeunlock(rpipe);
525
526 /*
527 * The PIPE_DIRECTR flag is not under the control
528 * of the long-term lock (see pipe_direct_write()),
529 * so re-check now while holding the spin lock.
530 */
531 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
532 goto again;
533
534 /*
535 * We want to read more, wake up select/poll.
536 */
537 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
538
539 /*
540 * If the "write-side" is blocked, wake it up now.
541 */
542 if (rpipe->pipe_state & PIPE_WANTW) {
543 rpipe->pipe_state &= ~PIPE_WANTW;
544 wakeup(rpipe);
545 }
546
547 /* Now wait until the pipe is filled */
548 rpipe->pipe_state |= PIPE_WANTR;
549 error = ltsleep(rpipe, PSOCK | PCATCH,
550 "piperd", 0, &rpipe->pipe_slock);
551 if (error != 0)
552 goto unlocked_error;
553 goto again;
554 }
555 }
556
557 if (error == 0)
558 PIPE_TIMESTAMP(&rpipe->pipe_atime);
559
560 PIPE_LOCK(rpipe);
561 pipeunlock(rpipe);
562
563 unlocked_error:
564 --rpipe->pipe_busy;
565
566 /*
567 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
568 */
569 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
570 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
571 wakeup(rpipe);
572 } else if (bp->cnt < MINPIPESIZE) {
573 /*
574 * Handle write blocking hysteresis.
575 */
576 if (rpipe->pipe_state & PIPE_WANTW) {
577 rpipe->pipe_state &= ~PIPE_WANTW;
578 wakeup(rpipe);
579 }
580 }
581
582 /*
583 * If anything was read off the buffer, signal to the writer it's
584 * possible to write more data. Also send signal if we are here for the
585 * first time after last write.
586 */
587 if ((bp->size - bp->cnt) >= PIPE_BUF
588 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
589 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
590 rpipe->pipe_state &= ~PIPE_SIGNALR;
591 }
592
593 PIPE_UNLOCK(rpipe);
594 return (error);
595 }
596
597 #ifndef PIPE_NODIRECT
598 /*
599 * Allocate structure for loan transfer.
600 */
601 static int
602 pipe_loan_alloc(struct pipe *wpipe, int npages)
603 {
604 vsize_t len;
605
606 len = (vsize_t)npages << PAGE_SHIFT;
607 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
608 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
609 if (wpipe->pipe_map.kva == 0)
610 return (ENOMEM);
611
612 amountpipekva += len;
613 wpipe->pipe_map.npages = npages;
614 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
615 M_WAITOK);
616 return (0);
617 }
618
619 /*
620 * Free resources allocated for loan transfer.
621 */
622 static void
623 pipe_loan_free(struct pipe *wpipe)
624 {
625 vsize_t len;
626
627 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
628 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
629 wpipe->pipe_map.kva = 0;
630 amountpipekva -= len;
631 free(wpipe->pipe_map.pgs, M_PIPE);
632 wpipe->pipe_map.pgs = NULL;
633 }
634
635 /*
636 * NetBSD direct write, using uvm_loan() mechanism.
637 * This implements the pipe buffer write mechanism. Note that only
638 * a direct write OR a normal pipe write can be pending at any given time.
639 * If there are any characters in the pipe buffer, the direct write will
640 * be deferred until the receiving process grabs all of the bytes from
641 * the pipe buffer. Then the direct mapping write is set-up.
642 *
643 * Called with the long-term pipe lock held.
644 */
645 static int
646 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
647 {
648 int error, npages, j;
649 struct vm_page **pgs;
650 vaddr_t bbase, kva, base, bend;
651 vsize_t blen, bcnt;
652 voff_t bpos;
653
654 KASSERT(wpipe->pipe_map.cnt == 0);
655
656 /*
657 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
658 * not aligned to PAGE_SIZE.
659 */
660 bbase = (vaddr_t)uio->uio_iov->iov_base;
661 base = trunc_page(bbase);
662 bend = round_page(bbase + uio->uio_iov->iov_len);
663 blen = bend - base;
664 bpos = bbase - base;
665
666 if (blen > PIPE_DIRECT_CHUNK) {
667 blen = PIPE_DIRECT_CHUNK;
668 bend = base + blen;
669 bcnt = PIPE_DIRECT_CHUNK - bpos;
670 } else {
671 bcnt = uio->uio_iov->iov_len;
672 }
673 npages = blen >> PAGE_SHIFT;
674
675 /*
676 * Free the old kva if we need more pages than we have
677 * allocated.
678 */
679 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
680 pipe_loan_free(wpipe);
681
682 /* Allocate new kva. */
683 if (wpipe->pipe_map.kva == 0) {
684 error = pipe_loan_alloc(wpipe, npages);
685 if (error)
686 return (error);
687 }
688
689 /* Loan the write buffer memory from writer process */
690 pgs = wpipe->pipe_map.pgs;
691 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, base, blen,
692 pgs, UVM_LOAN_TOPAGE);
693 if (error) {
694 pipe_loan_free(wpipe);
695 return (ENOMEM); /* so that caller fallback to ordinary write */
696 }
697
698 /* Enter the loaned pages to kva */
699 kva = wpipe->pipe_map.kva;
700 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
701 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
702 }
703 pmap_update(pmap_kernel());
704
705 /* Now we can put the pipe in direct write mode */
706 wpipe->pipe_map.pos = bpos;
707 wpipe->pipe_map.cnt = bcnt;
708 wpipe->pipe_state |= PIPE_DIRECTW;
709
710 /*
711 * But before we can let someone do a direct read,
712 * we have to wait until the pipe is drained.
713 */
714
715 /* Relase the pipe lock while we wait */
716 PIPE_LOCK(wpipe);
717 pipeunlock(wpipe);
718
719 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
720 if (wpipe->pipe_state & PIPE_WANTR) {
721 wpipe->pipe_state &= ~PIPE_WANTR;
722 wakeup(wpipe);
723 }
724
725 wpipe->pipe_state |= PIPE_WANTW;
726 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0,
727 &wpipe->pipe_slock);
728 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
729 error = EPIPE;
730 }
731
732 /* Pipe is drained; next read will off the direct buffer */
733 wpipe->pipe_state |= PIPE_DIRECTR;
734
735 /* Wait until the reader is done */
736 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
737 if (wpipe->pipe_state & PIPE_WANTR) {
738 wpipe->pipe_state &= ~PIPE_WANTR;
739 wakeup(wpipe);
740 }
741 pipeselwakeup(wpipe, wpipe, POLL_IN);
742 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0,
743 &wpipe->pipe_slock);
744 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
745 error = EPIPE;
746 }
747
748 /* Take pipe out of direct write mode */
749 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
750
751 /* Acquire the pipe lock and cleanup */
752 (void)pipelock(wpipe, 0);
753 if (pgs != NULL) {
754 pmap_kremove(wpipe->pipe_map.kva, blen);
755 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
756 }
757 if (error || amountpipekva > maxpipekva)
758 pipe_loan_free(wpipe);
759
760 if (error) {
761 pipeselwakeup(wpipe, wpipe, POLL_ERR);
762
763 /*
764 * If nothing was read from what we offered, return error
765 * straight on. Otherwise update uio resid first. Caller
766 * will deal with the error condition, returning short
767 * write, error, or restarting the write(2) as appropriate.
768 */
769 if (wpipe->pipe_map.cnt == bcnt) {
770 wpipe->pipe_map.cnt = 0;
771 wakeup(wpipe);
772 return (error);
773 }
774
775 bcnt -= wpipe->pipe_map.cnt;
776 }
777
778 uio->uio_resid -= bcnt;
779 /* uio_offset not updated, not set/used for write(2) */
780 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
781 uio->uio_iov->iov_len -= bcnt;
782 if (uio->uio_iov->iov_len == 0) {
783 uio->uio_iov++;
784 uio->uio_iovcnt--;
785 }
786
787 wpipe->pipe_map.cnt = 0;
788 return (error);
789 }
790 #endif /* !PIPE_NODIRECT */
791
792 static int
793 pipe_write(struct file *fp, off_t *offset, struct uio *uio, struct ucred *cred,
794 int flags)
795 {
796 struct pipe *wpipe, *rpipe;
797 struct pipebuf *bp;
798 int error;
799
800 /* We want to write to our peer */
801 rpipe = (struct pipe *) fp->f_data;
802
803 retry:
804 error = 0;
805 PIPE_LOCK(rpipe);
806 wpipe = rpipe->pipe_peer;
807
808 /*
809 * Detect loss of pipe read side, issue SIGPIPE if lost.
810 */
811 if (wpipe == NULL)
812 error = EPIPE;
813 else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
814 /* Deal with race for peer */
815 PIPE_UNLOCK(rpipe);
816 goto retry;
817 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
818 PIPE_UNLOCK(wpipe);
819 error = EPIPE;
820 }
821
822 PIPE_UNLOCK(rpipe);
823 if (error != 0)
824 return (error);
825
826 ++wpipe->pipe_busy;
827
828 /* Aquire the long-term pipe lock */
829 if ((error = pipelock(wpipe,1)) != 0) {
830 --wpipe->pipe_busy;
831 if (wpipe->pipe_busy == 0
832 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
833 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
834 wakeup(wpipe);
835 }
836 PIPE_UNLOCK(wpipe);
837 return (error);
838 }
839
840 bp = &wpipe->pipe_buffer;
841
842 /*
843 * If it is advantageous to resize the pipe buffer, do so.
844 */
845 if ((uio->uio_resid > PIPE_SIZE) &&
846 (nbigpipe < maxbigpipes) &&
847 #ifndef PIPE_NODIRECT
848 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
849 #endif
850 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
851
852 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
853 nbigpipe++;
854 }
855
856 while (uio->uio_resid) {
857 size_t space;
858
859 #ifndef PIPE_NODIRECT
860 /*
861 * Pipe buffered writes cannot be coincidental with
862 * direct writes. Also, only one direct write can be
863 * in progress at any one time. We wait until the currently
864 * executing direct write is completed before continuing.
865 *
866 * We break out if a signal occurs or the reader goes away.
867 */
868 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
869 PIPE_LOCK(wpipe);
870 if (wpipe->pipe_state & PIPE_WANTR) {
871 wpipe->pipe_state &= ~PIPE_WANTR;
872 wakeup(wpipe);
873 }
874 pipeunlock(wpipe);
875 error = ltsleep(wpipe, PSOCK | PCATCH,
876 "pipbww", 0, &wpipe->pipe_slock);
877
878 (void)pipelock(wpipe, 0);
879 if (wpipe->pipe_state & PIPE_EOF)
880 error = EPIPE;
881 }
882 if (error)
883 break;
884
885 /*
886 * If the transfer is large, we can gain performance if
887 * we do process-to-process copies directly.
888 * If the write is non-blocking, we don't use the
889 * direct write mechanism.
890 *
891 * The direct write mechanism will detect the reader going
892 * away on us.
893 */
894 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
895 (fp->f_flag & FNONBLOCK) == 0 &&
896 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
897 error = pipe_direct_write(fp, wpipe, uio);
898
899 /*
900 * Break out if error occurred, unless it's ENOMEM.
901 * ENOMEM means we failed to allocate some resources
902 * for direct write, so we just fallback to ordinary
903 * write. If the direct write was successful,
904 * process rest of data via ordinary write.
905 */
906 if (error == 0)
907 continue;
908
909 if (error != ENOMEM)
910 break;
911 }
912 #endif /* PIPE_NODIRECT */
913
914 space = bp->size - bp->cnt;
915
916 /* Writes of size <= PIPE_BUF must be atomic. */
917 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
918 space = 0;
919
920 if (space > 0) {
921 int size; /* Transfer size */
922 int segsize; /* first segment to transfer */
923
924 /*
925 * Transfer size is minimum of uio transfer
926 * and free space in pipe buffer.
927 */
928 if (space > uio->uio_resid)
929 size = uio->uio_resid;
930 else
931 size = space;
932 /*
933 * First segment to transfer is minimum of
934 * transfer size and contiguous space in
935 * pipe buffer. If first segment to transfer
936 * is less than the transfer size, we've got
937 * a wraparound in the buffer.
938 */
939 segsize = bp->size - bp->in;
940 if (segsize > size)
941 segsize = size;
942
943 /* Transfer first segment */
944 error = uiomove(&bp->buffer[bp->in], segsize, uio);
945
946 if (error == 0 && segsize < size) {
947 /*
948 * Transfer remaining part now, to
949 * support atomic writes. Wraparound
950 * happened.
951 */
952 #ifdef DEBUG
953 if (bp->in + segsize != bp->size)
954 panic("Expected pipe buffer wraparound disappeared");
955 #endif
956
957 error = uiomove(&bp->buffer[0],
958 size - segsize, uio);
959 }
960 if (error)
961 break;
962
963 bp->in += size;
964 if (bp->in >= bp->size) {
965 #ifdef DEBUG
966 if (bp->in != size - segsize + bp->size)
967 panic("Expected wraparound bad");
968 #endif
969 bp->in = size - segsize;
970 }
971
972 bp->cnt += size;
973 #ifdef DEBUG
974 if (bp->cnt > bp->size)
975 panic("Pipe buffer overflow");
976 #endif
977 } else {
978 /*
979 * If the "read-side" has been blocked, wake it up now.
980 */
981 PIPE_LOCK(wpipe);
982 if (wpipe->pipe_state & PIPE_WANTR) {
983 wpipe->pipe_state &= ~PIPE_WANTR;
984 wakeup(wpipe);
985 }
986 PIPE_UNLOCK(wpipe);
987
988 /*
989 * don't block on non-blocking I/O
990 */
991 if (fp->f_flag & FNONBLOCK) {
992 error = EAGAIN;
993 break;
994 }
995
996 /*
997 * We have no more space and have something to offer,
998 * wake up select/poll.
999 */
1000 if (bp->cnt)
1001 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1002
1003 PIPE_LOCK(wpipe);
1004 pipeunlock(wpipe);
1005 wpipe->pipe_state |= PIPE_WANTW;
1006 error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0,
1007 &wpipe->pipe_slock);
1008 (void)pipelock(wpipe, 0);
1009 if (error != 0)
1010 break;
1011 /*
1012 * If read side wants to go away, we just issue a signal
1013 * to ourselves.
1014 */
1015 if (wpipe->pipe_state & PIPE_EOF) {
1016 error = EPIPE;
1017 break;
1018 }
1019 }
1020 }
1021
1022 PIPE_LOCK(wpipe);
1023 --wpipe->pipe_busy;
1024 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1025 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1026 wakeup(wpipe);
1027 } else if (bp->cnt > 0) {
1028 /*
1029 * If we have put any characters in the buffer, we wake up
1030 * the reader.
1031 */
1032 if (wpipe->pipe_state & PIPE_WANTR) {
1033 wpipe->pipe_state &= ~PIPE_WANTR;
1034 wakeup(wpipe);
1035 }
1036 }
1037
1038 /*
1039 * Don't return EPIPE if I/O was successful
1040 */
1041 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1042 error = 0;
1043
1044 if (error == 0)
1045 PIPE_TIMESTAMP(&wpipe->pipe_mtime);
1046
1047 /*
1048 * We have something to offer, wake up select/poll.
1049 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1050 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1051 */
1052 if (bp->cnt)
1053 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1054
1055 /*
1056 * Arrange for next read(2) to do a signal.
1057 */
1058 wpipe->pipe_state |= PIPE_SIGNALR;
1059
1060 pipeunlock(wpipe);
1061 PIPE_UNLOCK(wpipe);
1062 return (error);
1063 }
1064
1065 /*
1066 * we implement a very minimal set of ioctls for compatibility with sockets.
1067 */
1068 int
1069 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct proc *p)
1070 {
1071 struct pipe *pipe = (struct pipe *)fp->f_data;
1072
1073 switch (cmd) {
1074
1075 case FIONBIO:
1076 return (0);
1077
1078 case FIOASYNC:
1079 PIPE_LOCK(pipe);
1080 if (*(int *)data) {
1081 pipe->pipe_state |= PIPE_ASYNC;
1082 } else {
1083 pipe->pipe_state &= ~PIPE_ASYNC;
1084 }
1085 PIPE_UNLOCK(pipe);
1086 return (0);
1087
1088 case FIONREAD:
1089 PIPE_LOCK(pipe);
1090 #ifndef PIPE_NODIRECT
1091 if (pipe->pipe_state & PIPE_DIRECTW)
1092 *(int *)data = pipe->pipe_map.cnt;
1093 else
1094 #endif
1095 *(int *)data = pipe->pipe_buffer.cnt;
1096 PIPE_UNLOCK(pipe);
1097 return (0);
1098
1099 case FIONWRITE:
1100 /* Look at other side */
1101 pipe = pipe->pipe_peer;
1102 PIPE_LOCK(pipe);
1103 #ifndef PIPE_NODIRECT
1104 if (pipe->pipe_state & PIPE_DIRECTW)
1105 *(int *)data = pipe->pipe_map.cnt;
1106 else
1107 #endif
1108 *(int *)data = pipe->pipe_buffer.cnt;
1109 PIPE_UNLOCK(pipe);
1110 return (0);
1111
1112 case FIONSPACE:
1113 /* Look at other side */
1114 pipe = pipe->pipe_peer;
1115 PIPE_LOCK(pipe);
1116 #ifndef PIPE_NODIRECT
1117 /*
1118 * If we're in direct-mode, we don't really have a
1119 * send queue, and any other write will block. Thus
1120 * zero seems like the best answer.
1121 */
1122 if (pipe->pipe_state & PIPE_DIRECTW)
1123 *(int *)data = 0;
1124 else
1125 #endif
1126 *(int *)data = pipe->pipe_buffer.size -
1127 pipe->pipe_buffer.cnt;
1128 PIPE_UNLOCK(pipe);
1129 return (0);
1130
1131 case TIOCSPGRP:
1132 case FIOSETOWN:
1133 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1134
1135 case TIOCGPGRP:
1136 case FIOGETOWN:
1137 return fgetown(p, pipe->pipe_pgid, cmd, data);
1138
1139 }
1140 return (EPASSTHROUGH);
1141 }
1142
1143 int
1144 pipe_poll(struct file *fp, int events, struct proc *td)
1145 {
1146 struct pipe *rpipe = (struct pipe *)fp->f_data;
1147 struct pipe *wpipe;
1148 int eof = 0;
1149 int revents = 0;
1150
1151 retry:
1152 PIPE_LOCK(rpipe);
1153 wpipe = rpipe->pipe_peer;
1154 if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
1155 /* Deal with race for peer */
1156 PIPE_UNLOCK(rpipe);
1157 goto retry;
1158 }
1159
1160 if (events & (POLLIN | POLLRDNORM))
1161 if ((rpipe->pipe_buffer.cnt > 0) ||
1162 #ifndef PIPE_NODIRECT
1163 (rpipe->pipe_state & PIPE_DIRECTR) ||
1164 #endif
1165 (rpipe->pipe_state & PIPE_EOF))
1166 revents |= events & (POLLIN | POLLRDNORM);
1167
1168 eof |= (rpipe->pipe_state & PIPE_EOF);
1169 PIPE_UNLOCK(rpipe);
1170
1171 if (wpipe == NULL)
1172 revents |= events & (POLLOUT | POLLWRNORM);
1173 else {
1174 if (events & (POLLOUT | POLLWRNORM))
1175 if ((wpipe->pipe_state & PIPE_EOF) || (
1176 #ifndef PIPE_NODIRECT
1177 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1178 #endif
1179 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1180 revents |= events & (POLLOUT | POLLWRNORM);
1181
1182 eof |= (wpipe->pipe_state & PIPE_EOF);
1183 PIPE_UNLOCK(wpipe);
1184 }
1185
1186 if (wpipe == NULL || eof)
1187 revents |= POLLHUP;
1188
1189 if (revents == 0) {
1190 if (events & (POLLIN | POLLRDNORM))
1191 selrecord(td, &rpipe->pipe_sel);
1192
1193 if (events & (POLLOUT | POLLWRNORM))
1194 selrecord(td, &wpipe->pipe_sel);
1195 }
1196
1197 return (revents);
1198 }
1199
1200 static int
1201 pipe_stat(struct file *fp, struct stat *ub, struct proc *td)
1202 {
1203 struct pipe *pipe = (struct pipe *)fp->f_data;
1204
1205 memset((caddr_t)ub, 0, sizeof(*ub));
1206 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1207 ub->st_blksize = pipe->pipe_buffer.size;
1208 if (ub->st_blksize == 0 && pipe->pipe_peer)
1209 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1210 ub->st_size = pipe->pipe_buffer.cnt;
1211 ub->st_blocks = (ub->st_size) ? 1 : 0;
1212 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1213 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1214 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1215 ub->st_uid = fp->f_cred->cr_uid;
1216 ub->st_gid = fp->f_cred->cr_gid;
1217 /*
1218 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1219 * XXX (st_dev, st_ino) should be unique.
1220 */
1221 return (0);
1222 }
1223
1224 /* ARGSUSED */
1225 static int
1226 pipe_close(struct file *fp, struct proc *td)
1227 {
1228 struct pipe *pipe = (struct pipe *)fp->f_data;
1229
1230 fp->f_data = NULL;
1231 pipeclose(fp, pipe);
1232 return (0);
1233 }
1234
1235 static void
1236 pipe_free_kmem(struct pipe *pipe)
1237 {
1238
1239 if (pipe->pipe_buffer.buffer != NULL) {
1240 if (pipe->pipe_buffer.size > PIPE_SIZE)
1241 --nbigpipe;
1242 amountpipekva -= pipe->pipe_buffer.size;
1243 uvm_km_free(kernel_map,
1244 (vaddr_t)pipe->pipe_buffer.buffer,
1245 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1246 pipe->pipe_buffer.buffer = NULL;
1247 }
1248 #ifndef PIPE_NODIRECT
1249 if (pipe->pipe_map.kva != 0) {
1250 pipe_loan_free(pipe);
1251 pipe->pipe_map.cnt = 0;
1252 pipe->pipe_map.kva = 0;
1253 pipe->pipe_map.pos = 0;
1254 pipe->pipe_map.npages = 0;
1255 }
1256 #endif /* !PIPE_NODIRECT */
1257 }
1258
1259 /*
1260 * shutdown the pipe
1261 */
1262 static void
1263 pipeclose(struct file *fp, struct pipe *pipe)
1264 {
1265 struct pipe *ppipe;
1266
1267 if (pipe == NULL)
1268 return;
1269
1270 retry:
1271 PIPE_LOCK(pipe);
1272
1273 pipeselwakeup(pipe, pipe, POLL_HUP);
1274
1275 /*
1276 * If the other side is blocked, wake it up saying that
1277 * we want to close it down.
1278 */
1279 pipe->pipe_state |= PIPE_EOF;
1280 while (pipe->pipe_busy) {
1281 wakeup(pipe);
1282 pipe->pipe_state |= PIPE_WANTCLOSE;
1283 ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock);
1284 }
1285
1286 /*
1287 * Disconnect from peer
1288 */
1289 if ((ppipe = pipe->pipe_peer) != NULL) {
1290 /* Deal with race for peer */
1291 if (simple_lock_try(&ppipe->pipe_slock) == 0) {
1292 PIPE_UNLOCK(pipe);
1293 goto retry;
1294 }
1295 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1296
1297 ppipe->pipe_state |= PIPE_EOF;
1298 wakeup(ppipe);
1299 ppipe->pipe_peer = NULL;
1300 PIPE_UNLOCK(ppipe);
1301 }
1302
1303 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1304
1305 PIPE_UNLOCK(pipe);
1306
1307 /*
1308 * free resources
1309 */
1310 pipe_free_kmem(pipe);
1311 pool_put(&pipe_pool, pipe);
1312 }
1313
1314 static void
1315 filt_pipedetach(struct knote *kn)
1316 {
1317 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1318
1319 switch(kn->kn_filter) {
1320 case EVFILT_WRITE:
1321 /* need the peer structure, not our own */
1322 pipe = pipe->pipe_peer;
1323 /* XXXSMP: race for peer */
1324
1325 /* if reader end already closed, just return */
1326 if (pipe == NULL)
1327 return;
1328
1329 break;
1330 default:
1331 /* nothing to do */
1332 break;
1333 }
1334
1335 #ifdef DIAGNOSTIC
1336 if (kn->kn_hook != pipe)
1337 panic("filt_pipedetach: inconsistent knote");
1338 #endif
1339
1340 PIPE_LOCK(pipe);
1341 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1342 PIPE_UNLOCK(pipe);
1343 }
1344
1345 /*ARGSUSED*/
1346 static int
1347 filt_piperead(struct knote *kn, long hint)
1348 {
1349 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1350 struct pipe *wpipe = rpipe->pipe_peer;
1351
1352 if ((hint & NOTE_SUBMIT) == 0)
1353 PIPE_LOCK(rpipe);
1354 kn->kn_data = rpipe->pipe_buffer.cnt;
1355 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1356 kn->kn_data = rpipe->pipe_map.cnt;
1357
1358 /* XXXSMP: race for peer */
1359 if ((rpipe->pipe_state & PIPE_EOF) ||
1360 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1361 kn->kn_flags |= EV_EOF;
1362 if ((hint & NOTE_SUBMIT) == 0)
1363 PIPE_UNLOCK(rpipe);
1364 return (1);
1365 }
1366 if ((hint & NOTE_SUBMIT) == 0)
1367 PIPE_UNLOCK(rpipe);
1368 return (kn->kn_data > 0);
1369 }
1370
1371 /*ARGSUSED*/
1372 static int
1373 filt_pipewrite(struct knote *kn, long hint)
1374 {
1375 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1376 struct pipe *wpipe = rpipe->pipe_peer;
1377
1378 if ((hint & NOTE_SUBMIT) == 0)
1379 PIPE_LOCK(rpipe);
1380 /* XXXSMP: race for peer */
1381 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1382 kn->kn_data = 0;
1383 kn->kn_flags |= EV_EOF;
1384 if ((hint & NOTE_SUBMIT) == 0)
1385 PIPE_UNLOCK(rpipe);
1386 return (1);
1387 }
1388 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1389 if (wpipe->pipe_state & PIPE_DIRECTW)
1390 kn->kn_data = 0;
1391
1392 if ((hint & NOTE_SUBMIT) == 0)
1393 PIPE_UNLOCK(rpipe);
1394 return (kn->kn_data >= PIPE_BUF);
1395 }
1396
1397 static const struct filterops pipe_rfiltops =
1398 { 1, NULL, filt_pipedetach, filt_piperead };
1399 static const struct filterops pipe_wfiltops =
1400 { 1, NULL, filt_pipedetach, filt_pipewrite };
1401
1402 /*ARGSUSED*/
1403 static int
1404 pipe_kqfilter(struct file *fp, struct knote *kn)
1405 {
1406 struct pipe *pipe;
1407
1408 pipe = (struct pipe *)kn->kn_fp->f_data;
1409 switch (kn->kn_filter) {
1410 case EVFILT_READ:
1411 kn->kn_fop = &pipe_rfiltops;
1412 break;
1413 case EVFILT_WRITE:
1414 kn->kn_fop = &pipe_wfiltops;
1415 /* XXXSMP: race for peer */
1416 pipe = pipe->pipe_peer;
1417 if (pipe == NULL) {
1418 /* other end of pipe has been closed */
1419 return (EBADF);
1420 }
1421 break;
1422 default:
1423 return (1);
1424 }
1425 kn->kn_hook = pipe;
1426
1427 PIPE_LOCK(pipe);
1428 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1429 PIPE_UNLOCK(pipe);
1430 return (0);
1431 }
1432
1433 /*
1434 * Handle pipe sysctls.
1435 */
1436 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1437 {
1438
1439 sysctl_createv(clog, 0, NULL, NULL,
1440 CTLFLAG_PERMANENT,
1441 CTLTYPE_NODE, "kern", NULL,
1442 NULL, 0, NULL, 0,
1443 CTL_KERN, CTL_EOL);
1444 sysctl_createv(clog, 0, NULL, NULL,
1445 CTLFLAG_PERMANENT,
1446 CTLTYPE_NODE, "pipe",
1447 SYSCTL_DESCR("Pipe settings"),
1448 NULL, 0, NULL, 0,
1449 CTL_KERN, KERN_PIPE, CTL_EOL);
1450
1451 sysctl_createv(clog, 0, NULL, NULL,
1452 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1453 CTLTYPE_INT, "maxkvasz",
1454 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1455 "used for pipes"),
1456 NULL, 0, &maxpipekva, 0,
1457 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1458 sysctl_createv(clog, 0, NULL, NULL,
1459 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1460 CTLTYPE_INT, "maxloankvasz",
1461 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1462 NULL, 0, &limitpipekva, 0,
1463 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1464 sysctl_createv(clog, 0, NULL, NULL,
1465 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1466 CTLTYPE_INT, "maxbigpipes",
1467 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1468 NULL, 0, &maxbigpipes, 0,
1469 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1470 sysctl_createv(clog, 0, NULL, NULL,
1471 CTLFLAG_PERMANENT,
1472 CTLTYPE_INT, "nbigpipes",
1473 SYSCTL_DESCR("Number of \"big\" pipes"),
1474 NULL, 0, &nbigpipe, 0,
1475 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1476 sysctl_createv(clog, 0, NULL, NULL,
1477 CTLFLAG_PERMANENT,
1478 CTLTYPE_INT, "kvasize",
1479 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1480 "buffers"),
1481 NULL, 0, &amountpipekva, 0,
1482 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1483 }
1484