sys_pipe.c revision 1.70.6.1 1 /* $NetBSD: sys_pipe.c,v 1.70.6.1 2006/02/04 14:30:17 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.70.6.1 2006/02/04 14:30:17 simonb Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/ttycom.h>
98 #include <sys/stat.h>
99 #include <sys/malloc.h>
100 #include <sys/poll.h>
101 #include <sys/signalvar.h>
102 #include <sys/vnode.h>
103 #include <sys/uio.h>
104 #include <sys/lock.h>
105 #include <sys/select.h>
106 #include <sys/mount.h>
107 #include <sys/sa.h>
108 #include <sys/syscallargs.h>
109 #include <uvm/uvm.h>
110 #include <sys/sysctl.h>
111 #include <sys/kernel.h>
112
113 #include <sys/pipe.h>
114
115 /*
116 * Use this define if you want to disable *fancy* VM things. Expect an
117 * approx 30% decrease in transfer rate.
118 */
119 /* #define PIPE_NODIRECT */
120
121 /*
122 * interfaces to the outside world
123 */
124 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
125 struct ucred *cred, int flags);
126 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
127 struct ucred *cred, int flags);
128 static int pipe_close(struct file *fp, struct lwp *l);
129 static int pipe_poll(struct file *fp, int events, struct lwp *l);
130 static int pipe_kqfilter(struct file *fp, struct knote *kn);
131 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
132 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
133 struct lwp *l);
134
135 static const struct fileops pipeops = {
136 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
137 pipe_stat, pipe_close, pipe_kqfilter
138 };
139
140 /*
141 * Default pipe buffer size(s), this can be kind-of large now because pipe
142 * space is pageable. The pipe code will try to maintain locality of
143 * reference for performance reasons, so small amounts of outstanding I/O
144 * will not wipe the cache.
145 */
146 #define MINPIPESIZE (PIPE_SIZE/3)
147 #define MAXPIPESIZE (2*PIPE_SIZE/3)
148
149 /*
150 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
151 * is there so that on large systems, we don't exhaust it.
152 */
153 #define MAXPIPEKVA (8*1024*1024)
154 static int maxpipekva = MAXPIPEKVA;
155
156 /*
157 * Limit for direct transfers, we cannot, of course limit
158 * the amount of kva for pipes in general though.
159 */
160 #define LIMITPIPEKVA (16*1024*1024)
161 static int limitpipekva = LIMITPIPEKVA;
162
163 /*
164 * Limit the number of "big" pipes
165 */
166 #define LIMITBIGPIPES 32
167 static int maxbigpipes = LIMITBIGPIPES;
168 static int nbigpipe = 0;
169
170 /*
171 * Amount of KVA consumed by pipe buffers.
172 */
173 static int amountpipekva = 0;
174
175 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
176
177 static void pipeclose(struct file *fp, struct pipe *pipe);
178 static void pipe_free_kmem(struct pipe *pipe);
179 static int pipe_create(struct pipe **pipep, int allockva);
180 static int pipelock(struct pipe *pipe, int catch);
181 static inline void pipeunlock(struct pipe *pipe);
182 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
183 #ifndef PIPE_NODIRECT
184 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
185 struct uio *uio);
186 #endif
187 static int pipespace(struct pipe *pipe, int size);
188
189 #ifndef PIPE_NODIRECT
190 static int pipe_loan_alloc(struct pipe *, int);
191 static void pipe_loan_free(struct pipe *);
192 #endif /* PIPE_NODIRECT */
193
194 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
195 &pool_allocator_nointr);
196
197 /*
198 * The pipe system call for the DTYPE_PIPE type of pipes
199 */
200
201 /* ARGSUSED */
202 int
203 sys_pipe(struct lwp *l, void *v, register_t *retval)
204 {
205 struct file *rf, *wf;
206 struct pipe *rpipe, *wpipe;
207 int fd, error;
208 struct proc *p;
209
210 p = l->l_proc;
211 rpipe = wpipe = NULL;
212 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
213 pipeclose(NULL, rpipe);
214 pipeclose(NULL, wpipe);
215 return (ENFILE);
216 }
217
218 /*
219 * Note: the file structure returned from falloc() is marked
220 * as 'larval' initially. Unless we mark it as 'mature' by
221 * FILE_SET_MATURE(), any attempt to do anything with it would
222 * return EBADF, including e.g. dup(2) or close(2). This avoids
223 * file descriptor races if we block in the second falloc().
224 */
225
226 error = falloc(p, &rf, &fd);
227 if (error)
228 goto free2;
229 retval[0] = fd;
230 rf->f_flag = FREAD;
231 rf->f_type = DTYPE_PIPE;
232 rf->f_data = (caddr_t)rpipe;
233 rf->f_ops = &pipeops;
234
235 error = falloc(p, &wf, &fd);
236 if (error)
237 goto free3;
238 retval[1] = fd;
239 wf->f_flag = FWRITE;
240 wf->f_type = DTYPE_PIPE;
241 wf->f_data = (caddr_t)wpipe;
242 wf->f_ops = &pipeops;
243
244 rpipe->pipe_peer = wpipe;
245 wpipe->pipe_peer = rpipe;
246
247 FILE_SET_MATURE(rf);
248 FILE_SET_MATURE(wf);
249 FILE_UNUSE(rf, l);
250 FILE_UNUSE(wf, l);
251 return (0);
252 free3:
253 FILE_UNUSE(rf, l);
254 ffree(rf);
255 fdremove(p->p_fd, retval[0]);
256 free2:
257 pipeclose(NULL, wpipe);
258 pipeclose(NULL, rpipe);
259
260 return (error);
261 }
262
263 /*
264 * Allocate kva for pipe circular buffer, the space is pageable
265 * This routine will 'realloc' the size of a pipe safely, if it fails
266 * it will retain the old buffer.
267 * If it fails it will return ENOMEM.
268 */
269 static int
270 pipespace(struct pipe *pipe, int size)
271 {
272 caddr_t buffer;
273 /*
274 * Allocate pageable virtual address space. Physical memory is
275 * allocated on demand.
276 */
277 buffer = (caddr_t) uvm_km_alloc(kernel_map, round_page(size), 0,
278 UVM_KMF_PAGEABLE);
279 if (buffer == NULL)
280 return (ENOMEM);
281
282 /* free old resources if we're resizing */
283 pipe_free_kmem(pipe);
284 pipe->pipe_buffer.buffer = buffer;
285 pipe->pipe_buffer.size = size;
286 pipe->pipe_buffer.in = 0;
287 pipe->pipe_buffer.out = 0;
288 pipe->pipe_buffer.cnt = 0;
289 amountpipekva += pipe->pipe_buffer.size;
290 return (0);
291 }
292
293 /*
294 * Initialize and allocate VM and memory for pipe.
295 */
296 static int
297 pipe_create(struct pipe **pipep, int allockva)
298 {
299 struct pipe *pipe;
300 int error;
301
302 pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
303
304 /* Initialize */
305 memset(pipe, 0, sizeof(struct pipe));
306 pipe->pipe_state = PIPE_SIGNALR;
307
308 getmicrotime(&pipe->pipe_ctime);
309 pipe->pipe_atime = pipe->pipe_ctime;
310 pipe->pipe_mtime = pipe->pipe_ctime;
311 simple_lock_init(&pipe->pipe_slock);
312
313 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
314 return (error);
315
316 return (0);
317 }
318
319
320 /*
321 * Lock a pipe for I/O, blocking other access
322 * Called with pipe spin lock held.
323 * Return with pipe spin lock released on success.
324 */
325 static int
326 pipelock(struct pipe *pipe, int catch)
327 {
328
329 LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
330
331 while (pipe->pipe_state & PIPE_LOCKFL) {
332 int error;
333 const int pcatch = catch ? PCATCH : 0;
334
335 pipe->pipe_state |= PIPE_LWANT;
336 error = ltsleep(pipe, PSOCK | pcatch, "pipelk", 0,
337 &pipe->pipe_slock);
338 if (error != 0)
339 return error;
340 }
341
342 pipe->pipe_state |= PIPE_LOCKFL;
343 simple_unlock(&pipe->pipe_slock);
344
345 return 0;
346 }
347
348 /*
349 * unlock a pipe I/O lock
350 */
351 static inline void
352 pipeunlock(struct pipe *pipe)
353 {
354
355 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
356
357 pipe->pipe_state &= ~PIPE_LOCKFL;
358 if (pipe->pipe_state & PIPE_LWANT) {
359 pipe->pipe_state &= ~PIPE_LWANT;
360 wakeup(pipe);
361 }
362 }
363
364 /*
365 * Select/poll wakup. This also sends SIGIO to peer connected to
366 * 'sigpipe' side of pipe.
367 */
368 static void
369 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
370 {
371 int band;
372
373 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
374
375 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
376 return;
377
378 switch (code) {
379 case POLL_IN:
380 band = POLLIN|POLLRDNORM;
381 break;
382 case POLL_OUT:
383 band = POLLOUT|POLLWRNORM;
384 break;
385 case POLL_HUP:
386 band = POLLHUP;
387 break;
388 #if POLL_HUP != POLL_ERR
389 case POLL_ERR:
390 band = POLLERR;
391 break;
392 #endif
393 default:
394 band = 0;
395 #ifdef DIAGNOSTIC
396 printf("bad siginfo code %d in pipe notification.\n", code);
397 #endif
398 break;
399 }
400
401 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
402 }
403
404 /* ARGSUSED */
405 static int
406 pipe_read(struct file *fp, off_t *offset, struct uio *uio, struct ucred *cred,
407 int flags)
408 {
409 struct pipe *rpipe = (struct pipe *) fp->f_data;
410 struct pipebuf *bp = &rpipe->pipe_buffer;
411 int error;
412 size_t nread = 0;
413 size_t size;
414 size_t ocnt;
415
416 PIPE_LOCK(rpipe);
417 ++rpipe->pipe_busy;
418 ocnt = bp->cnt;
419
420 again:
421 error = pipelock(rpipe, 1);
422 if (error)
423 goto unlocked_error;
424
425 while (uio->uio_resid) {
426 /*
427 * normal pipe buffer receive
428 */
429 if (bp->cnt > 0) {
430 size = bp->size - bp->out;
431 if (size > bp->cnt)
432 size = bp->cnt;
433 if (size > uio->uio_resid)
434 size = uio->uio_resid;
435
436 error = uiomove(&bp->buffer[bp->out], size, uio);
437 if (error)
438 break;
439
440 bp->out += size;
441 if (bp->out >= bp->size)
442 bp->out = 0;
443
444 bp->cnt -= size;
445
446 /*
447 * If there is no more to read in the pipe, reset
448 * its pointers to the beginning. This improves
449 * cache hit stats.
450 */
451 if (bp->cnt == 0) {
452 bp->in = 0;
453 bp->out = 0;
454 }
455 nread += size;
456 #ifndef PIPE_NODIRECT
457 } else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
458 /*
459 * Direct copy, bypassing a kernel buffer.
460 */
461 caddr_t va;
462
463 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
464
465 size = rpipe->pipe_map.cnt;
466 if (size > uio->uio_resid)
467 size = uio->uio_resid;
468
469 va = (caddr_t) rpipe->pipe_map.kva +
470 rpipe->pipe_map.pos;
471 error = uiomove(va, size, uio);
472 if (error)
473 break;
474 nread += size;
475 rpipe->pipe_map.pos += size;
476 rpipe->pipe_map.cnt -= size;
477 if (rpipe->pipe_map.cnt == 0) {
478 PIPE_LOCK(rpipe);
479 rpipe->pipe_state &= ~PIPE_DIRECTR;
480 wakeup(rpipe);
481 PIPE_UNLOCK(rpipe);
482 }
483 #endif
484 } else {
485 /*
486 * Break if some data was read.
487 */
488 if (nread > 0)
489 break;
490
491 PIPE_LOCK(rpipe);
492
493 /*
494 * detect EOF condition
495 * read returns 0 on EOF, no need to set error
496 */
497 if (rpipe->pipe_state & PIPE_EOF) {
498 PIPE_UNLOCK(rpipe);
499 break;
500 }
501
502 /*
503 * don't block on non-blocking I/O
504 */
505 if (fp->f_flag & FNONBLOCK) {
506 PIPE_UNLOCK(rpipe);
507 error = EAGAIN;
508 break;
509 }
510
511 /*
512 * Unlock the pipe buffer for our remaining processing.
513 * We will either break out with an error or we will
514 * sleep and relock to loop.
515 */
516 pipeunlock(rpipe);
517
518 /*
519 * The PIPE_DIRECTR flag is not under the control
520 * of the long-term lock (see pipe_direct_write()),
521 * so re-check now while holding the spin lock.
522 */
523 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
524 goto again;
525
526 /*
527 * We want to read more, wake up select/poll.
528 */
529 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
530
531 /*
532 * If the "write-side" is blocked, wake it up now.
533 */
534 if (rpipe->pipe_state & PIPE_WANTW) {
535 rpipe->pipe_state &= ~PIPE_WANTW;
536 wakeup(rpipe);
537 }
538
539 /* Now wait until the pipe is filled */
540 rpipe->pipe_state |= PIPE_WANTR;
541 error = ltsleep(rpipe, PSOCK | PCATCH,
542 "piperd", 0, &rpipe->pipe_slock);
543 if (error != 0)
544 goto unlocked_error;
545 goto again;
546 }
547 }
548
549 if (error == 0)
550 getmicrotime(&rpipe->pipe_atime);
551
552 PIPE_LOCK(rpipe);
553 pipeunlock(rpipe);
554
555 unlocked_error:
556 --rpipe->pipe_busy;
557
558 /*
559 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
560 */
561 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
562 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
563 wakeup(rpipe);
564 } else if (bp->cnt < MINPIPESIZE) {
565 /*
566 * Handle write blocking hysteresis.
567 */
568 if (rpipe->pipe_state & PIPE_WANTW) {
569 rpipe->pipe_state &= ~PIPE_WANTW;
570 wakeup(rpipe);
571 }
572 }
573
574 /*
575 * If anything was read off the buffer, signal to the writer it's
576 * possible to write more data. Also send signal if we are here for the
577 * first time after last write.
578 */
579 if ((bp->size - bp->cnt) >= PIPE_BUF
580 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
581 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
582 rpipe->pipe_state &= ~PIPE_SIGNALR;
583 }
584
585 PIPE_UNLOCK(rpipe);
586 return (error);
587 }
588
589 #ifndef PIPE_NODIRECT
590 /*
591 * Allocate structure for loan transfer.
592 */
593 static int
594 pipe_loan_alloc(struct pipe *wpipe, int npages)
595 {
596 vsize_t len;
597
598 len = (vsize_t)npages << PAGE_SHIFT;
599 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
600 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
601 if (wpipe->pipe_map.kva == 0)
602 return (ENOMEM);
603
604 amountpipekva += len;
605 wpipe->pipe_map.npages = npages;
606 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
607 M_WAITOK);
608 return (0);
609 }
610
611 /*
612 * Free resources allocated for loan transfer.
613 */
614 static void
615 pipe_loan_free(struct pipe *wpipe)
616 {
617 vsize_t len;
618
619 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
620 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
621 wpipe->pipe_map.kva = 0;
622 amountpipekva -= len;
623 free(wpipe->pipe_map.pgs, M_PIPE);
624 wpipe->pipe_map.pgs = NULL;
625 }
626
627 /*
628 * NetBSD direct write, using uvm_loan() mechanism.
629 * This implements the pipe buffer write mechanism. Note that only
630 * a direct write OR a normal pipe write can be pending at any given time.
631 * If there are any characters in the pipe buffer, the direct write will
632 * be deferred until the receiving process grabs all of the bytes from
633 * the pipe buffer. Then the direct mapping write is set-up.
634 *
635 * Called with the long-term pipe lock held.
636 */
637 static int
638 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
639 {
640 int error, npages, j;
641 struct vm_page **pgs;
642 vaddr_t bbase, kva, base, bend;
643 vsize_t blen, bcnt;
644 voff_t bpos;
645
646 KASSERT(wpipe->pipe_map.cnt == 0);
647
648 /*
649 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
650 * not aligned to PAGE_SIZE.
651 */
652 bbase = (vaddr_t)uio->uio_iov->iov_base;
653 base = trunc_page(bbase);
654 bend = round_page(bbase + uio->uio_iov->iov_len);
655 blen = bend - base;
656 bpos = bbase - base;
657
658 if (blen > PIPE_DIRECT_CHUNK) {
659 blen = PIPE_DIRECT_CHUNK;
660 bend = base + blen;
661 bcnt = PIPE_DIRECT_CHUNK - bpos;
662 } else {
663 bcnt = uio->uio_iov->iov_len;
664 }
665 npages = blen >> PAGE_SHIFT;
666
667 /*
668 * Free the old kva if we need more pages than we have
669 * allocated.
670 */
671 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
672 pipe_loan_free(wpipe);
673
674 /* Allocate new kva. */
675 if (wpipe->pipe_map.kva == 0) {
676 error = pipe_loan_alloc(wpipe, npages);
677 if (error)
678 return (error);
679 }
680
681 /* Loan the write buffer memory from writer process */
682 pgs = wpipe->pipe_map.pgs;
683 error = uvm_loan(&uio->uio_lwp->l_proc->p_vmspace->vm_map, base, blen,
684 pgs, UVM_LOAN_TOPAGE);
685 if (error) {
686 pipe_loan_free(wpipe);
687 return (ENOMEM); /* so that caller fallback to ordinary write */
688 }
689
690 /* Enter the loaned pages to kva */
691 kva = wpipe->pipe_map.kva;
692 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
693 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
694 }
695 pmap_update(pmap_kernel());
696
697 /* Now we can put the pipe in direct write mode */
698 wpipe->pipe_map.pos = bpos;
699 wpipe->pipe_map.cnt = bcnt;
700 wpipe->pipe_state |= PIPE_DIRECTW;
701
702 /*
703 * But before we can let someone do a direct read,
704 * we have to wait until the pipe is drained.
705 */
706
707 /* Relase the pipe lock while we wait */
708 PIPE_LOCK(wpipe);
709 pipeunlock(wpipe);
710
711 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
712 if (wpipe->pipe_state & PIPE_WANTR) {
713 wpipe->pipe_state &= ~PIPE_WANTR;
714 wakeup(wpipe);
715 }
716
717 wpipe->pipe_state |= PIPE_WANTW;
718 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0,
719 &wpipe->pipe_slock);
720 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
721 error = EPIPE;
722 }
723
724 /* Pipe is drained; next read will off the direct buffer */
725 wpipe->pipe_state |= PIPE_DIRECTR;
726
727 /* Wait until the reader is done */
728 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
729 if (wpipe->pipe_state & PIPE_WANTR) {
730 wpipe->pipe_state &= ~PIPE_WANTR;
731 wakeup(wpipe);
732 }
733 pipeselwakeup(wpipe, wpipe, POLL_IN);
734 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0,
735 &wpipe->pipe_slock);
736 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
737 error = EPIPE;
738 }
739
740 /* Take pipe out of direct write mode */
741 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
742
743 /* Acquire the pipe lock and cleanup */
744 (void)pipelock(wpipe, 0);
745 if (pgs != NULL) {
746 pmap_kremove(wpipe->pipe_map.kva, blen);
747 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
748 }
749 if (error || amountpipekva > maxpipekva)
750 pipe_loan_free(wpipe);
751
752 if (error) {
753 pipeselwakeup(wpipe, wpipe, POLL_ERR);
754
755 /*
756 * If nothing was read from what we offered, return error
757 * straight on. Otherwise update uio resid first. Caller
758 * will deal with the error condition, returning short
759 * write, error, or restarting the write(2) as appropriate.
760 */
761 if (wpipe->pipe_map.cnt == bcnt) {
762 wpipe->pipe_map.cnt = 0;
763 wakeup(wpipe);
764 return (error);
765 }
766
767 bcnt -= wpipe->pipe_map.cnt;
768 }
769
770 uio->uio_resid -= bcnt;
771 /* uio_offset not updated, not set/used for write(2) */
772 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
773 uio->uio_iov->iov_len -= bcnt;
774 if (uio->uio_iov->iov_len == 0) {
775 uio->uio_iov++;
776 uio->uio_iovcnt--;
777 }
778
779 wpipe->pipe_map.cnt = 0;
780 return (error);
781 }
782 #endif /* !PIPE_NODIRECT */
783
784 static int
785 pipe_write(struct file *fp, off_t *offset, struct uio *uio, struct ucred *cred,
786 int flags)
787 {
788 struct pipe *wpipe, *rpipe;
789 struct pipebuf *bp;
790 int error;
791
792 /* We want to write to our peer */
793 rpipe = (struct pipe *) fp->f_data;
794
795 retry:
796 error = 0;
797 PIPE_LOCK(rpipe);
798 wpipe = rpipe->pipe_peer;
799
800 /*
801 * Detect loss of pipe read side, issue SIGPIPE if lost.
802 */
803 if (wpipe == NULL)
804 error = EPIPE;
805 else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
806 /* Deal with race for peer */
807 PIPE_UNLOCK(rpipe);
808 goto retry;
809 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
810 PIPE_UNLOCK(wpipe);
811 error = EPIPE;
812 }
813
814 PIPE_UNLOCK(rpipe);
815 if (error != 0)
816 return (error);
817
818 ++wpipe->pipe_busy;
819
820 /* Aquire the long-term pipe lock */
821 if ((error = pipelock(wpipe,1)) != 0) {
822 --wpipe->pipe_busy;
823 if (wpipe->pipe_busy == 0
824 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
825 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
826 wakeup(wpipe);
827 }
828 PIPE_UNLOCK(wpipe);
829 return (error);
830 }
831
832 bp = &wpipe->pipe_buffer;
833
834 /*
835 * If it is advantageous to resize the pipe buffer, do so.
836 */
837 if ((uio->uio_resid > PIPE_SIZE) &&
838 (nbigpipe < maxbigpipes) &&
839 #ifndef PIPE_NODIRECT
840 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
841 #endif
842 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
843
844 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
845 nbigpipe++;
846 }
847
848 while (uio->uio_resid) {
849 size_t space;
850
851 #ifndef PIPE_NODIRECT
852 /*
853 * Pipe buffered writes cannot be coincidental with
854 * direct writes. Also, only one direct write can be
855 * in progress at any one time. We wait until the currently
856 * executing direct write is completed before continuing.
857 *
858 * We break out if a signal occurs or the reader goes away.
859 */
860 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
861 PIPE_LOCK(wpipe);
862 if (wpipe->pipe_state & PIPE_WANTR) {
863 wpipe->pipe_state &= ~PIPE_WANTR;
864 wakeup(wpipe);
865 }
866 pipeunlock(wpipe);
867 error = ltsleep(wpipe, PSOCK | PCATCH,
868 "pipbww", 0, &wpipe->pipe_slock);
869
870 (void)pipelock(wpipe, 0);
871 if (wpipe->pipe_state & PIPE_EOF)
872 error = EPIPE;
873 }
874 if (error)
875 break;
876
877 /*
878 * If the transfer is large, we can gain performance if
879 * we do process-to-process copies directly.
880 * If the write is non-blocking, we don't use the
881 * direct write mechanism.
882 *
883 * The direct write mechanism will detect the reader going
884 * away on us.
885 */
886 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
887 (fp->f_flag & FNONBLOCK) == 0 &&
888 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
889 error = pipe_direct_write(fp, wpipe, uio);
890
891 /*
892 * Break out if error occurred, unless it's ENOMEM.
893 * ENOMEM means we failed to allocate some resources
894 * for direct write, so we just fallback to ordinary
895 * write. If the direct write was successful,
896 * process rest of data via ordinary write.
897 */
898 if (error == 0)
899 continue;
900
901 if (error != ENOMEM)
902 break;
903 }
904 #endif /* PIPE_NODIRECT */
905
906 space = bp->size - bp->cnt;
907
908 /* Writes of size <= PIPE_BUF must be atomic. */
909 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
910 space = 0;
911
912 if (space > 0) {
913 int size; /* Transfer size */
914 int segsize; /* first segment to transfer */
915
916 /*
917 * Transfer size is minimum of uio transfer
918 * and free space in pipe buffer.
919 */
920 if (space > uio->uio_resid)
921 size = uio->uio_resid;
922 else
923 size = space;
924 /*
925 * First segment to transfer is minimum of
926 * transfer size and contiguous space in
927 * pipe buffer. If first segment to transfer
928 * is less than the transfer size, we've got
929 * a wraparound in the buffer.
930 */
931 segsize = bp->size - bp->in;
932 if (segsize > size)
933 segsize = size;
934
935 /* Transfer first segment */
936 error = uiomove(&bp->buffer[bp->in], segsize, uio);
937
938 if (error == 0 && segsize < size) {
939 /*
940 * Transfer remaining part now, to
941 * support atomic writes. Wraparound
942 * happened.
943 */
944 #ifdef DEBUG
945 if (bp->in + segsize != bp->size)
946 panic("Expected pipe buffer wraparound disappeared");
947 #endif
948
949 error = uiomove(&bp->buffer[0],
950 size - segsize, uio);
951 }
952 if (error)
953 break;
954
955 bp->in += size;
956 if (bp->in >= bp->size) {
957 #ifdef DEBUG
958 if (bp->in != size - segsize + bp->size)
959 panic("Expected wraparound bad");
960 #endif
961 bp->in = size - segsize;
962 }
963
964 bp->cnt += size;
965 #ifdef DEBUG
966 if (bp->cnt > bp->size)
967 panic("Pipe buffer overflow");
968 #endif
969 } else {
970 /*
971 * If the "read-side" has been blocked, wake it up now.
972 */
973 PIPE_LOCK(wpipe);
974 if (wpipe->pipe_state & PIPE_WANTR) {
975 wpipe->pipe_state &= ~PIPE_WANTR;
976 wakeup(wpipe);
977 }
978 PIPE_UNLOCK(wpipe);
979
980 /*
981 * don't block on non-blocking I/O
982 */
983 if (fp->f_flag & FNONBLOCK) {
984 error = EAGAIN;
985 break;
986 }
987
988 /*
989 * We have no more space and have something to offer,
990 * wake up select/poll.
991 */
992 if (bp->cnt)
993 pipeselwakeup(wpipe, wpipe, POLL_OUT);
994
995 PIPE_LOCK(wpipe);
996 pipeunlock(wpipe);
997 wpipe->pipe_state |= PIPE_WANTW;
998 error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0,
999 &wpipe->pipe_slock);
1000 (void)pipelock(wpipe, 0);
1001 if (error != 0)
1002 break;
1003 /*
1004 * If read side wants to go away, we just issue a signal
1005 * to ourselves.
1006 */
1007 if (wpipe->pipe_state & PIPE_EOF) {
1008 error = EPIPE;
1009 break;
1010 }
1011 }
1012 }
1013
1014 PIPE_LOCK(wpipe);
1015 --wpipe->pipe_busy;
1016 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1017 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1018 wakeup(wpipe);
1019 } else if (bp->cnt > 0) {
1020 /*
1021 * If we have put any characters in the buffer, we wake up
1022 * the reader.
1023 */
1024 if (wpipe->pipe_state & PIPE_WANTR) {
1025 wpipe->pipe_state &= ~PIPE_WANTR;
1026 wakeup(wpipe);
1027 }
1028 }
1029
1030 /*
1031 * Don't return EPIPE if I/O was successful
1032 */
1033 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1034 error = 0;
1035
1036 if (error == 0)
1037 getmicrotime(&wpipe->pipe_mtime);
1038
1039 /*
1040 * We have something to offer, wake up select/poll.
1041 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1042 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1043 */
1044 if (bp->cnt)
1045 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1046
1047 /*
1048 * Arrange for next read(2) to do a signal.
1049 */
1050 wpipe->pipe_state |= PIPE_SIGNALR;
1051
1052 pipeunlock(wpipe);
1053 PIPE_UNLOCK(wpipe);
1054 return (error);
1055 }
1056
1057 /*
1058 * we implement a very minimal set of ioctls for compatibility with sockets.
1059 */
1060 int
1061 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1062 {
1063 struct pipe *pipe = (struct pipe *)fp->f_data;
1064 struct proc *p = l->l_proc;
1065
1066 switch (cmd) {
1067
1068 case FIONBIO:
1069 return (0);
1070
1071 case FIOASYNC:
1072 PIPE_LOCK(pipe);
1073 if (*(int *)data) {
1074 pipe->pipe_state |= PIPE_ASYNC;
1075 } else {
1076 pipe->pipe_state &= ~PIPE_ASYNC;
1077 }
1078 PIPE_UNLOCK(pipe);
1079 return (0);
1080
1081 case FIONREAD:
1082 PIPE_LOCK(pipe);
1083 #ifndef PIPE_NODIRECT
1084 if (pipe->pipe_state & PIPE_DIRECTW)
1085 *(int *)data = pipe->pipe_map.cnt;
1086 else
1087 #endif
1088 *(int *)data = pipe->pipe_buffer.cnt;
1089 PIPE_UNLOCK(pipe);
1090 return (0);
1091
1092 case FIONWRITE:
1093 /* Look at other side */
1094 pipe = pipe->pipe_peer;
1095 PIPE_LOCK(pipe);
1096 #ifndef PIPE_NODIRECT
1097 if (pipe->pipe_state & PIPE_DIRECTW)
1098 *(int *)data = pipe->pipe_map.cnt;
1099 else
1100 #endif
1101 *(int *)data = pipe->pipe_buffer.cnt;
1102 PIPE_UNLOCK(pipe);
1103 return (0);
1104
1105 case FIONSPACE:
1106 /* Look at other side */
1107 pipe = pipe->pipe_peer;
1108 PIPE_LOCK(pipe);
1109 #ifndef PIPE_NODIRECT
1110 /*
1111 * If we're in direct-mode, we don't really have a
1112 * send queue, and any other write will block. Thus
1113 * zero seems like the best answer.
1114 */
1115 if (pipe->pipe_state & PIPE_DIRECTW)
1116 *(int *)data = 0;
1117 else
1118 #endif
1119 *(int *)data = pipe->pipe_buffer.size -
1120 pipe->pipe_buffer.cnt;
1121 PIPE_UNLOCK(pipe);
1122 return (0);
1123
1124 case TIOCSPGRP:
1125 case FIOSETOWN:
1126 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1127
1128 case TIOCGPGRP:
1129 case FIOGETOWN:
1130 return fgetown(p, pipe->pipe_pgid, cmd, data);
1131
1132 }
1133 return (EPASSTHROUGH);
1134 }
1135
1136 int
1137 pipe_poll(struct file *fp, int events, struct lwp *l)
1138 {
1139 struct pipe *rpipe = (struct pipe *)fp->f_data;
1140 struct pipe *wpipe;
1141 int eof = 0;
1142 int revents = 0;
1143
1144 retry:
1145 PIPE_LOCK(rpipe);
1146 wpipe = rpipe->pipe_peer;
1147 if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
1148 /* Deal with race for peer */
1149 PIPE_UNLOCK(rpipe);
1150 goto retry;
1151 }
1152
1153 if (events & (POLLIN | POLLRDNORM))
1154 if ((rpipe->pipe_buffer.cnt > 0) ||
1155 #ifndef PIPE_NODIRECT
1156 (rpipe->pipe_state & PIPE_DIRECTR) ||
1157 #endif
1158 (rpipe->pipe_state & PIPE_EOF))
1159 revents |= events & (POLLIN | POLLRDNORM);
1160
1161 eof |= (rpipe->pipe_state & PIPE_EOF);
1162 PIPE_UNLOCK(rpipe);
1163
1164 if (wpipe == NULL)
1165 revents |= events & (POLLOUT | POLLWRNORM);
1166 else {
1167 if (events & (POLLOUT | POLLWRNORM))
1168 if ((wpipe->pipe_state & PIPE_EOF) || (
1169 #ifndef PIPE_NODIRECT
1170 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1171 #endif
1172 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1173 revents |= events & (POLLOUT | POLLWRNORM);
1174
1175 eof |= (wpipe->pipe_state & PIPE_EOF);
1176 PIPE_UNLOCK(wpipe);
1177 }
1178
1179 if (wpipe == NULL || eof)
1180 revents |= POLLHUP;
1181
1182 if (revents == 0) {
1183 if (events & (POLLIN | POLLRDNORM))
1184 selrecord(l, &rpipe->pipe_sel);
1185
1186 if (events & (POLLOUT | POLLWRNORM))
1187 selrecord(l, &wpipe->pipe_sel);
1188 }
1189
1190 return (revents);
1191 }
1192
1193 static int
1194 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
1195 {
1196 struct pipe *pipe = (struct pipe *)fp->f_data;
1197
1198 memset((caddr_t)ub, 0, sizeof(*ub));
1199 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1200 ub->st_blksize = pipe->pipe_buffer.size;
1201 if (ub->st_blksize == 0 && pipe->pipe_peer)
1202 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1203 ub->st_size = pipe->pipe_buffer.cnt;
1204 ub->st_blocks = (ub->st_size) ? 1 : 0;
1205 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1206 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1207 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1208 ub->st_uid = fp->f_cred->cr_uid;
1209 ub->st_gid = fp->f_cred->cr_gid;
1210 /*
1211 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1212 * XXX (st_dev, st_ino) should be unique.
1213 */
1214 return (0);
1215 }
1216
1217 /* ARGSUSED */
1218 static int
1219 pipe_close(struct file *fp, struct lwp *l)
1220 {
1221 struct pipe *pipe = (struct pipe *)fp->f_data;
1222
1223 fp->f_data = NULL;
1224 pipeclose(fp, pipe);
1225 return (0);
1226 }
1227
1228 static void
1229 pipe_free_kmem(struct pipe *pipe)
1230 {
1231
1232 if (pipe->pipe_buffer.buffer != NULL) {
1233 if (pipe->pipe_buffer.size > PIPE_SIZE)
1234 --nbigpipe;
1235 amountpipekva -= pipe->pipe_buffer.size;
1236 uvm_km_free(kernel_map,
1237 (vaddr_t)pipe->pipe_buffer.buffer,
1238 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1239 pipe->pipe_buffer.buffer = NULL;
1240 }
1241 #ifndef PIPE_NODIRECT
1242 if (pipe->pipe_map.kva != 0) {
1243 pipe_loan_free(pipe);
1244 pipe->pipe_map.cnt = 0;
1245 pipe->pipe_map.kva = 0;
1246 pipe->pipe_map.pos = 0;
1247 pipe->pipe_map.npages = 0;
1248 }
1249 #endif /* !PIPE_NODIRECT */
1250 }
1251
1252 /*
1253 * shutdown the pipe
1254 */
1255 static void
1256 pipeclose(struct file *fp, struct pipe *pipe)
1257 {
1258 struct pipe *ppipe;
1259
1260 if (pipe == NULL)
1261 return;
1262
1263 retry:
1264 PIPE_LOCK(pipe);
1265
1266 pipeselwakeup(pipe, pipe, POLL_HUP);
1267
1268 /*
1269 * If the other side is blocked, wake it up saying that
1270 * we want to close it down.
1271 */
1272 pipe->pipe_state |= PIPE_EOF;
1273 while (pipe->pipe_busy) {
1274 wakeup(pipe);
1275 pipe->pipe_state |= PIPE_WANTCLOSE;
1276 ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock);
1277 }
1278
1279 /*
1280 * Disconnect from peer
1281 */
1282 if ((ppipe = pipe->pipe_peer) != NULL) {
1283 /* Deal with race for peer */
1284 if (simple_lock_try(&ppipe->pipe_slock) == 0) {
1285 PIPE_UNLOCK(pipe);
1286 goto retry;
1287 }
1288 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1289
1290 ppipe->pipe_state |= PIPE_EOF;
1291 wakeup(ppipe);
1292 ppipe->pipe_peer = NULL;
1293 PIPE_UNLOCK(ppipe);
1294 }
1295
1296 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1297
1298 PIPE_UNLOCK(pipe);
1299
1300 /*
1301 * free resources
1302 */
1303 pipe_free_kmem(pipe);
1304 pool_put(&pipe_pool, pipe);
1305 }
1306
1307 static void
1308 filt_pipedetach(struct knote *kn)
1309 {
1310 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1311
1312 switch(kn->kn_filter) {
1313 case EVFILT_WRITE:
1314 /* need the peer structure, not our own */
1315 pipe = pipe->pipe_peer;
1316 /* XXXSMP: race for peer */
1317
1318 /* if reader end already closed, just return */
1319 if (pipe == NULL)
1320 return;
1321
1322 break;
1323 default:
1324 /* nothing to do */
1325 break;
1326 }
1327
1328 #ifdef DIAGNOSTIC
1329 if (kn->kn_hook != pipe)
1330 panic("filt_pipedetach: inconsistent knote");
1331 #endif
1332
1333 PIPE_LOCK(pipe);
1334 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1335 PIPE_UNLOCK(pipe);
1336 }
1337
1338 /*ARGSUSED*/
1339 static int
1340 filt_piperead(struct knote *kn, long hint)
1341 {
1342 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1343 struct pipe *wpipe = rpipe->pipe_peer;
1344
1345 if ((hint & NOTE_SUBMIT) == 0)
1346 PIPE_LOCK(rpipe);
1347 kn->kn_data = rpipe->pipe_buffer.cnt;
1348 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1349 kn->kn_data = rpipe->pipe_map.cnt;
1350
1351 /* XXXSMP: race for peer */
1352 if ((rpipe->pipe_state & PIPE_EOF) ||
1353 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1354 kn->kn_flags |= EV_EOF;
1355 if ((hint & NOTE_SUBMIT) == 0)
1356 PIPE_UNLOCK(rpipe);
1357 return (1);
1358 }
1359 if ((hint & NOTE_SUBMIT) == 0)
1360 PIPE_UNLOCK(rpipe);
1361 return (kn->kn_data > 0);
1362 }
1363
1364 /*ARGSUSED*/
1365 static int
1366 filt_pipewrite(struct knote *kn, long hint)
1367 {
1368 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1369 struct pipe *wpipe = rpipe->pipe_peer;
1370
1371 if ((hint & NOTE_SUBMIT) == 0)
1372 PIPE_LOCK(rpipe);
1373 /* XXXSMP: race for peer */
1374 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1375 kn->kn_data = 0;
1376 kn->kn_flags |= EV_EOF;
1377 if ((hint & NOTE_SUBMIT) == 0)
1378 PIPE_UNLOCK(rpipe);
1379 return (1);
1380 }
1381 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1382 if (wpipe->pipe_state & PIPE_DIRECTW)
1383 kn->kn_data = 0;
1384
1385 if ((hint & NOTE_SUBMIT) == 0)
1386 PIPE_UNLOCK(rpipe);
1387 return (kn->kn_data >= PIPE_BUF);
1388 }
1389
1390 static const struct filterops pipe_rfiltops =
1391 { 1, NULL, filt_pipedetach, filt_piperead };
1392 static const struct filterops pipe_wfiltops =
1393 { 1, NULL, filt_pipedetach, filt_pipewrite };
1394
1395 /*ARGSUSED*/
1396 static int
1397 pipe_kqfilter(struct file *fp, struct knote *kn)
1398 {
1399 struct pipe *pipe;
1400
1401 pipe = (struct pipe *)kn->kn_fp->f_data;
1402 switch (kn->kn_filter) {
1403 case EVFILT_READ:
1404 kn->kn_fop = &pipe_rfiltops;
1405 break;
1406 case EVFILT_WRITE:
1407 kn->kn_fop = &pipe_wfiltops;
1408 /* XXXSMP: race for peer */
1409 pipe = pipe->pipe_peer;
1410 if (pipe == NULL) {
1411 /* other end of pipe has been closed */
1412 return (EBADF);
1413 }
1414 break;
1415 default:
1416 return (1);
1417 }
1418 kn->kn_hook = pipe;
1419
1420 PIPE_LOCK(pipe);
1421 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1422 PIPE_UNLOCK(pipe);
1423 return (0);
1424 }
1425
1426 /*
1427 * Handle pipe sysctls.
1428 */
1429 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1430 {
1431
1432 sysctl_createv(clog, 0, NULL, NULL,
1433 CTLFLAG_PERMANENT,
1434 CTLTYPE_NODE, "kern", NULL,
1435 NULL, 0, NULL, 0,
1436 CTL_KERN, CTL_EOL);
1437 sysctl_createv(clog, 0, NULL, NULL,
1438 CTLFLAG_PERMANENT,
1439 CTLTYPE_NODE, "pipe",
1440 SYSCTL_DESCR("Pipe settings"),
1441 NULL, 0, NULL, 0,
1442 CTL_KERN, KERN_PIPE, CTL_EOL);
1443
1444 sysctl_createv(clog, 0, NULL, NULL,
1445 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1446 CTLTYPE_INT, "maxkvasz",
1447 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1448 "used for pipes"),
1449 NULL, 0, &maxpipekva, 0,
1450 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1451 sysctl_createv(clog, 0, NULL, NULL,
1452 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1453 CTLTYPE_INT, "maxloankvasz",
1454 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1455 NULL, 0, &limitpipekva, 0,
1456 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1457 sysctl_createv(clog, 0, NULL, NULL,
1458 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1459 CTLTYPE_INT, "maxbigpipes",
1460 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1461 NULL, 0, &maxbigpipes, 0,
1462 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1463 sysctl_createv(clog, 0, NULL, NULL,
1464 CTLFLAG_PERMANENT,
1465 CTLTYPE_INT, "nbigpipes",
1466 SYSCTL_DESCR("Number of \"big\" pipes"),
1467 NULL, 0, &nbigpipe, 0,
1468 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1469 sysctl_createv(clog, 0, NULL, NULL,
1470 CTLFLAG_PERMANENT,
1471 CTLTYPE_INT, "kvasize",
1472 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1473 "buffers"),
1474 NULL, 0, &amountpipekva, 0,
1475 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1476 }
1477