sys_pipe.c revision 1.72 1 /* $NetBSD: sys_pipe.c,v 1.72 2006/05/14 21:15:11 elad Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.72 2006/05/14 21:15:11 elad Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/ttycom.h>
98 #include <sys/stat.h>
99 #include <sys/malloc.h>
100 #include <sys/poll.h>
101 #include <sys/signalvar.h>
102 #include <sys/vnode.h>
103 #include <sys/uio.h>
104 #include <sys/lock.h>
105 #include <sys/select.h>
106 #include <sys/mount.h>
107 #include <sys/sa.h>
108 #include <sys/syscallargs.h>
109 #include <uvm/uvm.h>
110 #include <sys/sysctl.h>
111 #include <sys/kernel.h>
112 #include <sys/kauth.h>
113
114 #include <sys/pipe.h>
115
116 /*
117 * Avoid microtime(9), it's slow. We don't guard the read from time(9)
118 * with splclock(9) since we don't actually need to be THAT sure the access
119 * is atomic.
120 */
121 #define PIPE_TIMESTAMP(tvp) (*(tvp) = time)
122
123
124 /*
125 * Use this define if you want to disable *fancy* VM things. Expect an
126 * approx 30% decrease in transfer rate.
127 */
128 /* #define PIPE_NODIRECT */
129
130 /*
131 * interfaces to the outside world
132 */
133 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
134 kauth_cred_t cred, int flags);
135 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
136 kauth_cred_t cred, int flags);
137 static int pipe_close(struct file *fp, struct lwp *l);
138 static int pipe_poll(struct file *fp, int events, struct lwp *l);
139 static int pipe_kqfilter(struct file *fp, struct knote *kn);
140 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
141 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
142 struct lwp *l);
143
144 static const struct fileops pipeops = {
145 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
146 pipe_stat, pipe_close, pipe_kqfilter
147 };
148
149 /*
150 * Default pipe buffer size(s), this can be kind-of large now because pipe
151 * space is pageable. The pipe code will try to maintain locality of
152 * reference for performance reasons, so small amounts of outstanding I/O
153 * will not wipe the cache.
154 */
155 #define MINPIPESIZE (PIPE_SIZE/3)
156 #define MAXPIPESIZE (2*PIPE_SIZE/3)
157
158 /*
159 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
160 * is there so that on large systems, we don't exhaust it.
161 */
162 #define MAXPIPEKVA (8*1024*1024)
163 static int maxpipekva = MAXPIPEKVA;
164
165 /*
166 * Limit for direct transfers, we cannot, of course limit
167 * the amount of kva for pipes in general though.
168 */
169 #define LIMITPIPEKVA (16*1024*1024)
170 static int limitpipekva = LIMITPIPEKVA;
171
172 /*
173 * Limit the number of "big" pipes
174 */
175 #define LIMITBIGPIPES 32
176 static int maxbigpipes = LIMITBIGPIPES;
177 static int nbigpipe = 0;
178
179 /*
180 * Amount of KVA consumed by pipe buffers.
181 */
182 static int amountpipekva = 0;
183
184 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
185
186 static void pipeclose(struct file *fp, struct pipe *pipe);
187 static void pipe_free_kmem(struct pipe *pipe);
188 static int pipe_create(struct pipe **pipep, int allockva);
189 static int pipelock(struct pipe *pipe, int catch);
190 static inline void pipeunlock(struct pipe *pipe);
191 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
192 #ifndef PIPE_NODIRECT
193 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
194 struct uio *uio);
195 #endif
196 static int pipespace(struct pipe *pipe, int size);
197
198 #ifndef PIPE_NODIRECT
199 static int pipe_loan_alloc(struct pipe *, int);
200 static void pipe_loan_free(struct pipe *);
201 #endif /* PIPE_NODIRECT */
202
203 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
204 &pool_allocator_nointr);
205
206 /*
207 * The pipe system call for the DTYPE_PIPE type of pipes
208 */
209
210 /* ARGSUSED */
211 int
212 sys_pipe(struct lwp *l, void *v, register_t *retval)
213 {
214 struct file *rf, *wf;
215 struct pipe *rpipe, *wpipe;
216 int fd, error;
217 struct proc *p;
218
219 p = l->l_proc;
220 rpipe = wpipe = NULL;
221 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
222 pipeclose(NULL, rpipe);
223 pipeclose(NULL, wpipe);
224 return (ENFILE);
225 }
226
227 /*
228 * Note: the file structure returned from falloc() is marked
229 * as 'larval' initially. Unless we mark it as 'mature' by
230 * FILE_SET_MATURE(), any attempt to do anything with it would
231 * return EBADF, including e.g. dup(2) or close(2). This avoids
232 * file descriptor races if we block in the second falloc().
233 */
234
235 error = falloc(p, &rf, &fd);
236 if (error)
237 goto free2;
238 retval[0] = fd;
239 rf->f_flag = FREAD;
240 rf->f_type = DTYPE_PIPE;
241 rf->f_data = (caddr_t)rpipe;
242 rf->f_ops = &pipeops;
243
244 error = falloc(p, &wf, &fd);
245 if (error)
246 goto free3;
247 retval[1] = fd;
248 wf->f_flag = FWRITE;
249 wf->f_type = DTYPE_PIPE;
250 wf->f_data = (caddr_t)wpipe;
251 wf->f_ops = &pipeops;
252
253 rpipe->pipe_peer = wpipe;
254 wpipe->pipe_peer = rpipe;
255
256 FILE_SET_MATURE(rf);
257 FILE_SET_MATURE(wf);
258 FILE_UNUSE(rf, l);
259 FILE_UNUSE(wf, l);
260 return (0);
261 free3:
262 FILE_UNUSE(rf, l);
263 ffree(rf);
264 fdremove(p->p_fd, retval[0]);
265 free2:
266 pipeclose(NULL, wpipe);
267 pipeclose(NULL, rpipe);
268
269 return (error);
270 }
271
272 /*
273 * Allocate kva for pipe circular buffer, the space is pageable
274 * This routine will 'realloc' the size of a pipe safely, if it fails
275 * it will retain the old buffer.
276 * If it fails it will return ENOMEM.
277 */
278 static int
279 pipespace(struct pipe *pipe, int size)
280 {
281 caddr_t buffer;
282 /*
283 * Allocate pageable virtual address space. Physical memory is
284 * allocated on demand.
285 */
286 buffer = (caddr_t) uvm_km_alloc(kernel_map, round_page(size), 0,
287 UVM_KMF_PAGEABLE);
288 if (buffer == NULL)
289 return (ENOMEM);
290
291 /* free old resources if we're resizing */
292 pipe_free_kmem(pipe);
293 pipe->pipe_buffer.buffer = buffer;
294 pipe->pipe_buffer.size = size;
295 pipe->pipe_buffer.in = 0;
296 pipe->pipe_buffer.out = 0;
297 pipe->pipe_buffer.cnt = 0;
298 amountpipekva += pipe->pipe_buffer.size;
299 return (0);
300 }
301
302 /*
303 * Initialize and allocate VM and memory for pipe.
304 */
305 static int
306 pipe_create(struct pipe **pipep, int allockva)
307 {
308 struct pipe *pipe;
309 int error;
310
311 pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
312
313 /* Initialize */
314 memset(pipe, 0, sizeof(struct pipe));
315 pipe->pipe_state = PIPE_SIGNALR;
316
317 PIPE_TIMESTAMP(&pipe->pipe_ctime);
318 pipe->pipe_atime = pipe->pipe_ctime;
319 pipe->pipe_mtime = pipe->pipe_ctime;
320 simple_lock_init(&pipe->pipe_slock);
321
322 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
323 return (error);
324
325 return (0);
326 }
327
328
329 /*
330 * Lock a pipe for I/O, blocking other access
331 * Called with pipe spin lock held.
332 * Return with pipe spin lock released on success.
333 */
334 static int
335 pipelock(struct pipe *pipe, int catch)
336 {
337
338 LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
339
340 while (pipe->pipe_state & PIPE_LOCKFL) {
341 int error;
342 const int pcatch = catch ? PCATCH : 0;
343
344 pipe->pipe_state |= PIPE_LWANT;
345 error = ltsleep(pipe, PSOCK | pcatch, "pipelk", 0,
346 &pipe->pipe_slock);
347 if (error != 0)
348 return error;
349 }
350
351 pipe->pipe_state |= PIPE_LOCKFL;
352 simple_unlock(&pipe->pipe_slock);
353
354 return 0;
355 }
356
357 /*
358 * unlock a pipe I/O lock
359 */
360 static inline void
361 pipeunlock(struct pipe *pipe)
362 {
363
364 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
365
366 pipe->pipe_state &= ~PIPE_LOCKFL;
367 if (pipe->pipe_state & PIPE_LWANT) {
368 pipe->pipe_state &= ~PIPE_LWANT;
369 wakeup(pipe);
370 }
371 }
372
373 /*
374 * Select/poll wakup. This also sends SIGIO to peer connected to
375 * 'sigpipe' side of pipe.
376 */
377 static void
378 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
379 {
380 int band;
381
382 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
383
384 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
385 return;
386
387 switch (code) {
388 case POLL_IN:
389 band = POLLIN|POLLRDNORM;
390 break;
391 case POLL_OUT:
392 band = POLLOUT|POLLWRNORM;
393 break;
394 case POLL_HUP:
395 band = POLLHUP;
396 break;
397 #if POLL_HUP != POLL_ERR
398 case POLL_ERR:
399 band = POLLERR;
400 break;
401 #endif
402 default:
403 band = 0;
404 #ifdef DIAGNOSTIC
405 printf("bad siginfo code %d in pipe notification.\n", code);
406 #endif
407 break;
408 }
409
410 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
411 }
412
413 /* ARGSUSED */
414 static int
415 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
416 int flags)
417 {
418 struct pipe *rpipe = (struct pipe *) fp->f_data;
419 struct pipebuf *bp = &rpipe->pipe_buffer;
420 int error;
421 size_t nread = 0;
422 size_t size;
423 size_t ocnt;
424
425 PIPE_LOCK(rpipe);
426 ++rpipe->pipe_busy;
427 ocnt = bp->cnt;
428
429 again:
430 error = pipelock(rpipe, 1);
431 if (error)
432 goto unlocked_error;
433
434 while (uio->uio_resid) {
435 /*
436 * normal pipe buffer receive
437 */
438 if (bp->cnt > 0) {
439 size = bp->size - bp->out;
440 if (size > bp->cnt)
441 size = bp->cnt;
442 if (size > uio->uio_resid)
443 size = uio->uio_resid;
444
445 error = uiomove(&bp->buffer[bp->out], size, uio);
446 if (error)
447 break;
448
449 bp->out += size;
450 if (bp->out >= bp->size)
451 bp->out = 0;
452
453 bp->cnt -= size;
454
455 /*
456 * If there is no more to read in the pipe, reset
457 * its pointers to the beginning. This improves
458 * cache hit stats.
459 */
460 if (bp->cnt == 0) {
461 bp->in = 0;
462 bp->out = 0;
463 }
464 nread += size;
465 #ifndef PIPE_NODIRECT
466 } else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
467 /*
468 * Direct copy, bypassing a kernel buffer.
469 */
470 caddr_t va;
471
472 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
473
474 size = rpipe->pipe_map.cnt;
475 if (size > uio->uio_resid)
476 size = uio->uio_resid;
477
478 va = (caddr_t) rpipe->pipe_map.kva +
479 rpipe->pipe_map.pos;
480 error = uiomove(va, size, uio);
481 if (error)
482 break;
483 nread += size;
484 rpipe->pipe_map.pos += size;
485 rpipe->pipe_map.cnt -= size;
486 if (rpipe->pipe_map.cnt == 0) {
487 PIPE_LOCK(rpipe);
488 rpipe->pipe_state &= ~PIPE_DIRECTR;
489 wakeup(rpipe);
490 PIPE_UNLOCK(rpipe);
491 }
492 #endif
493 } else {
494 /*
495 * Break if some data was read.
496 */
497 if (nread > 0)
498 break;
499
500 PIPE_LOCK(rpipe);
501
502 /*
503 * detect EOF condition
504 * read returns 0 on EOF, no need to set error
505 */
506 if (rpipe->pipe_state & PIPE_EOF) {
507 PIPE_UNLOCK(rpipe);
508 break;
509 }
510
511 /*
512 * don't block on non-blocking I/O
513 */
514 if (fp->f_flag & FNONBLOCK) {
515 PIPE_UNLOCK(rpipe);
516 error = EAGAIN;
517 break;
518 }
519
520 /*
521 * Unlock the pipe buffer for our remaining processing.
522 * We will either break out with an error or we will
523 * sleep and relock to loop.
524 */
525 pipeunlock(rpipe);
526
527 /*
528 * The PIPE_DIRECTR flag is not under the control
529 * of the long-term lock (see pipe_direct_write()),
530 * so re-check now while holding the spin lock.
531 */
532 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
533 goto again;
534
535 /*
536 * We want to read more, wake up select/poll.
537 */
538 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
539
540 /*
541 * If the "write-side" is blocked, wake it up now.
542 */
543 if (rpipe->pipe_state & PIPE_WANTW) {
544 rpipe->pipe_state &= ~PIPE_WANTW;
545 wakeup(rpipe);
546 }
547
548 /* Now wait until the pipe is filled */
549 rpipe->pipe_state |= PIPE_WANTR;
550 error = ltsleep(rpipe, PSOCK | PCATCH,
551 "piperd", 0, &rpipe->pipe_slock);
552 if (error != 0)
553 goto unlocked_error;
554 goto again;
555 }
556 }
557
558 if (error == 0)
559 PIPE_TIMESTAMP(&rpipe->pipe_atime);
560
561 PIPE_LOCK(rpipe);
562 pipeunlock(rpipe);
563
564 unlocked_error:
565 --rpipe->pipe_busy;
566
567 /*
568 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
569 */
570 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
571 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
572 wakeup(rpipe);
573 } else if (bp->cnt < MINPIPESIZE) {
574 /*
575 * Handle write blocking hysteresis.
576 */
577 if (rpipe->pipe_state & PIPE_WANTW) {
578 rpipe->pipe_state &= ~PIPE_WANTW;
579 wakeup(rpipe);
580 }
581 }
582
583 /*
584 * If anything was read off the buffer, signal to the writer it's
585 * possible to write more data. Also send signal if we are here for the
586 * first time after last write.
587 */
588 if ((bp->size - bp->cnt) >= PIPE_BUF
589 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
590 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
591 rpipe->pipe_state &= ~PIPE_SIGNALR;
592 }
593
594 PIPE_UNLOCK(rpipe);
595 return (error);
596 }
597
598 #ifndef PIPE_NODIRECT
599 /*
600 * Allocate structure for loan transfer.
601 */
602 static int
603 pipe_loan_alloc(struct pipe *wpipe, int npages)
604 {
605 vsize_t len;
606
607 len = (vsize_t)npages << PAGE_SHIFT;
608 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
609 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
610 if (wpipe->pipe_map.kva == 0)
611 return (ENOMEM);
612
613 amountpipekva += len;
614 wpipe->pipe_map.npages = npages;
615 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
616 M_WAITOK);
617 return (0);
618 }
619
620 /*
621 * Free resources allocated for loan transfer.
622 */
623 static void
624 pipe_loan_free(struct pipe *wpipe)
625 {
626 vsize_t len;
627
628 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
629 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
630 wpipe->pipe_map.kva = 0;
631 amountpipekva -= len;
632 free(wpipe->pipe_map.pgs, M_PIPE);
633 wpipe->pipe_map.pgs = NULL;
634 }
635
636 /*
637 * NetBSD direct write, using uvm_loan() mechanism.
638 * This implements the pipe buffer write mechanism. Note that only
639 * a direct write OR a normal pipe write can be pending at any given time.
640 * If there are any characters in the pipe buffer, the direct write will
641 * be deferred until the receiving process grabs all of the bytes from
642 * the pipe buffer. Then the direct mapping write is set-up.
643 *
644 * Called with the long-term pipe lock held.
645 */
646 static int
647 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
648 {
649 int error, npages, j;
650 struct vm_page **pgs;
651 vaddr_t bbase, kva, base, bend;
652 vsize_t blen, bcnt;
653 voff_t bpos;
654
655 KASSERT(wpipe->pipe_map.cnt == 0);
656
657 /*
658 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
659 * not aligned to PAGE_SIZE.
660 */
661 bbase = (vaddr_t)uio->uio_iov->iov_base;
662 base = trunc_page(bbase);
663 bend = round_page(bbase + uio->uio_iov->iov_len);
664 blen = bend - base;
665 bpos = bbase - base;
666
667 if (blen > PIPE_DIRECT_CHUNK) {
668 blen = PIPE_DIRECT_CHUNK;
669 bend = base + blen;
670 bcnt = PIPE_DIRECT_CHUNK - bpos;
671 } else {
672 bcnt = uio->uio_iov->iov_len;
673 }
674 npages = blen >> PAGE_SHIFT;
675
676 /*
677 * Free the old kva if we need more pages than we have
678 * allocated.
679 */
680 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
681 pipe_loan_free(wpipe);
682
683 /* Allocate new kva. */
684 if (wpipe->pipe_map.kva == 0) {
685 error = pipe_loan_alloc(wpipe, npages);
686 if (error)
687 return (error);
688 }
689
690 /* Loan the write buffer memory from writer process */
691 pgs = wpipe->pipe_map.pgs;
692 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
693 pgs, UVM_LOAN_TOPAGE);
694 if (error) {
695 pipe_loan_free(wpipe);
696 return (ENOMEM); /* so that caller fallback to ordinary write */
697 }
698
699 /* Enter the loaned pages to kva */
700 kva = wpipe->pipe_map.kva;
701 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
702 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
703 }
704 pmap_update(pmap_kernel());
705
706 /* Now we can put the pipe in direct write mode */
707 wpipe->pipe_map.pos = bpos;
708 wpipe->pipe_map.cnt = bcnt;
709 wpipe->pipe_state |= PIPE_DIRECTW;
710
711 /*
712 * But before we can let someone do a direct read,
713 * we have to wait until the pipe is drained.
714 */
715
716 /* Relase the pipe lock while we wait */
717 PIPE_LOCK(wpipe);
718 pipeunlock(wpipe);
719
720 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
721 if (wpipe->pipe_state & PIPE_WANTR) {
722 wpipe->pipe_state &= ~PIPE_WANTR;
723 wakeup(wpipe);
724 }
725
726 wpipe->pipe_state |= PIPE_WANTW;
727 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0,
728 &wpipe->pipe_slock);
729 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
730 error = EPIPE;
731 }
732
733 /* Pipe is drained; next read will off the direct buffer */
734 wpipe->pipe_state |= PIPE_DIRECTR;
735
736 /* Wait until the reader is done */
737 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
738 if (wpipe->pipe_state & PIPE_WANTR) {
739 wpipe->pipe_state &= ~PIPE_WANTR;
740 wakeup(wpipe);
741 }
742 pipeselwakeup(wpipe, wpipe, POLL_IN);
743 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0,
744 &wpipe->pipe_slock);
745 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
746 error = EPIPE;
747 }
748
749 /* Take pipe out of direct write mode */
750 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
751
752 /* Acquire the pipe lock and cleanup */
753 (void)pipelock(wpipe, 0);
754 if (pgs != NULL) {
755 pmap_kremove(wpipe->pipe_map.kva, blen);
756 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
757 }
758 if (error || amountpipekva > maxpipekva)
759 pipe_loan_free(wpipe);
760
761 if (error) {
762 pipeselwakeup(wpipe, wpipe, POLL_ERR);
763
764 /*
765 * If nothing was read from what we offered, return error
766 * straight on. Otherwise update uio resid first. Caller
767 * will deal with the error condition, returning short
768 * write, error, or restarting the write(2) as appropriate.
769 */
770 if (wpipe->pipe_map.cnt == bcnt) {
771 wpipe->pipe_map.cnt = 0;
772 wakeup(wpipe);
773 return (error);
774 }
775
776 bcnt -= wpipe->pipe_map.cnt;
777 }
778
779 uio->uio_resid -= bcnt;
780 /* uio_offset not updated, not set/used for write(2) */
781 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
782 uio->uio_iov->iov_len -= bcnt;
783 if (uio->uio_iov->iov_len == 0) {
784 uio->uio_iov++;
785 uio->uio_iovcnt--;
786 }
787
788 wpipe->pipe_map.cnt = 0;
789 return (error);
790 }
791 #endif /* !PIPE_NODIRECT */
792
793 static int
794 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
795 int flags)
796 {
797 struct pipe *wpipe, *rpipe;
798 struct pipebuf *bp;
799 int error;
800
801 /* We want to write to our peer */
802 rpipe = (struct pipe *) fp->f_data;
803
804 retry:
805 error = 0;
806 PIPE_LOCK(rpipe);
807 wpipe = rpipe->pipe_peer;
808
809 /*
810 * Detect loss of pipe read side, issue SIGPIPE if lost.
811 */
812 if (wpipe == NULL)
813 error = EPIPE;
814 else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
815 /* Deal with race for peer */
816 PIPE_UNLOCK(rpipe);
817 goto retry;
818 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
819 PIPE_UNLOCK(wpipe);
820 error = EPIPE;
821 }
822
823 PIPE_UNLOCK(rpipe);
824 if (error != 0)
825 return (error);
826
827 ++wpipe->pipe_busy;
828
829 /* Aquire the long-term pipe lock */
830 if ((error = pipelock(wpipe,1)) != 0) {
831 --wpipe->pipe_busy;
832 if (wpipe->pipe_busy == 0
833 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
834 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
835 wakeup(wpipe);
836 }
837 PIPE_UNLOCK(wpipe);
838 return (error);
839 }
840
841 bp = &wpipe->pipe_buffer;
842
843 /*
844 * If it is advantageous to resize the pipe buffer, do so.
845 */
846 if ((uio->uio_resid > PIPE_SIZE) &&
847 (nbigpipe < maxbigpipes) &&
848 #ifndef PIPE_NODIRECT
849 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
850 #endif
851 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
852
853 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
854 nbigpipe++;
855 }
856
857 while (uio->uio_resid) {
858 size_t space;
859
860 #ifndef PIPE_NODIRECT
861 /*
862 * Pipe buffered writes cannot be coincidental with
863 * direct writes. Also, only one direct write can be
864 * in progress at any one time. We wait until the currently
865 * executing direct write is completed before continuing.
866 *
867 * We break out if a signal occurs or the reader goes away.
868 */
869 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
870 PIPE_LOCK(wpipe);
871 if (wpipe->pipe_state & PIPE_WANTR) {
872 wpipe->pipe_state &= ~PIPE_WANTR;
873 wakeup(wpipe);
874 }
875 pipeunlock(wpipe);
876 error = ltsleep(wpipe, PSOCK | PCATCH,
877 "pipbww", 0, &wpipe->pipe_slock);
878
879 (void)pipelock(wpipe, 0);
880 if (wpipe->pipe_state & PIPE_EOF)
881 error = EPIPE;
882 }
883 if (error)
884 break;
885
886 /*
887 * If the transfer is large, we can gain performance if
888 * we do process-to-process copies directly.
889 * If the write is non-blocking, we don't use the
890 * direct write mechanism.
891 *
892 * The direct write mechanism will detect the reader going
893 * away on us.
894 */
895 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
896 (fp->f_flag & FNONBLOCK) == 0 &&
897 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
898 error = pipe_direct_write(fp, wpipe, uio);
899
900 /*
901 * Break out if error occurred, unless it's ENOMEM.
902 * ENOMEM means we failed to allocate some resources
903 * for direct write, so we just fallback to ordinary
904 * write. If the direct write was successful,
905 * process rest of data via ordinary write.
906 */
907 if (error == 0)
908 continue;
909
910 if (error != ENOMEM)
911 break;
912 }
913 #endif /* PIPE_NODIRECT */
914
915 space = bp->size - bp->cnt;
916
917 /* Writes of size <= PIPE_BUF must be atomic. */
918 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
919 space = 0;
920
921 if (space > 0) {
922 int size; /* Transfer size */
923 int segsize; /* first segment to transfer */
924
925 /*
926 * Transfer size is minimum of uio transfer
927 * and free space in pipe buffer.
928 */
929 if (space > uio->uio_resid)
930 size = uio->uio_resid;
931 else
932 size = space;
933 /*
934 * First segment to transfer is minimum of
935 * transfer size and contiguous space in
936 * pipe buffer. If first segment to transfer
937 * is less than the transfer size, we've got
938 * a wraparound in the buffer.
939 */
940 segsize = bp->size - bp->in;
941 if (segsize > size)
942 segsize = size;
943
944 /* Transfer first segment */
945 error = uiomove(&bp->buffer[bp->in], segsize, uio);
946
947 if (error == 0 && segsize < size) {
948 /*
949 * Transfer remaining part now, to
950 * support atomic writes. Wraparound
951 * happened.
952 */
953 #ifdef DEBUG
954 if (bp->in + segsize != bp->size)
955 panic("Expected pipe buffer wraparound disappeared");
956 #endif
957
958 error = uiomove(&bp->buffer[0],
959 size - segsize, uio);
960 }
961 if (error)
962 break;
963
964 bp->in += size;
965 if (bp->in >= bp->size) {
966 #ifdef DEBUG
967 if (bp->in != size - segsize + bp->size)
968 panic("Expected wraparound bad");
969 #endif
970 bp->in = size - segsize;
971 }
972
973 bp->cnt += size;
974 #ifdef DEBUG
975 if (bp->cnt > bp->size)
976 panic("Pipe buffer overflow");
977 #endif
978 } else {
979 /*
980 * If the "read-side" has been blocked, wake it up now.
981 */
982 PIPE_LOCK(wpipe);
983 if (wpipe->pipe_state & PIPE_WANTR) {
984 wpipe->pipe_state &= ~PIPE_WANTR;
985 wakeup(wpipe);
986 }
987 PIPE_UNLOCK(wpipe);
988
989 /*
990 * don't block on non-blocking I/O
991 */
992 if (fp->f_flag & FNONBLOCK) {
993 error = EAGAIN;
994 break;
995 }
996
997 /*
998 * We have no more space and have something to offer,
999 * wake up select/poll.
1000 */
1001 if (bp->cnt)
1002 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1003
1004 PIPE_LOCK(wpipe);
1005 pipeunlock(wpipe);
1006 wpipe->pipe_state |= PIPE_WANTW;
1007 error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0,
1008 &wpipe->pipe_slock);
1009 (void)pipelock(wpipe, 0);
1010 if (error != 0)
1011 break;
1012 /*
1013 * If read side wants to go away, we just issue a signal
1014 * to ourselves.
1015 */
1016 if (wpipe->pipe_state & PIPE_EOF) {
1017 error = EPIPE;
1018 break;
1019 }
1020 }
1021 }
1022
1023 PIPE_LOCK(wpipe);
1024 --wpipe->pipe_busy;
1025 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1026 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1027 wakeup(wpipe);
1028 } else if (bp->cnt > 0) {
1029 /*
1030 * If we have put any characters in the buffer, we wake up
1031 * the reader.
1032 */
1033 if (wpipe->pipe_state & PIPE_WANTR) {
1034 wpipe->pipe_state &= ~PIPE_WANTR;
1035 wakeup(wpipe);
1036 }
1037 }
1038
1039 /*
1040 * Don't return EPIPE if I/O was successful
1041 */
1042 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1043 error = 0;
1044
1045 if (error == 0)
1046 PIPE_TIMESTAMP(&wpipe->pipe_mtime);
1047
1048 /*
1049 * We have something to offer, wake up select/poll.
1050 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1051 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1052 */
1053 if (bp->cnt)
1054 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1055
1056 /*
1057 * Arrange for next read(2) to do a signal.
1058 */
1059 wpipe->pipe_state |= PIPE_SIGNALR;
1060
1061 pipeunlock(wpipe);
1062 PIPE_UNLOCK(wpipe);
1063 return (error);
1064 }
1065
1066 /*
1067 * we implement a very minimal set of ioctls for compatibility with sockets.
1068 */
1069 int
1070 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1071 {
1072 struct pipe *pipe = (struct pipe *)fp->f_data;
1073 struct proc *p = l->l_proc;
1074
1075 switch (cmd) {
1076
1077 case FIONBIO:
1078 return (0);
1079
1080 case FIOASYNC:
1081 PIPE_LOCK(pipe);
1082 if (*(int *)data) {
1083 pipe->pipe_state |= PIPE_ASYNC;
1084 } else {
1085 pipe->pipe_state &= ~PIPE_ASYNC;
1086 }
1087 PIPE_UNLOCK(pipe);
1088 return (0);
1089
1090 case FIONREAD:
1091 PIPE_LOCK(pipe);
1092 #ifndef PIPE_NODIRECT
1093 if (pipe->pipe_state & PIPE_DIRECTW)
1094 *(int *)data = pipe->pipe_map.cnt;
1095 else
1096 #endif
1097 *(int *)data = pipe->pipe_buffer.cnt;
1098 PIPE_UNLOCK(pipe);
1099 return (0);
1100
1101 case FIONWRITE:
1102 /* Look at other side */
1103 pipe = pipe->pipe_peer;
1104 PIPE_LOCK(pipe);
1105 #ifndef PIPE_NODIRECT
1106 if (pipe->pipe_state & PIPE_DIRECTW)
1107 *(int *)data = pipe->pipe_map.cnt;
1108 else
1109 #endif
1110 *(int *)data = pipe->pipe_buffer.cnt;
1111 PIPE_UNLOCK(pipe);
1112 return (0);
1113
1114 case FIONSPACE:
1115 /* Look at other side */
1116 pipe = pipe->pipe_peer;
1117 PIPE_LOCK(pipe);
1118 #ifndef PIPE_NODIRECT
1119 /*
1120 * If we're in direct-mode, we don't really have a
1121 * send queue, and any other write will block. Thus
1122 * zero seems like the best answer.
1123 */
1124 if (pipe->pipe_state & PIPE_DIRECTW)
1125 *(int *)data = 0;
1126 else
1127 #endif
1128 *(int *)data = pipe->pipe_buffer.size -
1129 pipe->pipe_buffer.cnt;
1130 PIPE_UNLOCK(pipe);
1131 return (0);
1132
1133 case TIOCSPGRP:
1134 case FIOSETOWN:
1135 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1136
1137 case TIOCGPGRP:
1138 case FIOGETOWN:
1139 return fgetown(p, pipe->pipe_pgid, cmd, data);
1140
1141 }
1142 return (EPASSTHROUGH);
1143 }
1144
1145 int
1146 pipe_poll(struct file *fp, int events, struct lwp *l)
1147 {
1148 struct pipe *rpipe = (struct pipe *)fp->f_data;
1149 struct pipe *wpipe;
1150 int eof = 0;
1151 int revents = 0;
1152
1153 retry:
1154 PIPE_LOCK(rpipe);
1155 wpipe = rpipe->pipe_peer;
1156 if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
1157 /* Deal with race for peer */
1158 PIPE_UNLOCK(rpipe);
1159 goto retry;
1160 }
1161
1162 if (events & (POLLIN | POLLRDNORM))
1163 if ((rpipe->pipe_buffer.cnt > 0) ||
1164 #ifndef PIPE_NODIRECT
1165 (rpipe->pipe_state & PIPE_DIRECTR) ||
1166 #endif
1167 (rpipe->pipe_state & PIPE_EOF))
1168 revents |= events & (POLLIN | POLLRDNORM);
1169
1170 eof |= (rpipe->pipe_state & PIPE_EOF);
1171 PIPE_UNLOCK(rpipe);
1172
1173 if (wpipe == NULL)
1174 revents |= events & (POLLOUT | POLLWRNORM);
1175 else {
1176 if (events & (POLLOUT | POLLWRNORM))
1177 if ((wpipe->pipe_state & PIPE_EOF) || (
1178 #ifndef PIPE_NODIRECT
1179 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1180 #endif
1181 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1182 revents |= events & (POLLOUT | POLLWRNORM);
1183
1184 eof |= (wpipe->pipe_state & PIPE_EOF);
1185 PIPE_UNLOCK(wpipe);
1186 }
1187
1188 if (wpipe == NULL || eof)
1189 revents |= POLLHUP;
1190
1191 if (revents == 0) {
1192 if (events & (POLLIN | POLLRDNORM))
1193 selrecord(l, &rpipe->pipe_sel);
1194
1195 if (events & (POLLOUT | POLLWRNORM))
1196 selrecord(l, &wpipe->pipe_sel);
1197 }
1198
1199 return (revents);
1200 }
1201
1202 static int
1203 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
1204 {
1205 struct pipe *pipe = (struct pipe *)fp->f_data;
1206
1207 memset((caddr_t)ub, 0, sizeof(*ub));
1208 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1209 ub->st_blksize = pipe->pipe_buffer.size;
1210 if (ub->st_blksize == 0 && pipe->pipe_peer)
1211 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1212 ub->st_size = pipe->pipe_buffer.cnt;
1213 ub->st_blocks = (ub->st_size) ? 1 : 0;
1214 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1215 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1216 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1217 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1218 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1219 /*
1220 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1221 * XXX (st_dev, st_ino) should be unique.
1222 */
1223 return (0);
1224 }
1225
1226 /* ARGSUSED */
1227 static int
1228 pipe_close(struct file *fp, struct lwp *l)
1229 {
1230 struct pipe *pipe = (struct pipe *)fp->f_data;
1231
1232 fp->f_data = NULL;
1233 pipeclose(fp, pipe);
1234 return (0);
1235 }
1236
1237 static void
1238 pipe_free_kmem(struct pipe *pipe)
1239 {
1240
1241 if (pipe->pipe_buffer.buffer != NULL) {
1242 if (pipe->pipe_buffer.size > PIPE_SIZE)
1243 --nbigpipe;
1244 amountpipekva -= pipe->pipe_buffer.size;
1245 uvm_km_free(kernel_map,
1246 (vaddr_t)pipe->pipe_buffer.buffer,
1247 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1248 pipe->pipe_buffer.buffer = NULL;
1249 }
1250 #ifndef PIPE_NODIRECT
1251 if (pipe->pipe_map.kva != 0) {
1252 pipe_loan_free(pipe);
1253 pipe->pipe_map.cnt = 0;
1254 pipe->pipe_map.kva = 0;
1255 pipe->pipe_map.pos = 0;
1256 pipe->pipe_map.npages = 0;
1257 }
1258 #endif /* !PIPE_NODIRECT */
1259 }
1260
1261 /*
1262 * shutdown the pipe
1263 */
1264 static void
1265 pipeclose(struct file *fp, struct pipe *pipe)
1266 {
1267 struct pipe *ppipe;
1268
1269 if (pipe == NULL)
1270 return;
1271
1272 retry:
1273 PIPE_LOCK(pipe);
1274
1275 pipeselwakeup(pipe, pipe, POLL_HUP);
1276
1277 /*
1278 * If the other side is blocked, wake it up saying that
1279 * we want to close it down.
1280 */
1281 pipe->pipe_state |= PIPE_EOF;
1282 while (pipe->pipe_busy) {
1283 wakeup(pipe);
1284 pipe->pipe_state |= PIPE_WANTCLOSE;
1285 ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock);
1286 }
1287
1288 /*
1289 * Disconnect from peer
1290 */
1291 if ((ppipe = pipe->pipe_peer) != NULL) {
1292 /* Deal with race for peer */
1293 if (simple_lock_try(&ppipe->pipe_slock) == 0) {
1294 PIPE_UNLOCK(pipe);
1295 goto retry;
1296 }
1297 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1298
1299 ppipe->pipe_state |= PIPE_EOF;
1300 wakeup(ppipe);
1301 ppipe->pipe_peer = NULL;
1302 PIPE_UNLOCK(ppipe);
1303 }
1304
1305 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1306
1307 PIPE_UNLOCK(pipe);
1308
1309 /*
1310 * free resources
1311 */
1312 pipe_free_kmem(pipe);
1313 pool_put(&pipe_pool, pipe);
1314 }
1315
1316 static void
1317 filt_pipedetach(struct knote *kn)
1318 {
1319 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1320
1321 switch(kn->kn_filter) {
1322 case EVFILT_WRITE:
1323 /* need the peer structure, not our own */
1324 pipe = pipe->pipe_peer;
1325 /* XXXSMP: race for peer */
1326
1327 /* if reader end already closed, just return */
1328 if (pipe == NULL)
1329 return;
1330
1331 break;
1332 default:
1333 /* nothing to do */
1334 break;
1335 }
1336
1337 #ifdef DIAGNOSTIC
1338 if (kn->kn_hook != pipe)
1339 panic("filt_pipedetach: inconsistent knote");
1340 #endif
1341
1342 PIPE_LOCK(pipe);
1343 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1344 PIPE_UNLOCK(pipe);
1345 }
1346
1347 /*ARGSUSED*/
1348 static int
1349 filt_piperead(struct knote *kn, long hint)
1350 {
1351 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1352 struct pipe *wpipe = rpipe->pipe_peer;
1353
1354 if ((hint & NOTE_SUBMIT) == 0)
1355 PIPE_LOCK(rpipe);
1356 kn->kn_data = rpipe->pipe_buffer.cnt;
1357 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1358 kn->kn_data = rpipe->pipe_map.cnt;
1359
1360 /* XXXSMP: race for peer */
1361 if ((rpipe->pipe_state & PIPE_EOF) ||
1362 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1363 kn->kn_flags |= EV_EOF;
1364 if ((hint & NOTE_SUBMIT) == 0)
1365 PIPE_UNLOCK(rpipe);
1366 return (1);
1367 }
1368 if ((hint & NOTE_SUBMIT) == 0)
1369 PIPE_UNLOCK(rpipe);
1370 return (kn->kn_data > 0);
1371 }
1372
1373 /*ARGSUSED*/
1374 static int
1375 filt_pipewrite(struct knote *kn, long hint)
1376 {
1377 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1378 struct pipe *wpipe = rpipe->pipe_peer;
1379
1380 if ((hint & NOTE_SUBMIT) == 0)
1381 PIPE_LOCK(rpipe);
1382 /* XXXSMP: race for peer */
1383 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1384 kn->kn_data = 0;
1385 kn->kn_flags |= EV_EOF;
1386 if ((hint & NOTE_SUBMIT) == 0)
1387 PIPE_UNLOCK(rpipe);
1388 return (1);
1389 }
1390 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1391 if (wpipe->pipe_state & PIPE_DIRECTW)
1392 kn->kn_data = 0;
1393
1394 if ((hint & NOTE_SUBMIT) == 0)
1395 PIPE_UNLOCK(rpipe);
1396 return (kn->kn_data >= PIPE_BUF);
1397 }
1398
1399 static const struct filterops pipe_rfiltops =
1400 { 1, NULL, filt_pipedetach, filt_piperead };
1401 static const struct filterops pipe_wfiltops =
1402 { 1, NULL, filt_pipedetach, filt_pipewrite };
1403
1404 /*ARGSUSED*/
1405 static int
1406 pipe_kqfilter(struct file *fp, struct knote *kn)
1407 {
1408 struct pipe *pipe;
1409
1410 pipe = (struct pipe *)kn->kn_fp->f_data;
1411 switch (kn->kn_filter) {
1412 case EVFILT_READ:
1413 kn->kn_fop = &pipe_rfiltops;
1414 break;
1415 case EVFILT_WRITE:
1416 kn->kn_fop = &pipe_wfiltops;
1417 /* XXXSMP: race for peer */
1418 pipe = pipe->pipe_peer;
1419 if (pipe == NULL) {
1420 /* other end of pipe has been closed */
1421 return (EBADF);
1422 }
1423 break;
1424 default:
1425 return (1);
1426 }
1427 kn->kn_hook = pipe;
1428
1429 PIPE_LOCK(pipe);
1430 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1431 PIPE_UNLOCK(pipe);
1432 return (0);
1433 }
1434
1435 /*
1436 * Handle pipe sysctls.
1437 */
1438 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1439 {
1440
1441 sysctl_createv(clog, 0, NULL, NULL,
1442 CTLFLAG_PERMANENT,
1443 CTLTYPE_NODE, "kern", NULL,
1444 NULL, 0, NULL, 0,
1445 CTL_KERN, CTL_EOL);
1446 sysctl_createv(clog, 0, NULL, NULL,
1447 CTLFLAG_PERMANENT,
1448 CTLTYPE_NODE, "pipe",
1449 SYSCTL_DESCR("Pipe settings"),
1450 NULL, 0, NULL, 0,
1451 CTL_KERN, KERN_PIPE, CTL_EOL);
1452
1453 sysctl_createv(clog, 0, NULL, NULL,
1454 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1455 CTLTYPE_INT, "maxkvasz",
1456 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1457 "used for pipes"),
1458 NULL, 0, &maxpipekva, 0,
1459 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1460 sysctl_createv(clog, 0, NULL, NULL,
1461 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1462 CTLTYPE_INT, "maxloankvasz",
1463 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1464 NULL, 0, &limitpipekva, 0,
1465 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1466 sysctl_createv(clog, 0, NULL, NULL,
1467 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1468 CTLTYPE_INT, "maxbigpipes",
1469 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1470 NULL, 0, &maxbigpipes, 0,
1471 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1472 sysctl_createv(clog, 0, NULL, NULL,
1473 CTLFLAG_PERMANENT,
1474 CTLTYPE_INT, "nbigpipes",
1475 SYSCTL_DESCR("Number of \"big\" pipes"),
1476 NULL, 0, &nbigpipe, 0,
1477 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1478 sysctl_createv(clog, 0, NULL, NULL,
1479 CTLFLAG_PERMANENT,
1480 CTLTYPE_INT, "kvasize",
1481 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1482 "buffers"),
1483 NULL, 0, &amountpipekva, 0,
1484 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1485 }
1486