sys_pipe.c revision 1.73 1 /* $NetBSD: sys_pipe.c,v 1.73 2006/06/07 22:33:41 kardel Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.73 2006/06/07 22:33:41 kardel Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/ttycom.h>
98 #include <sys/stat.h>
99 #include <sys/malloc.h>
100 #include <sys/poll.h>
101 #include <sys/signalvar.h>
102 #include <sys/vnode.h>
103 #include <sys/uio.h>
104 #include <sys/lock.h>
105 #include <sys/select.h>
106 #include <sys/mount.h>
107 #include <sys/sa.h>
108 #include <sys/syscallargs.h>
109 #include <uvm/uvm.h>
110 #include <sys/sysctl.h>
111 #include <sys/kernel.h>
112 #include <sys/kauth.h>
113
114 #include <sys/pipe.h>
115
116 /*
117 * Use this define if you want to disable *fancy* VM things. Expect an
118 * approx 30% decrease in transfer rate.
119 */
120 /* #define PIPE_NODIRECT */
121
122 /*
123 * interfaces to the outside world
124 */
125 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
126 kauth_cred_t cred, int flags);
127 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
128 kauth_cred_t cred, int flags);
129 static int pipe_close(struct file *fp, struct lwp *l);
130 static int pipe_poll(struct file *fp, int events, struct lwp *l);
131 static int pipe_kqfilter(struct file *fp, struct knote *kn);
132 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
133 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
134 struct lwp *l);
135
136 static const struct fileops pipeops = {
137 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
138 pipe_stat, pipe_close, pipe_kqfilter
139 };
140
141 /*
142 * Default pipe buffer size(s), this can be kind-of large now because pipe
143 * space is pageable. The pipe code will try to maintain locality of
144 * reference for performance reasons, so small amounts of outstanding I/O
145 * will not wipe the cache.
146 */
147 #define MINPIPESIZE (PIPE_SIZE/3)
148 #define MAXPIPESIZE (2*PIPE_SIZE/3)
149
150 /*
151 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
152 * is there so that on large systems, we don't exhaust it.
153 */
154 #define MAXPIPEKVA (8*1024*1024)
155 static int maxpipekva = MAXPIPEKVA;
156
157 /*
158 * Limit for direct transfers, we cannot, of course limit
159 * the amount of kva for pipes in general though.
160 */
161 #define LIMITPIPEKVA (16*1024*1024)
162 static int limitpipekva = LIMITPIPEKVA;
163
164 /*
165 * Limit the number of "big" pipes
166 */
167 #define LIMITBIGPIPES 32
168 static int maxbigpipes = LIMITBIGPIPES;
169 static int nbigpipe = 0;
170
171 /*
172 * Amount of KVA consumed by pipe buffers.
173 */
174 static int amountpipekva = 0;
175
176 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
177
178 static void pipeclose(struct file *fp, struct pipe *pipe);
179 static void pipe_free_kmem(struct pipe *pipe);
180 static int pipe_create(struct pipe **pipep, int allockva);
181 static int pipelock(struct pipe *pipe, int catch);
182 static inline void pipeunlock(struct pipe *pipe);
183 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
184 #ifndef PIPE_NODIRECT
185 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
186 struct uio *uio);
187 #endif
188 static int pipespace(struct pipe *pipe, int size);
189
190 #ifndef PIPE_NODIRECT
191 static int pipe_loan_alloc(struct pipe *, int);
192 static void pipe_loan_free(struct pipe *);
193 #endif /* PIPE_NODIRECT */
194
195 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
196 &pool_allocator_nointr);
197
198 /*
199 * The pipe system call for the DTYPE_PIPE type of pipes
200 */
201
202 /* ARGSUSED */
203 int
204 sys_pipe(struct lwp *l, void *v, register_t *retval)
205 {
206 struct file *rf, *wf;
207 struct pipe *rpipe, *wpipe;
208 int fd, error;
209 struct proc *p;
210
211 p = l->l_proc;
212 rpipe = wpipe = NULL;
213 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
214 pipeclose(NULL, rpipe);
215 pipeclose(NULL, wpipe);
216 return (ENFILE);
217 }
218
219 /*
220 * Note: the file structure returned from falloc() is marked
221 * as 'larval' initially. Unless we mark it as 'mature' by
222 * FILE_SET_MATURE(), any attempt to do anything with it would
223 * return EBADF, including e.g. dup(2) or close(2). This avoids
224 * file descriptor races if we block in the second falloc().
225 */
226
227 error = falloc(p, &rf, &fd);
228 if (error)
229 goto free2;
230 retval[0] = fd;
231 rf->f_flag = FREAD;
232 rf->f_type = DTYPE_PIPE;
233 rf->f_data = (caddr_t)rpipe;
234 rf->f_ops = &pipeops;
235
236 error = falloc(p, &wf, &fd);
237 if (error)
238 goto free3;
239 retval[1] = fd;
240 wf->f_flag = FWRITE;
241 wf->f_type = DTYPE_PIPE;
242 wf->f_data = (caddr_t)wpipe;
243 wf->f_ops = &pipeops;
244
245 rpipe->pipe_peer = wpipe;
246 wpipe->pipe_peer = rpipe;
247
248 FILE_SET_MATURE(rf);
249 FILE_SET_MATURE(wf);
250 FILE_UNUSE(rf, l);
251 FILE_UNUSE(wf, l);
252 return (0);
253 free3:
254 FILE_UNUSE(rf, l);
255 ffree(rf);
256 fdremove(p->p_fd, retval[0]);
257 free2:
258 pipeclose(NULL, wpipe);
259 pipeclose(NULL, rpipe);
260
261 return (error);
262 }
263
264 /*
265 * Allocate kva for pipe circular buffer, the space is pageable
266 * This routine will 'realloc' the size of a pipe safely, if it fails
267 * it will retain the old buffer.
268 * If it fails it will return ENOMEM.
269 */
270 static int
271 pipespace(struct pipe *pipe, int size)
272 {
273 caddr_t buffer;
274 /*
275 * Allocate pageable virtual address space. Physical memory is
276 * allocated on demand.
277 */
278 buffer = (caddr_t) uvm_km_alloc(kernel_map, round_page(size), 0,
279 UVM_KMF_PAGEABLE);
280 if (buffer == NULL)
281 return (ENOMEM);
282
283 /* free old resources if we're resizing */
284 pipe_free_kmem(pipe);
285 pipe->pipe_buffer.buffer = buffer;
286 pipe->pipe_buffer.size = size;
287 pipe->pipe_buffer.in = 0;
288 pipe->pipe_buffer.out = 0;
289 pipe->pipe_buffer.cnt = 0;
290 amountpipekva += pipe->pipe_buffer.size;
291 return (0);
292 }
293
294 /*
295 * Initialize and allocate VM and memory for pipe.
296 */
297 static int
298 pipe_create(struct pipe **pipep, int allockva)
299 {
300 struct pipe *pipe;
301 int error;
302
303 pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
304
305 /* Initialize */
306 memset(pipe, 0, sizeof(struct pipe));
307 pipe->pipe_state = PIPE_SIGNALR;
308
309 getmicrotime(&pipe->pipe_ctime);
310 pipe->pipe_atime = pipe->pipe_ctime;
311 pipe->pipe_mtime = pipe->pipe_ctime;
312 simple_lock_init(&pipe->pipe_slock);
313
314 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
315 return (error);
316
317 return (0);
318 }
319
320
321 /*
322 * Lock a pipe for I/O, blocking other access
323 * Called with pipe spin lock held.
324 * Return with pipe spin lock released on success.
325 */
326 static int
327 pipelock(struct pipe *pipe, int catch)
328 {
329
330 LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
331
332 while (pipe->pipe_state & PIPE_LOCKFL) {
333 int error;
334 const int pcatch = catch ? PCATCH : 0;
335
336 pipe->pipe_state |= PIPE_LWANT;
337 error = ltsleep(pipe, PSOCK | pcatch, "pipelk", 0,
338 &pipe->pipe_slock);
339 if (error != 0)
340 return error;
341 }
342
343 pipe->pipe_state |= PIPE_LOCKFL;
344 simple_unlock(&pipe->pipe_slock);
345
346 return 0;
347 }
348
349 /*
350 * unlock a pipe I/O lock
351 */
352 static inline void
353 pipeunlock(struct pipe *pipe)
354 {
355
356 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
357
358 pipe->pipe_state &= ~PIPE_LOCKFL;
359 if (pipe->pipe_state & PIPE_LWANT) {
360 pipe->pipe_state &= ~PIPE_LWANT;
361 wakeup(pipe);
362 }
363 }
364
365 /*
366 * Select/poll wakup. This also sends SIGIO to peer connected to
367 * 'sigpipe' side of pipe.
368 */
369 static void
370 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
371 {
372 int band;
373
374 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
375
376 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
377 return;
378
379 switch (code) {
380 case POLL_IN:
381 band = POLLIN|POLLRDNORM;
382 break;
383 case POLL_OUT:
384 band = POLLOUT|POLLWRNORM;
385 break;
386 case POLL_HUP:
387 band = POLLHUP;
388 break;
389 #if POLL_HUP != POLL_ERR
390 case POLL_ERR:
391 band = POLLERR;
392 break;
393 #endif
394 default:
395 band = 0;
396 #ifdef DIAGNOSTIC
397 printf("bad siginfo code %d in pipe notification.\n", code);
398 #endif
399 break;
400 }
401
402 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
403 }
404
405 /* ARGSUSED */
406 static int
407 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
408 int flags)
409 {
410 struct pipe *rpipe = (struct pipe *) fp->f_data;
411 struct pipebuf *bp = &rpipe->pipe_buffer;
412 int error;
413 size_t nread = 0;
414 size_t size;
415 size_t ocnt;
416
417 PIPE_LOCK(rpipe);
418 ++rpipe->pipe_busy;
419 ocnt = bp->cnt;
420
421 again:
422 error = pipelock(rpipe, 1);
423 if (error)
424 goto unlocked_error;
425
426 while (uio->uio_resid) {
427 /*
428 * normal pipe buffer receive
429 */
430 if (bp->cnt > 0) {
431 size = bp->size - bp->out;
432 if (size > bp->cnt)
433 size = bp->cnt;
434 if (size > uio->uio_resid)
435 size = uio->uio_resid;
436
437 error = uiomove(&bp->buffer[bp->out], size, uio);
438 if (error)
439 break;
440
441 bp->out += size;
442 if (bp->out >= bp->size)
443 bp->out = 0;
444
445 bp->cnt -= size;
446
447 /*
448 * If there is no more to read in the pipe, reset
449 * its pointers to the beginning. This improves
450 * cache hit stats.
451 */
452 if (bp->cnt == 0) {
453 bp->in = 0;
454 bp->out = 0;
455 }
456 nread += size;
457 #ifndef PIPE_NODIRECT
458 } else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
459 /*
460 * Direct copy, bypassing a kernel buffer.
461 */
462 caddr_t va;
463
464 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
465
466 size = rpipe->pipe_map.cnt;
467 if (size > uio->uio_resid)
468 size = uio->uio_resid;
469
470 va = (caddr_t) rpipe->pipe_map.kva +
471 rpipe->pipe_map.pos;
472 error = uiomove(va, size, uio);
473 if (error)
474 break;
475 nread += size;
476 rpipe->pipe_map.pos += size;
477 rpipe->pipe_map.cnt -= size;
478 if (rpipe->pipe_map.cnt == 0) {
479 PIPE_LOCK(rpipe);
480 rpipe->pipe_state &= ~PIPE_DIRECTR;
481 wakeup(rpipe);
482 PIPE_UNLOCK(rpipe);
483 }
484 #endif
485 } else {
486 /*
487 * Break if some data was read.
488 */
489 if (nread > 0)
490 break;
491
492 PIPE_LOCK(rpipe);
493
494 /*
495 * detect EOF condition
496 * read returns 0 on EOF, no need to set error
497 */
498 if (rpipe->pipe_state & PIPE_EOF) {
499 PIPE_UNLOCK(rpipe);
500 break;
501 }
502
503 /*
504 * don't block on non-blocking I/O
505 */
506 if (fp->f_flag & FNONBLOCK) {
507 PIPE_UNLOCK(rpipe);
508 error = EAGAIN;
509 break;
510 }
511
512 /*
513 * Unlock the pipe buffer for our remaining processing.
514 * We will either break out with an error or we will
515 * sleep and relock to loop.
516 */
517 pipeunlock(rpipe);
518
519 /*
520 * The PIPE_DIRECTR flag is not under the control
521 * of the long-term lock (see pipe_direct_write()),
522 * so re-check now while holding the spin lock.
523 */
524 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
525 goto again;
526
527 /*
528 * We want to read more, wake up select/poll.
529 */
530 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
531
532 /*
533 * If the "write-side" is blocked, wake it up now.
534 */
535 if (rpipe->pipe_state & PIPE_WANTW) {
536 rpipe->pipe_state &= ~PIPE_WANTW;
537 wakeup(rpipe);
538 }
539
540 /* Now wait until the pipe is filled */
541 rpipe->pipe_state |= PIPE_WANTR;
542 error = ltsleep(rpipe, PSOCK | PCATCH,
543 "piperd", 0, &rpipe->pipe_slock);
544 if (error != 0)
545 goto unlocked_error;
546 goto again;
547 }
548 }
549
550 if (error == 0)
551 getmicrotime(&rpipe->pipe_atime);
552
553 PIPE_LOCK(rpipe);
554 pipeunlock(rpipe);
555
556 unlocked_error:
557 --rpipe->pipe_busy;
558
559 /*
560 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
561 */
562 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
563 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
564 wakeup(rpipe);
565 } else if (bp->cnt < MINPIPESIZE) {
566 /*
567 * Handle write blocking hysteresis.
568 */
569 if (rpipe->pipe_state & PIPE_WANTW) {
570 rpipe->pipe_state &= ~PIPE_WANTW;
571 wakeup(rpipe);
572 }
573 }
574
575 /*
576 * If anything was read off the buffer, signal to the writer it's
577 * possible to write more data. Also send signal if we are here for the
578 * first time after last write.
579 */
580 if ((bp->size - bp->cnt) >= PIPE_BUF
581 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
582 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
583 rpipe->pipe_state &= ~PIPE_SIGNALR;
584 }
585
586 PIPE_UNLOCK(rpipe);
587 return (error);
588 }
589
590 #ifndef PIPE_NODIRECT
591 /*
592 * Allocate structure for loan transfer.
593 */
594 static int
595 pipe_loan_alloc(struct pipe *wpipe, int npages)
596 {
597 vsize_t len;
598
599 len = (vsize_t)npages << PAGE_SHIFT;
600 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
601 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
602 if (wpipe->pipe_map.kva == 0)
603 return (ENOMEM);
604
605 amountpipekva += len;
606 wpipe->pipe_map.npages = npages;
607 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
608 M_WAITOK);
609 return (0);
610 }
611
612 /*
613 * Free resources allocated for loan transfer.
614 */
615 static void
616 pipe_loan_free(struct pipe *wpipe)
617 {
618 vsize_t len;
619
620 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
621 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
622 wpipe->pipe_map.kva = 0;
623 amountpipekva -= len;
624 free(wpipe->pipe_map.pgs, M_PIPE);
625 wpipe->pipe_map.pgs = NULL;
626 }
627
628 /*
629 * NetBSD direct write, using uvm_loan() mechanism.
630 * This implements the pipe buffer write mechanism. Note that only
631 * a direct write OR a normal pipe write can be pending at any given time.
632 * If there are any characters in the pipe buffer, the direct write will
633 * be deferred until the receiving process grabs all of the bytes from
634 * the pipe buffer. Then the direct mapping write is set-up.
635 *
636 * Called with the long-term pipe lock held.
637 */
638 static int
639 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
640 {
641 int error, npages, j;
642 struct vm_page **pgs;
643 vaddr_t bbase, kva, base, bend;
644 vsize_t blen, bcnt;
645 voff_t bpos;
646
647 KASSERT(wpipe->pipe_map.cnt == 0);
648
649 /*
650 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
651 * not aligned to PAGE_SIZE.
652 */
653 bbase = (vaddr_t)uio->uio_iov->iov_base;
654 base = trunc_page(bbase);
655 bend = round_page(bbase + uio->uio_iov->iov_len);
656 blen = bend - base;
657 bpos = bbase - base;
658
659 if (blen > PIPE_DIRECT_CHUNK) {
660 blen = PIPE_DIRECT_CHUNK;
661 bend = base + blen;
662 bcnt = PIPE_DIRECT_CHUNK - bpos;
663 } else {
664 bcnt = uio->uio_iov->iov_len;
665 }
666 npages = blen >> PAGE_SHIFT;
667
668 /*
669 * Free the old kva if we need more pages than we have
670 * allocated.
671 */
672 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
673 pipe_loan_free(wpipe);
674
675 /* Allocate new kva. */
676 if (wpipe->pipe_map.kva == 0) {
677 error = pipe_loan_alloc(wpipe, npages);
678 if (error)
679 return (error);
680 }
681
682 /* Loan the write buffer memory from writer process */
683 pgs = wpipe->pipe_map.pgs;
684 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
685 pgs, UVM_LOAN_TOPAGE);
686 if (error) {
687 pipe_loan_free(wpipe);
688 return (ENOMEM); /* so that caller fallback to ordinary write */
689 }
690
691 /* Enter the loaned pages to kva */
692 kva = wpipe->pipe_map.kva;
693 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
694 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
695 }
696 pmap_update(pmap_kernel());
697
698 /* Now we can put the pipe in direct write mode */
699 wpipe->pipe_map.pos = bpos;
700 wpipe->pipe_map.cnt = bcnt;
701 wpipe->pipe_state |= PIPE_DIRECTW;
702
703 /*
704 * But before we can let someone do a direct read,
705 * we have to wait until the pipe is drained.
706 */
707
708 /* Relase the pipe lock while we wait */
709 PIPE_LOCK(wpipe);
710 pipeunlock(wpipe);
711
712 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
713 if (wpipe->pipe_state & PIPE_WANTR) {
714 wpipe->pipe_state &= ~PIPE_WANTR;
715 wakeup(wpipe);
716 }
717
718 wpipe->pipe_state |= PIPE_WANTW;
719 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0,
720 &wpipe->pipe_slock);
721 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
722 error = EPIPE;
723 }
724
725 /* Pipe is drained; next read will off the direct buffer */
726 wpipe->pipe_state |= PIPE_DIRECTR;
727
728 /* Wait until the reader is done */
729 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
730 if (wpipe->pipe_state & PIPE_WANTR) {
731 wpipe->pipe_state &= ~PIPE_WANTR;
732 wakeup(wpipe);
733 }
734 pipeselwakeup(wpipe, wpipe, POLL_IN);
735 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0,
736 &wpipe->pipe_slock);
737 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
738 error = EPIPE;
739 }
740
741 /* Take pipe out of direct write mode */
742 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
743
744 /* Acquire the pipe lock and cleanup */
745 (void)pipelock(wpipe, 0);
746 if (pgs != NULL) {
747 pmap_kremove(wpipe->pipe_map.kva, blen);
748 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
749 }
750 if (error || amountpipekva > maxpipekva)
751 pipe_loan_free(wpipe);
752
753 if (error) {
754 pipeselwakeup(wpipe, wpipe, POLL_ERR);
755
756 /*
757 * If nothing was read from what we offered, return error
758 * straight on. Otherwise update uio resid first. Caller
759 * will deal with the error condition, returning short
760 * write, error, or restarting the write(2) as appropriate.
761 */
762 if (wpipe->pipe_map.cnt == bcnt) {
763 wpipe->pipe_map.cnt = 0;
764 wakeup(wpipe);
765 return (error);
766 }
767
768 bcnt -= wpipe->pipe_map.cnt;
769 }
770
771 uio->uio_resid -= bcnt;
772 /* uio_offset not updated, not set/used for write(2) */
773 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
774 uio->uio_iov->iov_len -= bcnt;
775 if (uio->uio_iov->iov_len == 0) {
776 uio->uio_iov++;
777 uio->uio_iovcnt--;
778 }
779
780 wpipe->pipe_map.cnt = 0;
781 return (error);
782 }
783 #endif /* !PIPE_NODIRECT */
784
785 static int
786 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
787 int flags)
788 {
789 struct pipe *wpipe, *rpipe;
790 struct pipebuf *bp;
791 int error;
792
793 /* We want to write to our peer */
794 rpipe = (struct pipe *) fp->f_data;
795
796 retry:
797 error = 0;
798 PIPE_LOCK(rpipe);
799 wpipe = rpipe->pipe_peer;
800
801 /*
802 * Detect loss of pipe read side, issue SIGPIPE if lost.
803 */
804 if (wpipe == NULL)
805 error = EPIPE;
806 else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
807 /* Deal with race for peer */
808 PIPE_UNLOCK(rpipe);
809 goto retry;
810 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
811 PIPE_UNLOCK(wpipe);
812 error = EPIPE;
813 }
814
815 PIPE_UNLOCK(rpipe);
816 if (error != 0)
817 return (error);
818
819 ++wpipe->pipe_busy;
820
821 /* Aquire the long-term pipe lock */
822 if ((error = pipelock(wpipe,1)) != 0) {
823 --wpipe->pipe_busy;
824 if (wpipe->pipe_busy == 0
825 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
826 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
827 wakeup(wpipe);
828 }
829 PIPE_UNLOCK(wpipe);
830 return (error);
831 }
832
833 bp = &wpipe->pipe_buffer;
834
835 /*
836 * If it is advantageous to resize the pipe buffer, do so.
837 */
838 if ((uio->uio_resid > PIPE_SIZE) &&
839 (nbigpipe < maxbigpipes) &&
840 #ifndef PIPE_NODIRECT
841 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
842 #endif
843 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
844
845 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
846 nbigpipe++;
847 }
848
849 while (uio->uio_resid) {
850 size_t space;
851
852 #ifndef PIPE_NODIRECT
853 /*
854 * Pipe buffered writes cannot be coincidental with
855 * direct writes. Also, only one direct write can be
856 * in progress at any one time. We wait until the currently
857 * executing direct write is completed before continuing.
858 *
859 * We break out if a signal occurs or the reader goes away.
860 */
861 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
862 PIPE_LOCK(wpipe);
863 if (wpipe->pipe_state & PIPE_WANTR) {
864 wpipe->pipe_state &= ~PIPE_WANTR;
865 wakeup(wpipe);
866 }
867 pipeunlock(wpipe);
868 error = ltsleep(wpipe, PSOCK | PCATCH,
869 "pipbww", 0, &wpipe->pipe_slock);
870
871 (void)pipelock(wpipe, 0);
872 if (wpipe->pipe_state & PIPE_EOF)
873 error = EPIPE;
874 }
875 if (error)
876 break;
877
878 /*
879 * If the transfer is large, we can gain performance if
880 * we do process-to-process copies directly.
881 * If the write is non-blocking, we don't use the
882 * direct write mechanism.
883 *
884 * The direct write mechanism will detect the reader going
885 * away on us.
886 */
887 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
888 (fp->f_flag & FNONBLOCK) == 0 &&
889 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
890 error = pipe_direct_write(fp, wpipe, uio);
891
892 /*
893 * Break out if error occurred, unless it's ENOMEM.
894 * ENOMEM means we failed to allocate some resources
895 * for direct write, so we just fallback to ordinary
896 * write. If the direct write was successful,
897 * process rest of data via ordinary write.
898 */
899 if (error == 0)
900 continue;
901
902 if (error != ENOMEM)
903 break;
904 }
905 #endif /* PIPE_NODIRECT */
906
907 space = bp->size - bp->cnt;
908
909 /* Writes of size <= PIPE_BUF must be atomic. */
910 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
911 space = 0;
912
913 if (space > 0) {
914 int size; /* Transfer size */
915 int segsize; /* first segment to transfer */
916
917 /*
918 * Transfer size is minimum of uio transfer
919 * and free space in pipe buffer.
920 */
921 if (space > uio->uio_resid)
922 size = uio->uio_resid;
923 else
924 size = space;
925 /*
926 * First segment to transfer is minimum of
927 * transfer size and contiguous space in
928 * pipe buffer. If first segment to transfer
929 * is less than the transfer size, we've got
930 * a wraparound in the buffer.
931 */
932 segsize = bp->size - bp->in;
933 if (segsize > size)
934 segsize = size;
935
936 /* Transfer first segment */
937 error = uiomove(&bp->buffer[bp->in], segsize, uio);
938
939 if (error == 0 && segsize < size) {
940 /*
941 * Transfer remaining part now, to
942 * support atomic writes. Wraparound
943 * happened.
944 */
945 #ifdef DEBUG
946 if (bp->in + segsize != bp->size)
947 panic("Expected pipe buffer wraparound disappeared");
948 #endif
949
950 error = uiomove(&bp->buffer[0],
951 size - segsize, uio);
952 }
953 if (error)
954 break;
955
956 bp->in += size;
957 if (bp->in >= bp->size) {
958 #ifdef DEBUG
959 if (bp->in != size - segsize + bp->size)
960 panic("Expected wraparound bad");
961 #endif
962 bp->in = size - segsize;
963 }
964
965 bp->cnt += size;
966 #ifdef DEBUG
967 if (bp->cnt > bp->size)
968 panic("Pipe buffer overflow");
969 #endif
970 } else {
971 /*
972 * If the "read-side" has been blocked, wake it up now.
973 */
974 PIPE_LOCK(wpipe);
975 if (wpipe->pipe_state & PIPE_WANTR) {
976 wpipe->pipe_state &= ~PIPE_WANTR;
977 wakeup(wpipe);
978 }
979 PIPE_UNLOCK(wpipe);
980
981 /*
982 * don't block on non-blocking I/O
983 */
984 if (fp->f_flag & FNONBLOCK) {
985 error = EAGAIN;
986 break;
987 }
988
989 /*
990 * We have no more space and have something to offer,
991 * wake up select/poll.
992 */
993 if (bp->cnt)
994 pipeselwakeup(wpipe, wpipe, POLL_OUT);
995
996 PIPE_LOCK(wpipe);
997 pipeunlock(wpipe);
998 wpipe->pipe_state |= PIPE_WANTW;
999 error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0,
1000 &wpipe->pipe_slock);
1001 (void)pipelock(wpipe, 0);
1002 if (error != 0)
1003 break;
1004 /*
1005 * If read side wants to go away, we just issue a signal
1006 * to ourselves.
1007 */
1008 if (wpipe->pipe_state & PIPE_EOF) {
1009 error = EPIPE;
1010 break;
1011 }
1012 }
1013 }
1014
1015 PIPE_LOCK(wpipe);
1016 --wpipe->pipe_busy;
1017 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1018 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1019 wakeup(wpipe);
1020 } else if (bp->cnt > 0) {
1021 /*
1022 * If we have put any characters in the buffer, we wake up
1023 * the reader.
1024 */
1025 if (wpipe->pipe_state & PIPE_WANTR) {
1026 wpipe->pipe_state &= ~PIPE_WANTR;
1027 wakeup(wpipe);
1028 }
1029 }
1030
1031 /*
1032 * Don't return EPIPE if I/O was successful
1033 */
1034 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1035 error = 0;
1036
1037 if (error == 0)
1038 getmicrotime(&wpipe->pipe_mtime);
1039
1040 /*
1041 * We have something to offer, wake up select/poll.
1042 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1043 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1044 */
1045 if (bp->cnt)
1046 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1047
1048 /*
1049 * Arrange for next read(2) to do a signal.
1050 */
1051 wpipe->pipe_state |= PIPE_SIGNALR;
1052
1053 pipeunlock(wpipe);
1054 PIPE_UNLOCK(wpipe);
1055 return (error);
1056 }
1057
1058 /*
1059 * we implement a very minimal set of ioctls for compatibility with sockets.
1060 */
1061 int
1062 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1063 {
1064 struct pipe *pipe = (struct pipe *)fp->f_data;
1065 struct proc *p = l->l_proc;
1066
1067 switch (cmd) {
1068
1069 case FIONBIO:
1070 return (0);
1071
1072 case FIOASYNC:
1073 PIPE_LOCK(pipe);
1074 if (*(int *)data) {
1075 pipe->pipe_state |= PIPE_ASYNC;
1076 } else {
1077 pipe->pipe_state &= ~PIPE_ASYNC;
1078 }
1079 PIPE_UNLOCK(pipe);
1080 return (0);
1081
1082 case FIONREAD:
1083 PIPE_LOCK(pipe);
1084 #ifndef PIPE_NODIRECT
1085 if (pipe->pipe_state & PIPE_DIRECTW)
1086 *(int *)data = pipe->pipe_map.cnt;
1087 else
1088 #endif
1089 *(int *)data = pipe->pipe_buffer.cnt;
1090 PIPE_UNLOCK(pipe);
1091 return (0);
1092
1093 case FIONWRITE:
1094 /* Look at other side */
1095 pipe = pipe->pipe_peer;
1096 PIPE_LOCK(pipe);
1097 #ifndef PIPE_NODIRECT
1098 if (pipe->pipe_state & PIPE_DIRECTW)
1099 *(int *)data = pipe->pipe_map.cnt;
1100 else
1101 #endif
1102 *(int *)data = pipe->pipe_buffer.cnt;
1103 PIPE_UNLOCK(pipe);
1104 return (0);
1105
1106 case FIONSPACE:
1107 /* Look at other side */
1108 pipe = pipe->pipe_peer;
1109 PIPE_LOCK(pipe);
1110 #ifndef PIPE_NODIRECT
1111 /*
1112 * If we're in direct-mode, we don't really have a
1113 * send queue, and any other write will block. Thus
1114 * zero seems like the best answer.
1115 */
1116 if (pipe->pipe_state & PIPE_DIRECTW)
1117 *(int *)data = 0;
1118 else
1119 #endif
1120 *(int *)data = pipe->pipe_buffer.size -
1121 pipe->pipe_buffer.cnt;
1122 PIPE_UNLOCK(pipe);
1123 return (0);
1124
1125 case TIOCSPGRP:
1126 case FIOSETOWN:
1127 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1128
1129 case TIOCGPGRP:
1130 case FIOGETOWN:
1131 return fgetown(p, pipe->pipe_pgid, cmd, data);
1132
1133 }
1134 return (EPASSTHROUGH);
1135 }
1136
1137 int
1138 pipe_poll(struct file *fp, int events, struct lwp *l)
1139 {
1140 struct pipe *rpipe = (struct pipe *)fp->f_data;
1141 struct pipe *wpipe;
1142 int eof = 0;
1143 int revents = 0;
1144
1145 retry:
1146 PIPE_LOCK(rpipe);
1147 wpipe = rpipe->pipe_peer;
1148 if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
1149 /* Deal with race for peer */
1150 PIPE_UNLOCK(rpipe);
1151 goto retry;
1152 }
1153
1154 if (events & (POLLIN | POLLRDNORM))
1155 if ((rpipe->pipe_buffer.cnt > 0) ||
1156 #ifndef PIPE_NODIRECT
1157 (rpipe->pipe_state & PIPE_DIRECTR) ||
1158 #endif
1159 (rpipe->pipe_state & PIPE_EOF))
1160 revents |= events & (POLLIN | POLLRDNORM);
1161
1162 eof |= (rpipe->pipe_state & PIPE_EOF);
1163 PIPE_UNLOCK(rpipe);
1164
1165 if (wpipe == NULL)
1166 revents |= events & (POLLOUT | POLLWRNORM);
1167 else {
1168 if (events & (POLLOUT | POLLWRNORM))
1169 if ((wpipe->pipe_state & PIPE_EOF) || (
1170 #ifndef PIPE_NODIRECT
1171 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1172 #endif
1173 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1174 revents |= events & (POLLOUT | POLLWRNORM);
1175
1176 eof |= (wpipe->pipe_state & PIPE_EOF);
1177 PIPE_UNLOCK(wpipe);
1178 }
1179
1180 if (wpipe == NULL || eof)
1181 revents |= POLLHUP;
1182
1183 if (revents == 0) {
1184 if (events & (POLLIN | POLLRDNORM))
1185 selrecord(l, &rpipe->pipe_sel);
1186
1187 if (events & (POLLOUT | POLLWRNORM))
1188 selrecord(l, &wpipe->pipe_sel);
1189 }
1190
1191 return (revents);
1192 }
1193
1194 static int
1195 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
1196 {
1197 struct pipe *pipe = (struct pipe *)fp->f_data;
1198
1199 memset((caddr_t)ub, 0, sizeof(*ub));
1200 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1201 ub->st_blksize = pipe->pipe_buffer.size;
1202 if (ub->st_blksize == 0 && pipe->pipe_peer)
1203 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1204 ub->st_size = pipe->pipe_buffer.cnt;
1205 ub->st_blocks = (ub->st_size) ? 1 : 0;
1206 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1207 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1208 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1209 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1210 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1211 /*
1212 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1213 * XXX (st_dev, st_ino) should be unique.
1214 */
1215 return (0);
1216 }
1217
1218 /* ARGSUSED */
1219 static int
1220 pipe_close(struct file *fp, struct lwp *l)
1221 {
1222 struct pipe *pipe = (struct pipe *)fp->f_data;
1223
1224 fp->f_data = NULL;
1225 pipeclose(fp, pipe);
1226 return (0);
1227 }
1228
1229 static void
1230 pipe_free_kmem(struct pipe *pipe)
1231 {
1232
1233 if (pipe->pipe_buffer.buffer != NULL) {
1234 if (pipe->pipe_buffer.size > PIPE_SIZE)
1235 --nbigpipe;
1236 amountpipekva -= pipe->pipe_buffer.size;
1237 uvm_km_free(kernel_map,
1238 (vaddr_t)pipe->pipe_buffer.buffer,
1239 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1240 pipe->pipe_buffer.buffer = NULL;
1241 }
1242 #ifndef PIPE_NODIRECT
1243 if (pipe->pipe_map.kva != 0) {
1244 pipe_loan_free(pipe);
1245 pipe->pipe_map.cnt = 0;
1246 pipe->pipe_map.kva = 0;
1247 pipe->pipe_map.pos = 0;
1248 pipe->pipe_map.npages = 0;
1249 }
1250 #endif /* !PIPE_NODIRECT */
1251 }
1252
1253 /*
1254 * shutdown the pipe
1255 */
1256 static void
1257 pipeclose(struct file *fp, struct pipe *pipe)
1258 {
1259 struct pipe *ppipe;
1260
1261 if (pipe == NULL)
1262 return;
1263
1264 retry:
1265 PIPE_LOCK(pipe);
1266
1267 pipeselwakeup(pipe, pipe, POLL_HUP);
1268
1269 /*
1270 * If the other side is blocked, wake it up saying that
1271 * we want to close it down.
1272 */
1273 pipe->pipe_state |= PIPE_EOF;
1274 while (pipe->pipe_busy) {
1275 wakeup(pipe);
1276 pipe->pipe_state |= PIPE_WANTCLOSE;
1277 ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock);
1278 }
1279
1280 /*
1281 * Disconnect from peer
1282 */
1283 if ((ppipe = pipe->pipe_peer) != NULL) {
1284 /* Deal with race for peer */
1285 if (simple_lock_try(&ppipe->pipe_slock) == 0) {
1286 PIPE_UNLOCK(pipe);
1287 goto retry;
1288 }
1289 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1290
1291 ppipe->pipe_state |= PIPE_EOF;
1292 wakeup(ppipe);
1293 ppipe->pipe_peer = NULL;
1294 PIPE_UNLOCK(ppipe);
1295 }
1296
1297 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1298
1299 PIPE_UNLOCK(pipe);
1300
1301 /*
1302 * free resources
1303 */
1304 pipe_free_kmem(pipe);
1305 pool_put(&pipe_pool, pipe);
1306 }
1307
1308 static void
1309 filt_pipedetach(struct knote *kn)
1310 {
1311 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1312
1313 switch(kn->kn_filter) {
1314 case EVFILT_WRITE:
1315 /* need the peer structure, not our own */
1316 pipe = pipe->pipe_peer;
1317 /* XXXSMP: race for peer */
1318
1319 /* if reader end already closed, just return */
1320 if (pipe == NULL)
1321 return;
1322
1323 break;
1324 default:
1325 /* nothing to do */
1326 break;
1327 }
1328
1329 #ifdef DIAGNOSTIC
1330 if (kn->kn_hook != pipe)
1331 panic("filt_pipedetach: inconsistent knote");
1332 #endif
1333
1334 PIPE_LOCK(pipe);
1335 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1336 PIPE_UNLOCK(pipe);
1337 }
1338
1339 /*ARGSUSED*/
1340 static int
1341 filt_piperead(struct knote *kn, long hint)
1342 {
1343 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1344 struct pipe *wpipe = rpipe->pipe_peer;
1345
1346 if ((hint & NOTE_SUBMIT) == 0)
1347 PIPE_LOCK(rpipe);
1348 kn->kn_data = rpipe->pipe_buffer.cnt;
1349 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1350 kn->kn_data = rpipe->pipe_map.cnt;
1351
1352 /* XXXSMP: race for peer */
1353 if ((rpipe->pipe_state & PIPE_EOF) ||
1354 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1355 kn->kn_flags |= EV_EOF;
1356 if ((hint & NOTE_SUBMIT) == 0)
1357 PIPE_UNLOCK(rpipe);
1358 return (1);
1359 }
1360 if ((hint & NOTE_SUBMIT) == 0)
1361 PIPE_UNLOCK(rpipe);
1362 return (kn->kn_data > 0);
1363 }
1364
1365 /*ARGSUSED*/
1366 static int
1367 filt_pipewrite(struct knote *kn, long hint)
1368 {
1369 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1370 struct pipe *wpipe = rpipe->pipe_peer;
1371
1372 if ((hint & NOTE_SUBMIT) == 0)
1373 PIPE_LOCK(rpipe);
1374 /* XXXSMP: race for peer */
1375 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1376 kn->kn_data = 0;
1377 kn->kn_flags |= EV_EOF;
1378 if ((hint & NOTE_SUBMIT) == 0)
1379 PIPE_UNLOCK(rpipe);
1380 return (1);
1381 }
1382 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1383 if (wpipe->pipe_state & PIPE_DIRECTW)
1384 kn->kn_data = 0;
1385
1386 if ((hint & NOTE_SUBMIT) == 0)
1387 PIPE_UNLOCK(rpipe);
1388 return (kn->kn_data >= PIPE_BUF);
1389 }
1390
1391 static const struct filterops pipe_rfiltops =
1392 { 1, NULL, filt_pipedetach, filt_piperead };
1393 static const struct filterops pipe_wfiltops =
1394 { 1, NULL, filt_pipedetach, filt_pipewrite };
1395
1396 /*ARGSUSED*/
1397 static int
1398 pipe_kqfilter(struct file *fp, struct knote *kn)
1399 {
1400 struct pipe *pipe;
1401
1402 pipe = (struct pipe *)kn->kn_fp->f_data;
1403 switch (kn->kn_filter) {
1404 case EVFILT_READ:
1405 kn->kn_fop = &pipe_rfiltops;
1406 break;
1407 case EVFILT_WRITE:
1408 kn->kn_fop = &pipe_wfiltops;
1409 /* XXXSMP: race for peer */
1410 pipe = pipe->pipe_peer;
1411 if (pipe == NULL) {
1412 /* other end of pipe has been closed */
1413 return (EBADF);
1414 }
1415 break;
1416 default:
1417 return (1);
1418 }
1419 kn->kn_hook = pipe;
1420
1421 PIPE_LOCK(pipe);
1422 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1423 PIPE_UNLOCK(pipe);
1424 return (0);
1425 }
1426
1427 /*
1428 * Handle pipe sysctls.
1429 */
1430 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1431 {
1432
1433 sysctl_createv(clog, 0, NULL, NULL,
1434 CTLFLAG_PERMANENT,
1435 CTLTYPE_NODE, "kern", NULL,
1436 NULL, 0, NULL, 0,
1437 CTL_KERN, CTL_EOL);
1438 sysctl_createv(clog, 0, NULL, NULL,
1439 CTLFLAG_PERMANENT,
1440 CTLTYPE_NODE, "pipe",
1441 SYSCTL_DESCR("Pipe settings"),
1442 NULL, 0, NULL, 0,
1443 CTL_KERN, KERN_PIPE, CTL_EOL);
1444
1445 sysctl_createv(clog, 0, NULL, NULL,
1446 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1447 CTLTYPE_INT, "maxkvasz",
1448 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1449 "used for pipes"),
1450 NULL, 0, &maxpipekva, 0,
1451 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1452 sysctl_createv(clog, 0, NULL, NULL,
1453 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1454 CTLTYPE_INT, "maxloankvasz",
1455 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1456 NULL, 0, &limitpipekva, 0,
1457 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1458 sysctl_createv(clog, 0, NULL, NULL,
1459 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1460 CTLTYPE_INT, "maxbigpipes",
1461 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1462 NULL, 0, &maxbigpipes, 0,
1463 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1464 sysctl_createv(clog, 0, NULL, NULL,
1465 CTLFLAG_PERMANENT,
1466 CTLTYPE_INT, "nbigpipes",
1467 SYSCTL_DESCR("Number of \"big\" pipes"),
1468 NULL, 0, &nbigpipe, 0,
1469 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1470 sysctl_createv(clog, 0, NULL, NULL,
1471 CTLFLAG_PERMANENT,
1472 CTLTYPE_INT, "kvasize",
1473 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1474 "buffers"),
1475 NULL, 0, &amountpipekva, 0,
1476 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1477 }
1478