sys_pipe.c revision 1.74 1 /* $NetBSD: sys_pipe.c,v 1.74 2006/07/23 22:06:11 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.74 2006/07/23 22:06:11 ad Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/ttycom.h>
98 #include <sys/stat.h>
99 #include <sys/malloc.h>
100 #include <sys/poll.h>
101 #include <sys/signalvar.h>
102 #include <sys/vnode.h>
103 #include <sys/uio.h>
104 #include <sys/lock.h>
105 #include <sys/select.h>
106 #include <sys/mount.h>
107 #include <sys/sa.h>
108 #include <sys/syscallargs.h>
109 #include <uvm/uvm.h>
110 #include <sys/sysctl.h>
111 #include <sys/kernel.h>
112 #include <sys/kauth.h>
113
114 #include <sys/pipe.h>
115
116 /*
117 * Use this define if you want to disable *fancy* VM things. Expect an
118 * approx 30% decrease in transfer rate.
119 */
120 /* #define PIPE_NODIRECT */
121
122 /*
123 * interfaces to the outside world
124 */
125 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
126 kauth_cred_t cred, int flags);
127 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
128 kauth_cred_t cred, int flags);
129 static int pipe_close(struct file *fp, struct lwp *l);
130 static int pipe_poll(struct file *fp, int events, struct lwp *l);
131 static int pipe_kqfilter(struct file *fp, struct knote *kn);
132 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
133 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
134 struct lwp *l);
135
136 static const struct fileops pipeops = {
137 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
138 pipe_stat, pipe_close, pipe_kqfilter
139 };
140
141 /*
142 * Default pipe buffer size(s), this can be kind-of large now because pipe
143 * space is pageable. The pipe code will try to maintain locality of
144 * reference for performance reasons, so small amounts of outstanding I/O
145 * will not wipe the cache.
146 */
147 #define MINPIPESIZE (PIPE_SIZE/3)
148 #define MAXPIPESIZE (2*PIPE_SIZE/3)
149
150 /*
151 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
152 * is there so that on large systems, we don't exhaust it.
153 */
154 #define MAXPIPEKVA (8*1024*1024)
155 static int maxpipekva = MAXPIPEKVA;
156
157 /*
158 * Limit for direct transfers, we cannot, of course limit
159 * the amount of kva for pipes in general though.
160 */
161 #define LIMITPIPEKVA (16*1024*1024)
162 static int limitpipekva = LIMITPIPEKVA;
163
164 /*
165 * Limit the number of "big" pipes
166 */
167 #define LIMITBIGPIPES 32
168 static int maxbigpipes = LIMITBIGPIPES;
169 static int nbigpipe = 0;
170
171 /*
172 * Amount of KVA consumed by pipe buffers.
173 */
174 static int amountpipekva = 0;
175
176 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
177
178 static void pipeclose(struct file *fp, struct pipe *pipe);
179 static void pipe_free_kmem(struct pipe *pipe);
180 static int pipe_create(struct pipe **pipep, int allockva);
181 static int pipelock(struct pipe *pipe, int catch);
182 static inline void pipeunlock(struct pipe *pipe);
183 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
184 #ifndef PIPE_NODIRECT
185 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
186 struct uio *uio);
187 #endif
188 static int pipespace(struct pipe *pipe, int size);
189
190 #ifndef PIPE_NODIRECT
191 static int pipe_loan_alloc(struct pipe *, int);
192 static void pipe_loan_free(struct pipe *);
193 #endif /* PIPE_NODIRECT */
194
195 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
196 &pool_allocator_nointr);
197
198 /*
199 * The pipe system call for the DTYPE_PIPE type of pipes
200 */
201
202 /* ARGSUSED */
203 int
204 sys_pipe(struct lwp *l, void *v, register_t *retval)
205 {
206 struct file *rf, *wf;
207 struct pipe *rpipe, *wpipe;
208 int fd, error;
209
210 rpipe = wpipe = NULL;
211 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
212 pipeclose(NULL, rpipe);
213 pipeclose(NULL, wpipe);
214 return (ENFILE);
215 }
216
217 /*
218 * Note: the file structure returned from falloc() is marked
219 * as 'larval' initially. Unless we mark it as 'mature' by
220 * FILE_SET_MATURE(), any attempt to do anything with it would
221 * return EBADF, including e.g. dup(2) or close(2). This avoids
222 * file descriptor races if we block in the second falloc().
223 */
224
225 error = falloc(l, &rf, &fd);
226 if (error)
227 goto free2;
228 retval[0] = fd;
229 rf->f_flag = FREAD;
230 rf->f_type = DTYPE_PIPE;
231 rf->f_data = (caddr_t)rpipe;
232 rf->f_ops = &pipeops;
233
234 error = falloc(l, &wf, &fd);
235 if (error)
236 goto free3;
237 retval[1] = fd;
238 wf->f_flag = FWRITE;
239 wf->f_type = DTYPE_PIPE;
240 wf->f_data = (caddr_t)wpipe;
241 wf->f_ops = &pipeops;
242
243 rpipe->pipe_peer = wpipe;
244 wpipe->pipe_peer = rpipe;
245
246 FILE_SET_MATURE(rf);
247 FILE_SET_MATURE(wf);
248 FILE_UNUSE(rf, l);
249 FILE_UNUSE(wf, l);
250 return (0);
251 free3:
252 FILE_UNUSE(rf, l);
253 ffree(rf);
254 fdremove(l->l_proc->p_fd, retval[0]);
255 free2:
256 pipeclose(NULL, wpipe);
257 pipeclose(NULL, rpipe);
258
259 return (error);
260 }
261
262 /*
263 * Allocate kva for pipe circular buffer, the space is pageable
264 * This routine will 'realloc' the size of a pipe safely, if it fails
265 * it will retain the old buffer.
266 * If it fails it will return ENOMEM.
267 */
268 static int
269 pipespace(struct pipe *pipe, int size)
270 {
271 caddr_t buffer;
272 /*
273 * Allocate pageable virtual address space. Physical memory is
274 * allocated on demand.
275 */
276 buffer = (caddr_t) uvm_km_alloc(kernel_map, round_page(size), 0,
277 UVM_KMF_PAGEABLE);
278 if (buffer == NULL)
279 return (ENOMEM);
280
281 /* free old resources if we're resizing */
282 pipe_free_kmem(pipe);
283 pipe->pipe_buffer.buffer = buffer;
284 pipe->pipe_buffer.size = size;
285 pipe->pipe_buffer.in = 0;
286 pipe->pipe_buffer.out = 0;
287 pipe->pipe_buffer.cnt = 0;
288 amountpipekva += pipe->pipe_buffer.size;
289 return (0);
290 }
291
292 /*
293 * Initialize and allocate VM and memory for pipe.
294 */
295 static int
296 pipe_create(struct pipe **pipep, int allockva)
297 {
298 struct pipe *pipe;
299 int error;
300
301 pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
302
303 /* Initialize */
304 memset(pipe, 0, sizeof(struct pipe));
305 pipe->pipe_state = PIPE_SIGNALR;
306
307 getmicrotime(&pipe->pipe_ctime);
308 pipe->pipe_atime = pipe->pipe_ctime;
309 pipe->pipe_mtime = pipe->pipe_ctime;
310 simple_lock_init(&pipe->pipe_slock);
311
312 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
313 return (error);
314
315 return (0);
316 }
317
318
319 /*
320 * Lock a pipe for I/O, blocking other access
321 * Called with pipe spin lock held.
322 * Return with pipe spin lock released on success.
323 */
324 static int
325 pipelock(struct pipe *pipe, int catch)
326 {
327
328 LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
329
330 while (pipe->pipe_state & PIPE_LOCKFL) {
331 int error;
332 const int pcatch = catch ? PCATCH : 0;
333
334 pipe->pipe_state |= PIPE_LWANT;
335 error = ltsleep(pipe, PSOCK | pcatch, "pipelk", 0,
336 &pipe->pipe_slock);
337 if (error != 0)
338 return error;
339 }
340
341 pipe->pipe_state |= PIPE_LOCKFL;
342 simple_unlock(&pipe->pipe_slock);
343
344 return 0;
345 }
346
347 /*
348 * unlock a pipe I/O lock
349 */
350 static inline void
351 pipeunlock(struct pipe *pipe)
352 {
353
354 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
355
356 pipe->pipe_state &= ~PIPE_LOCKFL;
357 if (pipe->pipe_state & PIPE_LWANT) {
358 pipe->pipe_state &= ~PIPE_LWANT;
359 wakeup(pipe);
360 }
361 }
362
363 /*
364 * Select/poll wakup. This also sends SIGIO to peer connected to
365 * 'sigpipe' side of pipe.
366 */
367 static void
368 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
369 {
370 int band;
371
372 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
373
374 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
375 return;
376
377 switch (code) {
378 case POLL_IN:
379 band = POLLIN|POLLRDNORM;
380 break;
381 case POLL_OUT:
382 band = POLLOUT|POLLWRNORM;
383 break;
384 case POLL_HUP:
385 band = POLLHUP;
386 break;
387 #if POLL_HUP != POLL_ERR
388 case POLL_ERR:
389 band = POLLERR;
390 break;
391 #endif
392 default:
393 band = 0;
394 #ifdef DIAGNOSTIC
395 printf("bad siginfo code %d in pipe notification.\n", code);
396 #endif
397 break;
398 }
399
400 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
401 }
402
403 /* ARGSUSED */
404 static int
405 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
406 int flags)
407 {
408 struct pipe *rpipe = (struct pipe *) fp->f_data;
409 struct pipebuf *bp = &rpipe->pipe_buffer;
410 int error;
411 size_t nread = 0;
412 size_t size;
413 size_t ocnt;
414
415 PIPE_LOCK(rpipe);
416 ++rpipe->pipe_busy;
417 ocnt = bp->cnt;
418
419 again:
420 error = pipelock(rpipe, 1);
421 if (error)
422 goto unlocked_error;
423
424 while (uio->uio_resid) {
425 /*
426 * normal pipe buffer receive
427 */
428 if (bp->cnt > 0) {
429 size = bp->size - bp->out;
430 if (size > bp->cnt)
431 size = bp->cnt;
432 if (size > uio->uio_resid)
433 size = uio->uio_resid;
434
435 error = uiomove(&bp->buffer[bp->out], size, uio);
436 if (error)
437 break;
438
439 bp->out += size;
440 if (bp->out >= bp->size)
441 bp->out = 0;
442
443 bp->cnt -= size;
444
445 /*
446 * If there is no more to read in the pipe, reset
447 * its pointers to the beginning. This improves
448 * cache hit stats.
449 */
450 if (bp->cnt == 0) {
451 bp->in = 0;
452 bp->out = 0;
453 }
454 nread += size;
455 #ifndef PIPE_NODIRECT
456 } else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
457 /*
458 * Direct copy, bypassing a kernel buffer.
459 */
460 caddr_t va;
461
462 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
463
464 size = rpipe->pipe_map.cnt;
465 if (size > uio->uio_resid)
466 size = uio->uio_resid;
467
468 va = (caddr_t) rpipe->pipe_map.kva +
469 rpipe->pipe_map.pos;
470 error = uiomove(va, size, uio);
471 if (error)
472 break;
473 nread += size;
474 rpipe->pipe_map.pos += size;
475 rpipe->pipe_map.cnt -= size;
476 if (rpipe->pipe_map.cnt == 0) {
477 PIPE_LOCK(rpipe);
478 rpipe->pipe_state &= ~PIPE_DIRECTR;
479 wakeup(rpipe);
480 PIPE_UNLOCK(rpipe);
481 }
482 #endif
483 } else {
484 /*
485 * Break if some data was read.
486 */
487 if (nread > 0)
488 break;
489
490 PIPE_LOCK(rpipe);
491
492 /*
493 * detect EOF condition
494 * read returns 0 on EOF, no need to set error
495 */
496 if (rpipe->pipe_state & PIPE_EOF) {
497 PIPE_UNLOCK(rpipe);
498 break;
499 }
500
501 /*
502 * don't block on non-blocking I/O
503 */
504 if (fp->f_flag & FNONBLOCK) {
505 PIPE_UNLOCK(rpipe);
506 error = EAGAIN;
507 break;
508 }
509
510 /*
511 * Unlock the pipe buffer for our remaining processing.
512 * We will either break out with an error or we will
513 * sleep and relock to loop.
514 */
515 pipeunlock(rpipe);
516
517 /*
518 * The PIPE_DIRECTR flag is not under the control
519 * of the long-term lock (see pipe_direct_write()),
520 * so re-check now while holding the spin lock.
521 */
522 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
523 goto again;
524
525 /*
526 * We want to read more, wake up select/poll.
527 */
528 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
529
530 /*
531 * If the "write-side" is blocked, wake it up now.
532 */
533 if (rpipe->pipe_state & PIPE_WANTW) {
534 rpipe->pipe_state &= ~PIPE_WANTW;
535 wakeup(rpipe);
536 }
537
538 /* Now wait until the pipe is filled */
539 rpipe->pipe_state |= PIPE_WANTR;
540 error = ltsleep(rpipe, PSOCK | PCATCH,
541 "piperd", 0, &rpipe->pipe_slock);
542 if (error != 0)
543 goto unlocked_error;
544 goto again;
545 }
546 }
547
548 if (error == 0)
549 getmicrotime(&rpipe->pipe_atime);
550
551 PIPE_LOCK(rpipe);
552 pipeunlock(rpipe);
553
554 unlocked_error:
555 --rpipe->pipe_busy;
556
557 /*
558 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
559 */
560 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
561 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
562 wakeup(rpipe);
563 } else if (bp->cnt < MINPIPESIZE) {
564 /*
565 * Handle write blocking hysteresis.
566 */
567 if (rpipe->pipe_state & PIPE_WANTW) {
568 rpipe->pipe_state &= ~PIPE_WANTW;
569 wakeup(rpipe);
570 }
571 }
572
573 /*
574 * If anything was read off the buffer, signal to the writer it's
575 * possible to write more data. Also send signal if we are here for the
576 * first time after last write.
577 */
578 if ((bp->size - bp->cnt) >= PIPE_BUF
579 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
580 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
581 rpipe->pipe_state &= ~PIPE_SIGNALR;
582 }
583
584 PIPE_UNLOCK(rpipe);
585 return (error);
586 }
587
588 #ifndef PIPE_NODIRECT
589 /*
590 * Allocate structure for loan transfer.
591 */
592 static int
593 pipe_loan_alloc(struct pipe *wpipe, int npages)
594 {
595 vsize_t len;
596
597 len = (vsize_t)npages << PAGE_SHIFT;
598 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
599 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
600 if (wpipe->pipe_map.kva == 0)
601 return (ENOMEM);
602
603 amountpipekva += len;
604 wpipe->pipe_map.npages = npages;
605 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
606 M_WAITOK);
607 return (0);
608 }
609
610 /*
611 * Free resources allocated for loan transfer.
612 */
613 static void
614 pipe_loan_free(struct pipe *wpipe)
615 {
616 vsize_t len;
617
618 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
619 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
620 wpipe->pipe_map.kva = 0;
621 amountpipekva -= len;
622 free(wpipe->pipe_map.pgs, M_PIPE);
623 wpipe->pipe_map.pgs = NULL;
624 }
625
626 /*
627 * NetBSD direct write, using uvm_loan() mechanism.
628 * This implements the pipe buffer write mechanism. Note that only
629 * a direct write OR a normal pipe write can be pending at any given time.
630 * If there are any characters in the pipe buffer, the direct write will
631 * be deferred until the receiving process grabs all of the bytes from
632 * the pipe buffer. Then the direct mapping write is set-up.
633 *
634 * Called with the long-term pipe lock held.
635 */
636 static int
637 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
638 {
639 int error, npages, j;
640 struct vm_page **pgs;
641 vaddr_t bbase, kva, base, bend;
642 vsize_t blen, bcnt;
643 voff_t bpos;
644
645 KASSERT(wpipe->pipe_map.cnt == 0);
646
647 /*
648 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
649 * not aligned to PAGE_SIZE.
650 */
651 bbase = (vaddr_t)uio->uio_iov->iov_base;
652 base = trunc_page(bbase);
653 bend = round_page(bbase + uio->uio_iov->iov_len);
654 blen = bend - base;
655 bpos = bbase - base;
656
657 if (blen > PIPE_DIRECT_CHUNK) {
658 blen = PIPE_DIRECT_CHUNK;
659 bend = base + blen;
660 bcnt = PIPE_DIRECT_CHUNK - bpos;
661 } else {
662 bcnt = uio->uio_iov->iov_len;
663 }
664 npages = blen >> PAGE_SHIFT;
665
666 /*
667 * Free the old kva if we need more pages than we have
668 * allocated.
669 */
670 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
671 pipe_loan_free(wpipe);
672
673 /* Allocate new kva. */
674 if (wpipe->pipe_map.kva == 0) {
675 error = pipe_loan_alloc(wpipe, npages);
676 if (error)
677 return (error);
678 }
679
680 /* Loan the write buffer memory from writer process */
681 pgs = wpipe->pipe_map.pgs;
682 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
683 pgs, UVM_LOAN_TOPAGE);
684 if (error) {
685 pipe_loan_free(wpipe);
686 return (ENOMEM); /* so that caller fallback to ordinary write */
687 }
688
689 /* Enter the loaned pages to kva */
690 kva = wpipe->pipe_map.kva;
691 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
692 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
693 }
694 pmap_update(pmap_kernel());
695
696 /* Now we can put the pipe in direct write mode */
697 wpipe->pipe_map.pos = bpos;
698 wpipe->pipe_map.cnt = bcnt;
699 wpipe->pipe_state |= PIPE_DIRECTW;
700
701 /*
702 * But before we can let someone do a direct read,
703 * we have to wait until the pipe is drained.
704 */
705
706 /* Relase the pipe lock while we wait */
707 PIPE_LOCK(wpipe);
708 pipeunlock(wpipe);
709
710 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
711 if (wpipe->pipe_state & PIPE_WANTR) {
712 wpipe->pipe_state &= ~PIPE_WANTR;
713 wakeup(wpipe);
714 }
715
716 wpipe->pipe_state |= PIPE_WANTW;
717 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0,
718 &wpipe->pipe_slock);
719 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
720 error = EPIPE;
721 }
722
723 /* Pipe is drained; next read will off the direct buffer */
724 wpipe->pipe_state |= PIPE_DIRECTR;
725
726 /* Wait until the reader is done */
727 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
728 if (wpipe->pipe_state & PIPE_WANTR) {
729 wpipe->pipe_state &= ~PIPE_WANTR;
730 wakeup(wpipe);
731 }
732 pipeselwakeup(wpipe, wpipe, POLL_IN);
733 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0,
734 &wpipe->pipe_slock);
735 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
736 error = EPIPE;
737 }
738
739 /* Take pipe out of direct write mode */
740 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
741
742 /* Acquire the pipe lock and cleanup */
743 (void)pipelock(wpipe, 0);
744 if (pgs != NULL) {
745 pmap_kremove(wpipe->pipe_map.kva, blen);
746 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
747 }
748 if (error || amountpipekva > maxpipekva)
749 pipe_loan_free(wpipe);
750
751 if (error) {
752 pipeselwakeup(wpipe, wpipe, POLL_ERR);
753
754 /*
755 * If nothing was read from what we offered, return error
756 * straight on. Otherwise update uio resid first. Caller
757 * will deal with the error condition, returning short
758 * write, error, or restarting the write(2) as appropriate.
759 */
760 if (wpipe->pipe_map.cnt == bcnt) {
761 wpipe->pipe_map.cnt = 0;
762 wakeup(wpipe);
763 return (error);
764 }
765
766 bcnt -= wpipe->pipe_map.cnt;
767 }
768
769 uio->uio_resid -= bcnt;
770 /* uio_offset not updated, not set/used for write(2) */
771 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
772 uio->uio_iov->iov_len -= bcnt;
773 if (uio->uio_iov->iov_len == 0) {
774 uio->uio_iov++;
775 uio->uio_iovcnt--;
776 }
777
778 wpipe->pipe_map.cnt = 0;
779 return (error);
780 }
781 #endif /* !PIPE_NODIRECT */
782
783 static int
784 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
785 int flags)
786 {
787 struct pipe *wpipe, *rpipe;
788 struct pipebuf *bp;
789 int error;
790
791 /* We want to write to our peer */
792 rpipe = (struct pipe *) fp->f_data;
793
794 retry:
795 error = 0;
796 PIPE_LOCK(rpipe);
797 wpipe = rpipe->pipe_peer;
798
799 /*
800 * Detect loss of pipe read side, issue SIGPIPE if lost.
801 */
802 if (wpipe == NULL)
803 error = EPIPE;
804 else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
805 /* Deal with race for peer */
806 PIPE_UNLOCK(rpipe);
807 goto retry;
808 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
809 PIPE_UNLOCK(wpipe);
810 error = EPIPE;
811 }
812
813 PIPE_UNLOCK(rpipe);
814 if (error != 0)
815 return (error);
816
817 ++wpipe->pipe_busy;
818
819 /* Aquire the long-term pipe lock */
820 if ((error = pipelock(wpipe,1)) != 0) {
821 --wpipe->pipe_busy;
822 if (wpipe->pipe_busy == 0
823 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
824 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
825 wakeup(wpipe);
826 }
827 PIPE_UNLOCK(wpipe);
828 return (error);
829 }
830
831 bp = &wpipe->pipe_buffer;
832
833 /*
834 * If it is advantageous to resize the pipe buffer, do so.
835 */
836 if ((uio->uio_resid > PIPE_SIZE) &&
837 (nbigpipe < maxbigpipes) &&
838 #ifndef PIPE_NODIRECT
839 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
840 #endif
841 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
842
843 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
844 nbigpipe++;
845 }
846
847 while (uio->uio_resid) {
848 size_t space;
849
850 #ifndef PIPE_NODIRECT
851 /*
852 * Pipe buffered writes cannot be coincidental with
853 * direct writes. Also, only one direct write can be
854 * in progress at any one time. We wait until the currently
855 * executing direct write is completed before continuing.
856 *
857 * We break out if a signal occurs or the reader goes away.
858 */
859 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
860 PIPE_LOCK(wpipe);
861 if (wpipe->pipe_state & PIPE_WANTR) {
862 wpipe->pipe_state &= ~PIPE_WANTR;
863 wakeup(wpipe);
864 }
865 pipeunlock(wpipe);
866 error = ltsleep(wpipe, PSOCK | PCATCH,
867 "pipbww", 0, &wpipe->pipe_slock);
868
869 (void)pipelock(wpipe, 0);
870 if (wpipe->pipe_state & PIPE_EOF)
871 error = EPIPE;
872 }
873 if (error)
874 break;
875
876 /*
877 * If the transfer is large, we can gain performance if
878 * we do process-to-process copies directly.
879 * If the write is non-blocking, we don't use the
880 * direct write mechanism.
881 *
882 * The direct write mechanism will detect the reader going
883 * away on us.
884 */
885 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
886 (fp->f_flag & FNONBLOCK) == 0 &&
887 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
888 error = pipe_direct_write(fp, wpipe, uio);
889
890 /*
891 * Break out if error occurred, unless it's ENOMEM.
892 * ENOMEM means we failed to allocate some resources
893 * for direct write, so we just fallback to ordinary
894 * write. If the direct write was successful,
895 * process rest of data via ordinary write.
896 */
897 if (error == 0)
898 continue;
899
900 if (error != ENOMEM)
901 break;
902 }
903 #endif /* PIPE_NODIRECT */
904
905 space = bp->size - bp->cnt;
906
907 /* Writes of size <= PIPE_BUF must be atomic. */
908 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
909 space = 0;
910
911 if (space > 0) {
912 int size; /* Transfer size */
913 int segsize; /* first segment to transfer */
914
915 /*
916 * Transfer size is minimum of uio transfer
917 * and free space in pipe buffer.
918 */
919 if (space > uio->uio_resid)
920 size = uio->uio_resid;
921 else
922 size = space;
923 /*
924 * First segment to transfer is minimum of
925 * transfer size and contiguous space in
926 * pipe buffer. If first segment to transfer
927 * is less than the transfer size, we've got
928 * a wraparound in the buffer.
929 */
930 segsize = bp->size - bp->in;
931 if (segsize > size)
932 segsize = size;
933
934 /* Transfer first segment */
935 error = uiomove(&bp->buffer[bp->in], segsize, uio);
936
937 if (error == 0 && segsize < size) {
938 /*
939 * Transfer remaining part now, to
940 * support atomic writes. Wraparound
941 * happened.
942 */
943 #ifdef DEBUG
944 if (bp->in + segsize != bp->size)
945 panic("Expected pipe buffer wraparound disappeared");
946 #endif
947
948 error = uiomove(&bp->buffer[0],
949 size - segsize, uio);
950 }
951 if (error)
952 break;
953
954 bp->in += size;
955 if (bp->in >= bp->size) {
956 #ifdef DEBUG
957 if (bp->in != size - segsize + bp->size)
958 panic("Expected wraparound bad");
959 #endif
960 bp->in = size - segsize;
961 }
962
963 bp->cnt += size;
964 #ifdef DEBUG
965 if (bp->cnt > bp->size)
966 panic("Pipe buffer overflow");
967 #endif
968 } else {
969 /*
970 * If the "read-side" has been blocked, wake it up now.
971 */
972 PIPE_LOCK(wpipe);
973 if (wpipe->pipe_state & PIPE_WANTR) {
974 wpipe->pipe_state &= ~PIPE_WANTR;
975 wakeup(wpipe);
976 }
977 PIPE_UNLOCK(wpipe);
978
979 /*
980 * don't block on non-blocking I/O
981 */
982 if (fp->f_flag & FNONBLOCK) {
983 error = EAGAIN;
984 break;
985 }
986
987 /*
988 * We have no more space and have something to offer,
989 * wake up select/poll.
990 */
991 if (bp->cnt)
992 pipeselwakeup(wpipe, wpipe, POLL_OUT);
993
994 PIPE_LOCK(wpipe);
995 pipeunlock(wpipe);
996 wpipe->pipe_state |= PIPE_WANTW;
997 error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0,
998 &wpipe->pipe_slock);
999 (void)pipelock(wpipe, 0);
1000 if (error != 0)
1001 break;
1002 /*
1003 * If read side wants to go away, we just issue a signal
1004 * to ourselves.
1005 */
1006 if (wpipe->pipe_state & PIPE_EOF) {
1007 error = EPIPE;
1008 break;
1009 }
1010 }
1011 }
1012
1013 PIPE_LOCK(wpipe);
1014 --wpipe->pipe_busy;
1015 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1016 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1017 wakeup(wpipe);
1018 } else if (bp->cnt > 0) {
1019 /*
1020 * If we have put any characters in the buffer, we wake up
1021 * the reader.
1022 */
1023 if (wpipe->pipe_state & PIPE_WANTR) {
1024 wpipe->pipe_state &= ~PIPE_WANTR;
1025 wakeup(wpipe);
1026 }
1027 }
1028
1029 /*
1030 * Don't return EPIPE if I/O was successful
1031 */
1032 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1033 error = 0;
1034
1035 if (error == 0)
1036 getmicrotime(&wpipe->pipe_mtime);
1037
1038 /*
1039 * We have something to offer, wake up select/poll.
1040 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1041 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1042 */
1043 if (bp->cnt)
1044 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1045
1046 /*
1047 * Arrange for next read(2) to do a signal.
1048 */
1049 wpipe->pipe_state |= PIPE_SIGNALR;
1050
1051 pipeunlock(wpipe);
1052 PIPE_UNLOCK(wpipe);
1053 return (error);
1054 }
1055
1056 /*
1057 * we implement a very minimal set of ioctls for compatibility with sockets.
1058 */
1059 int
1060 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1061 {
1062 struct pipe *pipe = (struct pipe *)fp->f_data;
1063 struct proc *p = l->l_proc;
1064
1065 switch (cmd) {
1066
1067 case FIONBIO:
1068 return (0);
1069
1070 case FIOASYNC:
1071 PIPE_LOCK(pipe);
1072 if (*(int *)data) {
1073 pipe->pipe_state |= PIPE_ASYNC;
1074 } else {
1075 pipe->pipe_state &= ~PIPE_ASYNC;
1076 }
1077 PIPE_UNLOCK(pipe);
1078 return (0);
1079
1080 case FIONREAD:
1081 PIPE_LOCK(pipe);
1082 #ifndef PIPE_NODIRECT
1083 if (pipe->pipe_state & PIPE_DIRECTW)
1084 *(int *)data = pipe->pipe_map.cnt;
1085 else
1086 #endif
1087 *(int *)data = pipe->pipe_buffer.cnt;
1088 PIPE_UNLOCK(pipe);
1089 return (0);
1090
1091 case FIONWRITE:
1092 /* Look at other side */
1093 pipe = pipe->pipe_peer;
1094 PIPE_LOCK(pipe);
1095 #ifndef PIPE_NODIRECT
1096 if (pipe->pipe_state & PIPE_DIRECTW)
1097 *(int *)data = pipe->pipe_map.cnt;
1098 else
1099 #endif
1100 *(int *)data = pipe->pipe_buffer.cnt;
1101 PIPE_UNLOCK(pipe);
1102 return (0);
1103
1104 case FIONSPACE:
1105 /* Look at other side */
1106 pipe = pipe->pipe_peer;
1107 PIPE_LOCK(pipe);
1108 #ifndef PIPE_NODIRECT
1109 /*
1110 * If we're in direct-mode, we don't really have a
1111 * send queue, and any other write will block. Thus
1112 * zero seems like the best answer.
1113 */
1114 if (pipe->pipe_state & PIPE_DIRECTW)
1115 *(int *)data = 0;
1116 else
1117 #endif
1118 *(int *)data = pipe->pipe_buffer.size -
1119 pipe->pipe_buffer.cnt;
1120 PIPE_UNLOCK(pipe);
1121 return (0);
1122
1123 case TIOCSPGRP:
1124 case FIOSETOWN:
1125 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1126
1127 case TIOCGPGRP:
1128 case FIOGETOWN:
1129 return fgetown(p, pipe->pipe_pgid, cmd, data);
1130
1131 }
1132 return (EPASSTHROUGH);
1133 }
1134
1135 int
1136 pipe_poll(struct file *fp, int events, struct lwp *l)
1137 {
1138 struct pipe *rpipe = (struct pipe *)fp->f_data;
1139 struct pipe *wpipe;
1140 int eof = 0;
1141 int revents = 0;
1142
1143 retry:
1144 PIPE_LOCK(rpipe);
1145 wpipe = rpipe->pipe_peer;
1146 if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
1147 /* Deal with race for peer */
1148 PIPE_UNLOCK(rpipe);
1149 goto retry;
1150 }
1151
1152 if (events & (POLLIN | POLLRDNORM))
1153 if ((rpipe->pipe_buffer.cnt > 0) ||
1154 #ifndef PIPE_NODIRECT
1155 (rpipe->pipe_state & PIPE_DIRECTR) ||
1156 #endif
1157 (rpipe->pipe_state & PIPE_EOF))
1158 revents |= events & (POLLIN | POLLRDNORM);
1159
1160 eof |= (rpipe->pipe_state & PIPE_EOF);
1161 PIPE_UNLOCK(rpipe);
1162
1163 if (wpipe == NULL)
1164 revents |= events & (POLLOUT | POLLWRNORM);
1165 else {
1166 if (events & (POLLOUT | POLLWRNORM))
1167 if ((wpipe->pipe_state & PIPE_EOF) || (
1168 #ifndef PIPE_NODIRECT
1169 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1170 #endif
1171 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1172 revents |= events & (POLLOUT | POLLWRNORM);
1173
1174 eof |= (wpipe->pipe_state & PIPE_EOF);
1175 PIPE_UNLOCK(wpipe);
1176 }
1177
1178 if (wpipe == NULL || eof)
1179 revents |= POLLHUP;
1180
1181 if (revents == 0) {
1182 if (events & (POLLIN | POLLRDNORM))
1183 selrecord(l, &rpipe->pipe_sel);
1184
1185 if (events & (POLLOUT | POLLWRNORM))
1186 selrecord(l, &wpipe->pipe_sel);
1187 }
1188
1189 return (revents);
1190 }
1191
1192 static int
1193 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
1194 {
1195 struct pipe *pipe = (struct pipe *)fp->f_data;
1196
1197 memset((caddr_t)ub, 0, sizeof(*ub));
1198 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1199 ub->st_blksize = pipe->pipe_buffer.size;
1200 if (ub->st_blksize == 0 && pipe->pipe_peer)
1201 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1202 ub->st_size = pipe->pipe_buffer.cnt;
1203 ub->st_blocks = (ub->st_size) ? 1 : 0;
1204 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1205 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1206 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1207 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1208 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1209 /*
1210 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1211 * XXX (st_dev, st_ino) should be unique.
1212 */
1213 return (0);
1214 }
1215
1216 /* ARGSUSED */
1217 static int
1218 pipe_close(struct file *fp, struct lwp *l)
1219 {
1220 struct pipe *pipe = (struct pipe *)fp->f_data;
1221
1222 fp->f_data = NULL;
1223 pipeclose(fp, pipe);
1224 return (0);
1225 }
1226
1227 static void
1228 pipe_free_kmem(struct pipe *pipe)
1229 {
1230
1231 if (pipe->pipe_buffer.buffer != NULL) {
1232 if (pipe->pipe_buffer.size > PIPE_SIZE)
1233 --nbigpipe;
1234 amountpipekva -= pipe->pipe_buffer.size;
1235 uvm_km_free(kernel_map,
1236 (vaddr_t)pipe->pipe_buffer.buffer,
1237 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1238 pipe->pipe_buffer.buffer = NULL;
1239 }
1240 #ifndef PIPE_NODIRECT
1241 if (pipe->pipe_map.kva != 0) {
1242 pipe_loan_free(pipe);
1243 pipe->pipe_map.cnt = 0;
1244 pipe->pipe_map.kva = 0;
1245 pipe->pipe_map.pos = 0;
1246 pipe->pipe_map.npages = 0;
1247 }
1248 #endif /* !PIPE_NODIRECT */
1249 }
1250
1251 /*
1252 * shutdown the pipe
1253 */
1254 static void
1255 pipeclose(struct file *fp, struct pipe *pipe)
1256 {
1257 struct pipe *ppipe;
1258
1259 if (pipe == NULL)
1260 return;
1261
1262 retry:
1263 PIPE_LOCK(pipe);
1264
1265 pipeselwakeup(pipe, pipe, POLL_HUP);
1266
1267 /*
1268 * If the other side is blocked, wake it up saying that
1269 * we want to close it down.
1270 */
1271 pipe->pipe_state |= PIPE_EOF;
1272 while (pipe->pipe_busy) {
1273 wakeup(pipe);
1274 pipe->pipe_state |= PIPE_WANTCLOSE;
1275 ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock);
1276 }
1277
1278 /*
1279 * Disconnect from peer
1280 */
1281 if ((ppipe = pipe->pipe_peer) != NULL) {
1282 /* Deal with race for peer */
1283 if (simple_lock_try(&ppipe->pipe_slock) == 0) {
1284 PIPE_UNLOCK(pipe);
1285 goto retry;
1286 }
1287 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1288
1289 ppipe->pipe_state |= PIPE_EOF;
1290 wakeup(ppipe);
1291 ppipe->pipe_peer = NULL;
1292 PIPE_UNLOCK(ppipe);
1293 }
1294
1295 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1296
1297 PIPE_UNLOCK(pipe);
1298
1299 /*
1300 * free resources
1301 */
1302 pipe_free_kmem(pipe);
1303 pool_put(&pipe_pool, pipe);
1304 }
1305
1306 static void
1307 filt_pipedetach(struct knote *kn)
1308 {
1309 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1310
1311 switch(kn->kn_filter) {
1312 case EVFILT_WRITE:
1313 /* need the peer structure, not our own */
1314 pipe = pipe->pipe_peer;
1315 /* XXXSMP: race for peer */
1316
1317 /* if reader end already closed, just return */
1318 if (pipe == NULL)
1319 return;
1320
1321 break;
1322 default:
1323 /* nothing to do */
1324 break;
1325 }
1326
1327 #ifdef DIAGNOSTIC
1328 if (kn->kn_hook != pipe)
1329 panic("filt_pipedetach: inconsistent knote");
1330 #endif
1331
1332 PIPE_LOCK(pipe);
1333 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1334 PIPE_UNLOCK(pipe);
1335 }
1336
1337 /*ARGSUSED*/
1338 static int
1339 filt_piperead(struct knote *kn, long hint)
1340 {
1341 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1342 struct pipe *wpipe = rpipe->pipe_peer;
1343
1344 if ((hint & NOTE_SUBMIT) == 0)
1345 PIPE_LOCK(rpipe);
1346 kn->kn_data = rpipe->pipe_buffer.cnt;
1347 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1348 kn->kn_data = rpipe->pipe_map.cnt;
1349
1350 /* XXXSMP: race for peer */
1351 if ((rpipe->pipe_state & PIPE_EOF) ||
1352 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1353 kn->kn_flags |= EV_EOF;
1354 if ((hint & NOTE_SUBMIT) == 0)
1355 PIPE_UNLOCK(rpipe);
1356 return (1);
1357 }
1358 if ((hint & NOTE_SUBMIT) == 0)
1359 PIPE_UNLOCK(rpipe);
1360 return (kn->kn_data > 0);
1361 }
1362
1363 /*ARGSUSED*/
1364 static int
1365 filt_pipewrite(struct knote *kn, long hint)
1366 {
1367 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1368 struct pipe *wpipe = rpipe->pipe_peer;
1369
1370 if ((hint & NOTE_SUBMIT) == 0)
1371 PIPE_LOCK(rpipe);
1372 /* XXXSMP: race for peer */
1373 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1374 kn->kn_data = 0;
1375 kn->kn_flags |= EV_EOF;
1376 if ((hint & NOTE_SUBMIT) == 0)
1377 PIPE_UNLOCK(rpipe);
1378 return (1);
1379 }
1380 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1381 if (wpipe->pipe_state & PIPE_DIRECTW)
1382 kn->kn_data = 0;
1383
1384 if ((hint & NOTE_SUBMIT) == 0)
1385 PIPE_UNLOCK(rpipe);
1386 return (kn->kn_data >= PIPE_BUF);
1387 }
1388
1389 static const struct filterops pipe_rfiltops =
1390 { 1, NULL, filt_pipedetach, filt_piperead };
1391 static const struct filterops pipe_wfiltops =
1392 { 1, NULL, filt_pipedetach, filt_pipewrite };
1393
1394 /*ARGSUSED*/
1395 static int
1396 pipe_kqfilter(struct file *fp, struct knote *kn)
1397 {
1398 struct pipe *pipe;
1399
1400 pipe = (struct pipe *)kn->kn_fp->f_data;
1401 switch (kn->kn_filter) {
1402 case EVFILT_READ:
1403 kn->kn_fop = &pipe_rfiltops;
1404 break;
1405 case EVFILT_WRITE:
1406 kn->kn_fop = &pipe_wfiltops;
1407 /* XXXSMP: race for peer */
1408 pipe = pipe->pipe_peer;
1409 if (pipe == NULL) {
1410 /* other end of pipe has been closed */
1411 return (EBADF);
1412 }
1413 break;
1414 default:
1415 return (1);
1416 }
1417 kn->kn_hook = pipe;
1418
1419 PIPE_LOCK(pipe);
1420 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1421 PIPE_UNLOCK(pipe);
1422 return (0);
1423 }
1424
1425 /*
1426 * Handle pipe sysctls.
1427 */
1428 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1429 {
1430
1431 sysctl_createv(clog, 0, NULL, NULL,
1432 CTLFLAG_PERMANENT,
1433 CTLTYPE_NODE, "kern", NULL,
1434 NULL, 0, NULL, 0,
1435 CTL_KERN, CTL_EOL);
1436 sysctl_createv(clog, 0, NULL, NULL,
1437 CTLFLAG_PERMANENT,
1438 CTLTYPE_NODE, "pipe",
1439 SYSCTL_DESCR("Pipe settings"),
1440 NULL, 0, NULL, 0,
1441 CTL_KERN, KERN_PIPE, CTL_EOL);
1442
1443 sysctl_createv(clog, 0, NULL, NULL,
1444 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1445 CTLTYPE_INT, "maxkvasz",
1446 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1447 "used for pipes"),
1448 NULL, 0, &maxpipekva, 0,
1449 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1450 sysctl_createv(clog, 0, NULL, NULL,
1451 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1452 CTLTYPE_INT, "maxloankvasz",
1453 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1454 NULL, 0, &limitpipekva, 0,
1455 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1456 sysctl_createv(clog, 0, NULL, NULL,
1457 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1458 CTLTYPE_INT, "maxbigpipes",
1459 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1460 NULL, 0, &maxbigpipes, 0,
1461 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1462 sysctl_createv(clog, 0, NULL, NULL,
1463 CTLFLAG_PERMANENT,
1464 CTLTYPE_INT, "nbigpipes",
1465 SYSCTL_DESCR("Number of \"big\" pipes"),
1466 NULL, 0, &nbigpipe, 0,
1467 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1468 sysctl_createv(clog, 0, NULL, NULL,
1469 CTLFLAG_PERMANENT,
1470 CTLTYPE_INT, "kvasize",
1471 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1472 "buffers"),
1473 NULL, 0, &amountpipekva, 0,
1474 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1475 }
1476