Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.77
      1 /*	$NetBSD: sys_pipe.c,v 1.77 2006/11/01 10:17:59 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1996 John S. Dyson
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice immediately at the beginning of the file, without modification,
     48  *    this list of conditions, and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Absolutely no warranty of function or purpose is made by the author
     53  *    John S. Dyson.
     54  * 4. Modifications may be freely made to this file if the above conditions
     55  *    are met.
     56  *
     57  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
     58  */
     59 
     60 /*
     61  * This file contains a high-performance replacement for the socket-based
     62  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
     63  * all features of sockets, but does do everything that pipes normally
     64  * do.
     65  *
     66  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
     67  * written by Jaromir Dolecek.
     68  */
     69 
     70 /*
     71  * This code has two modes of operation, a small write mode and a large
     72  * write mode.  The small write mode acts like conventional pipes with
     73  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     74  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     75  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
     76  * using the UVM page loan facility from where the receiving process can copy
     77  * the data directly from the pages in the sending process.
     78  *
     79  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     80  * happen for small transfers so that the system will not spend all of
     81  * its time context switching.  PIPE_SIZE is constrained by the
     82  * amount of kernel virtual memory.
     83  */
     84 
     85 #include <sys/cdefs.h>
     86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.77 2006/11/01 10:17:59 yamt Exp $");
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/proc.h>
     91 #include <sys/fcntl.h>
     92 #include <sys/file.h>
     93 #include <sys/filedesc.h>
     94 #include <sys/filio.h>
     95 #include <sys/kernel.h>
     96 #include <sys/ttycom.h>
     97 #include <sys/stat.h>
     98 #include <sys/malloc.h>
     99 #include <sys/poll.h>
    100 #include <sys/signalvar.h>
    101 #include <sys/vnode.h>
    102 #include <sys/uio.h>
    103 #include <sys/lock.h>
    104 #include <sys/select.h>
    105 #include <sys/mount.h>
    106 #include <sys/sa.h>
    107 #include <sys/syscallargs.h>
    108 #include <uvm/uvm.h>
    109 #include <sys/sysctl.h>
    110 #include <sys/kernel.h>
    111 #include <sys/kauth.h>
    112 
    113 #include <sys/pipe.h>
    114 
    115 /*
    116  * Use this define if you want to disable *fancy* VM things.  Expect an
    117  * approx 30% decrease in transfer rate.
    118  */
    119 /* #define PIPE_NODIRECT */
    120 
    121 /*
    122  * interfaces to the outside world
    123  */
    124 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
    125 		kauth_cred_t cred, int flags);
    126 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
    127 		kauth_cred_t cred, int flags);
    128 static int pipe_close(struct file *fp, struct lwp *l);
    129 static int pipe_poll(struct file *fp, int events, struct lwp *l);
    130 static int pipe_kqfilter(struct file *fp, struct knote *kn);
    131 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
    132 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
    133 		struct lwp *l);
    134 
    135 static const struct fileops pipeops = {
    136 	pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
    137 	pipe_stat, pipe_close, pipe_kqfilter
    138 };
    139 
    140 /*
    141  * Default pipe buffer size(s), this can be kind-of large now because pipe
    142  * space is pageable.  The pipe code will try to maintain locality of
    143  * reference for performance reasons, so small amounts of outstanding I/O
    144  * will not wipe the cache.
    145  */
    146 #define MINPIPESIZE (PIPE_SIZE/3)
    147 #define MAXPIPESIZE (2*PIPE_SIZE/3)
    148 
    149 /*
    150  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    151  * is there so that on large systems, we don't exhaust it.
    152  */
    153 #define MAXPIPEKVA (8*1024*1024)
    154 static int maxpipekva = MAXPIPEKVA;
    155 
    156 /*
    157  * Limit for direct transfers, we cannot, of course limit
    158  * the amount of kva for pipes in general though.
    159  */
    160 #define LIMITPIPEKVA (16*1024*1024)
    161 static int limitpipekva = LIMITPIPEKVA;
    162 
    163 /*
    164  * Limit the number of "big" pipes
    165  */
    166 #define LIMITBIGPIPES  32
    167 static int maxbigpipes = LIMITBIGPIPES;
    168 static int nbigpipe = 0;
    169 
    170 /*
    171  * Amount of KVA consumed by pipe buffers.
    172  */
    173 static int amountpipekva = 0;
    174 
    175 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
    176 
    177 static void pipeclose(struct file *fp, struct pipe *pipe);
    178 static void pipe_free_kmem(struct pipe *pipe);
    179 static int pipe_create(struct pipe **pipep, int allockva);
    180 static int pipelock(struct pipe *pipe, int catch);
    181 static inline void pipeunlock(struct pipe *pipe);
    182 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
    183 #ifndef PIPE_NODIRECT
    184 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
    185     struct uio *uio);
    186 #endif
    187 static int pipespace(struct pipe *pipe, int size);
    188 
    189 #ifndef PIPE_NODIRECT
    190 static int pipe_loan_alloc(struct pipe *, int);
    191 static void pipe_loan_free(struct pipe *);
    192 #endif /* PIPE_NODIRECT */
    193 
    194 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
    195     &pool_allocator_nointr);
    196 
    197 /*
    198  * The pipe system call for the DTYPE_PIPE type of pipes
    199  */
    200 
    201 /* ARGSUSED */
    202 int
    203 sys_pipe(struct lwp *l, void *v, register_t *retval)
    204 {
    205 	struct file *rf, *wf;
    206 	struct pipe *rpipe, *wpipe;
    207 	int fd, error;
    208 
    209 	rpipe = wpipe = NULL;
    210 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
    211 		pipeclose(NULL, rpipe);
    212 		pipeclose(NULL, wpipe);
    213 		return (ENFILE);
    214 	}
    215 
    216 	/*
    217 	 * Note: the file structure returned from falloc() is marked
    218 	 * as 'larval' initially. Unless we mark it as 'mature' by
    219 	 * FILE_SET_MATURE(), any attempt to do anything with it would
    220 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
    221 	 * file descriptor races if we block in the second falloc().
    222 	 */
    223 
    224 	error = falloc(l, &rf, &fd);
    225 	if (error)
    226 		goto free2;
    227 	retval[0] = fd;
    228 	rf->f_flag = FREAD;
    229 	rf->f_type = DTYPE_PIPE;
    230 	rf->f_data = (caddr_t)rpipe;
    231 	rf->f_ops = &pipeops;
    232 
    233 	error = falloc(l, &wf, &fd);
    234 	if (error)
    235 		goto free3;
    236 	retval[1] = fd;
    237 	wf->f_flag = FWRITE;
    238 	wf->f_type = DTYPE_PIPE;
    239 	wf->f_data = (caddr_t)wpipe;
    240 	wf->f_ops = &pipeops;
    241 
    242 	rpipe->pipe_peer = wpipe;
    243 	wpipe->pipe_peer = rpipe;
    244 
    245 	FILE_SET_MATURE(rf);
    246 	FILE_SET_MATURE(wf);
    247 	FILE_UNUSE(rf, l);
    248 	FILE_UNUSE(wf, l);
    249 	return (0);
    250 free3:
    251 	FILE_UNUSE(rf, l);
    252 	ffree(rf);
    253 	fdremove(l->l_proc->p_fd, retval[0]);
    254 free2:
    255 	pipeclose(NULL, wpipe);
    256 	pipeclose(NULL, rpipe);
    257 
    258 	return (error);
    259 }
    260 
    261 /*
    262  * Allocate kva for pipe circular buffer, the space is pageable
    263  * This routine will 'realloc' the size of a pipe safely, if it fails
    264  * it will retain the old buffer.
    265  * If it fails it will return ENOMEM.
    266  */
    267 static int
    268 pipespace(struct pipe *pipe, int size)
    269 {
    270 	caddr_t buffer;
    271 	/*
    272 	 * Allocate pageable virtual address space. Physical memory is
    273 	 * allocated on demand.
    274 	 */
    275 	buffer = (caddr_t) uvm_km_alloc(kernel_map, round_page(size), 0,
    276 	    UVM_KMF_PAGEABLE);
    277 	if (buffer == NULL)
    278 		return (ENOMEM);
    279 
    280 	/* free old resources if we're resizing */
    281 	pipe_free_kmem(pipe);
    282 	pipe->pipe_buffer.buffer = buffer;
    283 	pipe->pipe_buffer.size = size;
    284 	pipe->pipe_buffer.in = 0;
    285 	pipe->pipe_buffer.out = 0;
    286 	pipe->pipe_buffer.cnt = 0;
    287 	amountpipekva += pipe->pipe_buffer.size;
    288 	return (0);
    289 }
    290 
    291 /*
    292  * Initialize and allocate VM and memory for pipe.
    293  */
    294 static int
    295 pipe_create(struct pipe **pipep, int allockva)
    296 {
    297 	struct pipe *pipe;
    298 	int error;
    299 
    300 	pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
    301 
    302 	/* Initialize */
    303 	memset(pipe, 0, sizeof(struct pipe));
    304 	pipe->pipe_state = PIPE_SIGNALR;
    305 
    306 	getmicrotime(&pipe->pipe_ctime);
    307 	pipe->pipe_atime = pipe->pipe_ctime;
    308 	pipe->pipe_mtime = pipe->pipe_ctime;
    309 	simple_lock_init(&pipe->pipe_slock);
    310 
    311 	if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
    312 		return (error);
    313 
    314 	return (0);
    315 }
    316 
    317 
    318 /*
    319  * Lock a pipe for I/O, blocking other access
    320  * Called with pipe spin lock held.
    321  * Return with pipe spin lock released on success.
    322  */
    323 static int
    324 pipelock(struct pipe *pipe, int catch)
    325 {
    326 
    327 	LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
    328 
    329 	while (pipe->pipe_state & PIPE_LOCKFL) {
    330 		int error;
    331 		const int pcatch = catch ? PCATCH : 0;
    332 
    333 		pipe->pipe_state |= PIPE_LWANT;
    334 		error = ltsleep(pipe, PSOCK | pcatch, "pipelk", 0,
    335 		    &pipe->pipe_slock);
    336 		if (error != 0)
    337 			return error;
    338 	}
    339 
    340 	pipe->pipe_state |= PIPE_LOCKFL;
    341 	simple_unlock(&pipe->pipe_slock);
    342 
    343 	return 0;
    344 }
    345 
    346 /*
    347  * unlock a pipe I/O lock
    348  */
    349 static inline void
    350 pipeunlock(struct pipe *pipe)
    351 {
    352 
    353 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
    354 
    355 	pipe->pipe_state &= ~PIPE_LOCKFL;
    356 	if (pipe->pipe_state & PIPE_LWANT) {
    357 		pipe->pipe_state &= ~PIPE_LWANT;
    358 		wakeup(pipe);
    359 	}
    360 }
    361 
    362 /*
    363  * Select/poll wakup. This also sends SIGIO to peer connected to
    364  * 'sigpipe' side of pipe.
    365  */
    366 static void
    367 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
    368 {
    369 	int band;
    370 
    371 	selnotify(&selp->pipe_sel, NOTE_SUBMIT);
    372 
    373 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    374 		return;
    375 
    376 	switch (code) {
    377 	case POLL_IN:
    378 		band = POLLIN|POLLRDNORM;
    379 		break;
    380 	case POLL_OUT:
    381 		band = POLLOUT|POLLWRNORM;
    382 		break;
    383 	case POLL_HUP:
    384 		band = POLLHUP;
    385 		break;
    386 #if POLL_HUP != POLL_ERR
    387 	case POLL_ERR:
    388 		band = POLLERR;
    389 		break;
    390 #endif
    391 	default:
    392 		band = 0;
    393 #ifdef DIAGNOSTIC
    394 		printf("bad siginfo code %d in pipe notification.\n", code);
    395 #endif
    396 		break;
    397 	}
    398 
    399 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    400 }
    401 
    402 /* ARGSUSED */
    403 static int
    404 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    405     int flags)
    406 {
    407 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    408 	struct pipebuf *bp = &rpipe->pipe_buffer;
    409 	int error;
    410 	size_t nread = 0;
    411 	size_t size;
    412 	size_t ocnt;
    413 
    414 	PIPE_LOCK(rpipe);
    415 	++rpipe->pipe_busy;
    416 	ocnt = bp->cnt;
    417 
    418 again:
    419 	error = pipelock(rpipe, 1);
    420 	if (error)
    421 		goto unlocked_error;
    422 
    423 	while (uio->uio_resid) {
    424 		/*
    425 		 * normal pipe buffer receive
    426 		 */
    427 		if (bp->cnt > 0) {
    428 			size = bp->size - bp->out;
    429 			if (size > bp->cnt)
    430 				size = bp->cnt;
    431 			if (size > uio->uio_resid)
    432 				size = uio->uio_resid;
    433 
    434 			error = uiomove(&bp->buffer[bp->out], size, uio);
    435 			if (error)
    436 				break;
    437 
    438 			bp->out += size;
    439 			if (bp->out >= bp->size)
    440 				bp->out = 0;
    441 
    442 			bp->cnt -= size;
    443 
    444 			/*
    445 			 * If there is no more to read in the pipe, reset
    446 			 * its pointers to the beginning.  This improves
    447 			 * cache hit stats.
    448 			 */
    449 			if (bp->cnt == 0) {
    450 				bp->in = 0;
    451 				bp->out = 0;
    452 			}
    453 			nread += size;
    454 #ifndef PIPE_NODIRECT
    455 		} else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
    456 			/*
    457 			 * Direct copy, bypassing a kernel buffer.
    458 			 */
    459 			caddr_t	va;
    460 
    461 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
    462 
    463 			size = rpipe->pipe_map.cnt;
    464 			if (size > uio->uio_resid)
    465 				size = uio->uio_resid;
    466 
    467 			va = (caddr_t) rpipe->pipe_map.kva +
    468 			    rpipe->pipe_map.pos;
    469 			error = uiomove(va, size, uio);
    470 			if (error)
    471 				break;
    472 			nread += size;
    473 			rpipe->pipe_map.pos += size;
    474 			rpipe->pipe_map.cnt -= size;
    475 			if (rpipe->pipe_map.cnt == 0) {
    476 				PIPE_LOCK(rpipe);
    477 				rpipe->pipe_state &= ~PIPE_DIRECTR;
    478 				wakeup(rpipe);
    479 				PIPE_UNLOCK(rpipe);
    480 			}
    481 #endif
    482 		} else {
    483 			/*
    484 			 * Break if some data was read.
    485 			 */
    486 			if (nread > 0)
    487 				break;
    488 
    489 			PIPE_LOCK(rpipe);
    490 
    491 			/*
    492 			 * detect EOF condition
    493 			 * read returns 0 on EOF, no need to set error
    494 			 */
    495 			if (rpipe->pipe_state & PIPE_EOF) {
    496 				PIPE_UNLOCK(rpipe);
    497 				break;
    498 			}
    499 
    500 			/*
    501 			 * don't block on non-blocking I/O
    502 			 */
    503 			if (fp->f_flag & FNONBLOCK) {
    504 				PIPE_UNLOCK(rpipe);
    505 				error = EAGAIN;
    506 				break;
    507 			}
    508 
    509 			/*
    510 			 * Unlock the pipe buffer for our remaining processing.
    511 			 * We will either break out with an error or we will
    512 			 * sleep and relock to loop.
    513 			 */
    514 			pipeunlock(rpipe);
    515 
    516 			/*
    517 			 * The PIPE_DIRECTR flag is not under the control
    518 			 * of the long-term lock (see pipe_direct_write()),
    519 			 * so re-check now while holding the spin lock.
    520 			 */
    521 			if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
    522 				goto again;
    523 
    524 			/*
    525 			 * We want to read more, wake up select/poll.
    526 			 */
    527 			pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
    528 
    529 			/*
    530 			 * If the "write-side" is blocked, wake it up now.
    531 			 */
    532 			if (rpipe->pipe_state & PIPE_WANTW) {
    533 				rpipe->pipe_state &= ~PIPE_WANTW;
    534 				wakeup(rpipe);
    535 			}
    536 
    537 			/* Now wait until the pipe is filled */
    538 			rpipe->pipe_state |= PIPE_WANTR;
    539 			error = ltsleep(rpipe, PSOCK | PCATCH,
    540 					"piperd", 0, &rpipe->pipe_slock);
    541 			if (error != 0)
    542 				goto unlocked_error;
    543 			goto again;
    544 		}
    545 	}
    546 
    547 	if (error == 0)
    548 		getmicrotime(&rpipe->pipe_atime);
    549 
    550 	PIPE_LOCK(rpipe);
    551 	pipeunlock(rpipe);
    552 
    553 unlocked_error:
    554 	--rpipe->pipe_busy;
    555 
    556 	/*
    557 	 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
    558 	 */
    559 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
    560 		rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
    561 		wakeup(rpipe);
    562 	} else if (bp->cnt < MINPIPESIZE) {
    563 		/*
    564 		 * Handle write blocking hysteresis.
    565 		 */
    566 		if (rpipe->pipe_state & PIPE_WANTW) {
    567 			rpipe->pipe_state &= ~PIPE_WANTW;
    568 			wakeup(rpipe);
    569 		}
    570 	}
    571 
    572 	/*
    573 	 * If anything was read off the buffer, signal to the writer it's
    574 	 * possible to write more data. Also send signal if we are here for the
    575 	 * first time after last write.
    576 	 */
    577 	if ((bp->size - bp->cnt) >= PIPE_BUF
    578 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    579 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    580 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    581 	}
    582 
    583 	PIPE_UNLOCK(rpipe);
    584 	return (error);
    585 }
    586 
    587 #ifndef PIPE_NODIRECT
    588 /*
    589  * Allocate structure for loan transfer.
    590  */
    591 static int
    592 pipe_loan_alloc(struct pipe *wpipe, int npages)
    593 {
    594 	vsize_t len;
    595 
    596 	len = (vsize_t)npages << PAGE_SHIFT;
    597 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
    598 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    599 	if (wpipe->pipe_map.kva == 0)
    600 		return (ENOMEM);
    601 
    602 	amountpipekva += len;
    603 	wpipe->pipe_map.npages = npages;
    604 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
    605 	    M_WAITOK);
    606 	return (0);
    607 }
    608 
    609 /*
    610  * Free resources allocated for loan transfer.
    611  */
    612 static void
    613 pipe_loan_free(struct pipe *wpipe)
    614 {
    615 	vsize_t len;
    616 
    617 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    618 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
    619 	wpipe->pipe_map.kva = 0;
    620 	amountpipekva -= len;
    621 	free(wpipe->pipe_map.pgs, M_PIPE);
    622 	wpipe->pipe_map.pgs = NULL;
    623 }
    624 
    625 /*
    626  * NetBSD direct write, using uvm_loan() mechanism.
    627  * This implements the pipe buffer write mechanism.  Note that only
    628  * a direct write OR a normal pipe write can be pending at any given time.
    629  * If there are any characters in the pipe buffer, the direct write will
    630  * be deferred until the receiving process grabs all of the bytes from
    631  * the pipe buffer.  Then the direct mapping write is set-up.
    632  *
    633  * Called with the long-term pipe lock held.
    634  */
    635 static int
    636 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
    637 {
    638 	int error, npages, j;
    639 	struct vm_page **pgs;
    640 	vaddr_t bbase, kva, base, bend;
    641 	vsize_t blen, bcnt;
    642 	voff_t bpos;
    643 
    644 	KASSERT(wpipe->pipe_map.cnt == 0);
    645 
    646 	/*
    647 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
    648 	 * not aligned to PAGE_SIZE.
    649 	 */
    650 	bbase = (vaddr_t)uio->uio_iov->iov_base;
    651 	base = trunc_page(bbase);
    652 	bend = round_page(bbase + uio->uio_iov->iov_len);
    653 	blen = bend - base;
    654 	bpos = bbase - base;
    655 
    656 	if (blen > PIPE_DIRECT_CHUNK) {
    657 		blen = PIPE_DIRECT_CHUNK;
    658 		bend = base + blen;
    659 		bcnt = PIPE_DIRECT_CHUNK - bpos;
    660 	} else {
    661 		bcnt = uio->uio_iov->iov_len;
    662 	}
    663 	npages = blen >> PAGE_SHIFT;
    664 
    665 	/*
    666 	 * Free the old kva if we need more pages than we have
    667 	 * allocated.
    668 	 */
    669 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
    670 		pipe_loan_free(wpipe);
    671 
    672 	/* Allocate new kva. */
    673 	if (wpipe->pipe_map.kva == 0) {
    674 		error = pipe_loan_alloc(wpipe, npages);
    675 		if (error)
    676 			return (error);
    677 	}
    678 
    679 	/* Loan the write buffer memory from writer process */
    680 	pgs = wpipe->pipe_map.pgs;
    681 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
    682 			 pgs, UVM_LOAN_TOPAGE);
    683 	if (error) {
    684 		pipe_loan_free(wpipe);
    685 		return (ENOMEM); /* so that caller fallback to ordinary write */
    686 	}
    687 
    688 	/* Enter the loaned pages to kva */
    689 	kva = wpipe->pipe_map.kva;
    690 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
    691 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
    692 	}
    693 	pmap_update(pmap_kernel());
    694 
    695 	/* Now we can put the pipe in direct write mode */
    696 	wpipe->pipe_map.pos = bpos;
    697 	wpipe->pipe_map.cnt = bcnt;
    698 	wpipe->pipe_state |= PIPE_DIRECTW;
    699 
    700 	/*
    701 	 * But before we can let someone do a direct read,
    702 	 * we have to wait until the pipe is drained.
    703 	 */
    704 
    705 	/* Relase the pipe lock while we wait */
    706 	PIPE_LOCK(wpipe);
    707 	pipeunlock(wpipe);
    708 
    709 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
    710 		if (wpipe->pipe_state & PIPE_WANTR) {
    711 			wpipe->pipe_state &= ~PIPE_WANTR;
    712 			wakeup(wpipe);
    713 		}
    714 
    715 		wpipe->pipe_state |= PIPE_WANTW;
    716 		error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0,
    717 				&wpipe->pipe_slock);
    718 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    719 			error = EPIPE;
    720 	}
    721 
    722 	/* Pipe is drained; next read will off the direct buffer */
    723 	wpipe->pipe_state |= PIPE_DIRECTR;
    724 
    725 	/* Wait until the reader is done */
    726 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
    727 		if (wpipe->pipe_state & PIPE_WANTR) {
    728 			wpipe->pipe_state &= ~PIPE_WANTR;
    729 			wakeup(wpipe);
    730 		}
    731 		pipeselwakeup(wpipe, wpipe, POLL_IN);
    732 		error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0,
    733 				&wpipe->pipe_slock);
    734 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    735 			error = EPIPE;
    736 	}
    737 
    738 	/* Take pipe out of direct write mode */
    739 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
    740 
    741 	/* Acquire the pipe lock and cleanup */
    742 	(void)pipelock(wpipe, 0);
    743 	if (pgs != NULL) {
    744 		pmap_kremove(wpipe->pipe_map.kva, blen);
    745 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
    746 	}
    747 	if (error || amountpipekva > maxpipekva)
    748 		pipe_loan_free(wpipe);
    749 
    750 	if (error) {
    751 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
    752 
    753 		/*
    754 		 * If nothing was read from what we offered, return error
    755 		 * straight on. Otherwise update uio resid first. Caller
    756 		 * will deal with the error condition, returning short
    757 		 * write, error, or restarting the write(2) as appropriate.
    758 		 */
    759 		if (wpipe->pipe_map.cnt == bcnt) {
    760 			wpipe->pipe_map.cnt = 0;
    761 			wakeup(wpipe);
    762 			return (error);
    763 		}
    764 
    765 		bcnt -= wpipe->pipe_map.cnt;
    766 	}
    767 
    768 	uio->uio_resid -= bcnt;
    769 	/* uio_offset not updated, not set/used for write(2) */
    770 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
    771 	uio->uio_iov->iov_len -= bcnt;
    772 	if (uio->uio_iov->iov_len == 0) {
    773 		uio->uio_iov++;
    774 		uio->uio_iovcnt--;
    775 	}
    776 
    777 	wpipe->pipe_map.cnt = 0;
    778 	return (error);
    779 }
    780 #endif /* !PIPE_NODIRECT */
    781 
    782 static int
    783 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    784     int flags)
    785 {
    786 	struct pipe *wpipe, *rpipe;
    787 	struct pipebuf *bp;
    788 	int error;
    789 
    790 	/* We want to write to our peer */
    791 	rpipe = (struct pipe *) fp->f_data;
    792 
    793 retry:
    794 	error = 0;
    795 	PIPE_LOCK(rpipe);
    796 	wpipe = rpipe->pipe_peer;
    797 
    798 	/*
    799 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    800 	 */
    801 	if (wpipe == NULL)
    802 		error = EPIPE;
    803 	else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
    804 		/* Deal with race for peer */
    805 		PIPE_UNLOCK(rpipe);
    806 		goto retry;
    807 	} else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
    808 		PIPE_UNLOCK(wpipe);
    809 		error = EPIPE;
    810 	}
    811 
    812 	PIPE_UNLOCK(rpipe);
    813 	if (error != 0)
    814 		return (error);
    815 
    816 	++wpipe->pipe_busy;
    817 
    818 	/* Aquire the long-term pipe lock */
    819 	if ((error = pipelock(wpipe,1)) != 0) {
    820 		--wpipe->pipe_busy;
    821 		if (wpipe->pipe_busy == 0
    822 		    && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
    823 			wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
    824 			wakeup(wpipe);
    825 		}
    826 		PIPE_UNLOCK(wpipe);
    827 		return (error);
    828 	}
    829 
    830 	bp = &wpipe->pipe_buffer;
    831 
    832 	/*
    833 	 * If it is advantageous to resize the pipe buffer, do so.
    834 	 */
    835 	if ((uio->uio_resid > PIPE_SIZE) &&
    836 	    (nbigpipe < maxbigpipes) &&
    837 #ifndef PIPE_NODIRECT
    838 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    839 #endif
    840 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    841 
    842 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    843 			nbigpipe++;
    844 	}
    845 
    846 	while (uio->uio_resid) {
    847 		size_t space;
    848 
    849 #ifndef PIPE_NODIRECT
    850 		/*
    851 		 * Pipe buffered writes cannot be coincidental with
    852 		 * direct writes.  Also, only one direct write can be
    853 		 * in progress at any one time.  We wait until the currently
    854 		 * executing direct write is completed before continuing.
    855 		 *
    856 		 * We break out if a signal occurs or the reader goes away.
    857 		 */
    858 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
    859 			PIPE_LOCK(wpipe);
    860 			if (wpipe->pipe_state & PIPE_WANTR) {
    861 				wpipe->pipe_state &= ~PIPE_WANTR;
    862 				wakeup(wpipe);
    863 			}
    864 			pipeunlock(wpipe);
    865 			error = ltsleep(wpipe, PSOCK | PCATCH,
    866 					"pipbww", 0, &wpipe->pipe_slock);
    867 
    868 			(void)pipelock(wpipe, 0);
    869 			if (wpipe->pipe_state & PIPE_EOF)
    870 				error = EPIPE;
    871 		}
    872 		if (error)
    873 			break;
    874 
    875 		/*
    876 		 * If the transfer is large, we can gain performance if
    877 		 * we do process-to-process copies directly.
    878 		 * If the write is non-blocking, we don't use the
    879 		 * direct write mechanism.
    880 		 *
    881 		 * The direct write mechanism will detect the reader going
    882 		 * away on us.
    883 		 */
    884 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    885 		    (fp->f_flag & FNONBLOCK) == 0 &&
    886 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
    887 			error = pipe_direct_write(fp, wpipe, uio);
    888 
    889 			/*
    890 			 * Break out if error occurred, unless it's ENOMEM.
    891 			 * ENOMEM means we failed to allocate some resources
    892 			 * for direct write, so we just fallback to ordinary
    893 			 * write. If the direct write was successful,
    894 			 * process rest of data via ordinary write.
    895 			 */
    896 			if (error == 0)
    897 				continue;
    898 
    899 			if (error != ENOMEM)
    900 				break;
    901 		}
    902 #endif /* PIPE_NODIRECT */
    903 
    904 		space = bp->size - bp->cnt;
    905 
    906 		/* Writes of size <= PIPE_BUF must be atomic. */
    907 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    908 			space = 0;
    909 
    910 		if (space > 0) {
    911 			int size;	/* Transfer size */
    912 			int segsize;	/* first segment to transfer */
    913 
    914 			/*
    915 			 * Transfer size is minimum of uio transfer
    916 			 * and free space in pipe buffer.
    917 			 */
    918 			if (space > uio->uio_resid)
    919 				size = uio->uio_resid;
    920 			else
    921 				size = space;
    922 			/*
    923 			 * First segment to transfer is minimum of
    924 			 * transfer size and contiguous space in
    925 			 * pipe buffer.  If first segment to transfer
    926 			 * is less than the transfer size, we've got
    927 			 * a wraparound in the buffer.
    928 			 */
    929 			segsize = bp->size - bp->in;
    930 			if (segsize > size)
    931 				segsize = size;
    932 
    933 			/* Transfer first segment */
    934 			error = uiomove(&bp->buffer[bp->in], segsize, uio);
    935 
    936 			if (error == 0 && segsize < size) {
    937 				/*
    938 				 * Transfer remaining part now, to
    939 				 * support atomic writes.  Wraparound
    940 				 * happened.
    941 				 */
    942 #ifdef DEBUG
    943 				if (bp->in + segsize != bp->size)
    944 					panic("Expected pipe buffer wraparound disappeared");
    945 #endif
    946 
    947 				error = uiomove(&bp->buffer[0],
    948 						size - segsize, uio);
    949 			}
    950 			if (error)
    951 				break;
    952 
    953 			bp->in += size;
    954 			if (bp->in >= bp->size) {
    955 #ifdef DEBUG
    956 				if (bp->in != size - segsize + bp->size)
    957 					panic("Expected wraparound bad");
    958 #endif
    959 				bp->in = size - segsize;
    960 			}
    961 
    962 			bp->cnt += size;
    963 #ifdef DEBUG
    964 			if (bp->cnt > bp->size)
    965 				panic("Pipe buffer overflow");
    966 #endif
    967 		} else {
    968 			/*
    969 			 * If the "read-side" has been blocked, wake it up now.
    970 			 */
    971 			PIPE_LOCK(wpipe);
    972 			if (wpipe->pipe_state & PIPE_WANTR) {
    973 				wpipe->pipe_state &= ~PIPE_WANTR;
    974 				wakeup(wpipe);
    975 			}
    976 			PIPE_UNLOCK(wpipe);
    977 
    978 			/*
    979 			 * don't block on non-blocking I/O
    980 			 */
    981 			if (fp->f_flag & FNONBLOCK) {
    982 				error = EAGAIN;
    983 				break;
    984 			}
    985 
    986 			/*
    987 			 * We have no more space and have something to offer,
    988 			 * wake up select/poll.
    989 			 */
    990 			if (bp->cnt)
    991 				pipeselwakeup(wpipe, wpipe, POLL_OUT);
    992 
    993 			PIPE_LOCK(wpipe);
    994 			pipeunlock(wpipe);
    995 			wpipe->pipe_state |= PIPE_WANTW;
    996 			error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0,
    997 					&wpipe->pipe_slock);
    998 			(void)pipelock(wpipe, 0);
    999 			if (error != 0)
   1000 				break;
   1001 			/*
   1002 			 * If read side wants to go away, we just issue a signal
   1003 			 * to ourselves.
   1004 			 */
   1005 			if (wpipe->pipe_state & PIPE_EOF) {
   1006 				error = EPIPE;
   1007 				break;
   1008 			}
   1009 		}
   1010 	}
   1011 
   1012 	PIPE_LOCK(wpipe);
   1013 	--wpipe->pipe_busy;
   1014 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1015 		wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1016 		wakeup(wpipe);
   1017 	} else if (bp->cnt > 0) {
   1018 		/*
   1019 		 * If we have put any characters in the buffer, we wake up
   1020 		 * the reader.
   1021 		 */
   1022 		if (wpipe->pipe_state & PIPE_WANTR) {
   1023 			wpipe->pipe_state &= ~PIPE_WANTR;
   1024 			wakeup(wpipe);
   1025 		}
   1026 	}
   1027 
   1028 	/*
   1029 	 * Don't return EPIPE if I/O was successful
   1030 	 */
   1031 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
   1032 		error = 0;
   1033 
   1034 	if (error == 0)
   1035 		getmicrotime(&wpipe->pipe_mtime);
   1036 
   1037 	/*
   1038 	 * We have something to offer, wake up select/poll.
   1039 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1040 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1041 	 */
   1042 	if (bp->cnt)
   1043 		pipeselwakeup(wpipe, wpipe, POLL_OUT);
   1044 
   1045 	/*
   1046 	 * Arrange for next read(2) to do a signal.
   1047 	 */
   1048 	wpipe->pipe_state |= PIPE_SIGNALR;
   1049 
   1050 	pipeunlock(wpipe);
   1051 	PIPE_UNLOCK(wpipe);
   1052 	return (error);
   1053 }
   1054 
   1055 /*
   1056  * we implement a very minimal set of ioctls for compatibility with sockets.
   1057  */
   1058 int
   1059 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
   1060 {
   1061 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1062 	struct proc *p = l->l_proc;
   1063 
   1064 	switch (cmd) {
   1065 
   1066 	case FIONBIO:
   1067 		return (0);
   1068 
   1069 	case FIOASYNC:
   1070 		PIPE_LOCK(pipe);
   1071 		if (*(int *)data) {
   1072 			pipe->pipe_state |= PIPE_ASYNC;
   1073 		} else {
   1074 			pipe->pipe_state &= ~PIPE_ASYNC;
   1075 		}
   1076 		PIPE_UNLOCK(pipe);
   1077 		return (0);
   1078 
   1079 	case FIONREAD:
   1080 		PIPE_LOCK(pipe);
   1081 #ifndef PIPE_NODIRECT
   1082 		if (pipe->pipe_state & PIPE_DIRECTW)
   1083 			*(int *)data = pipe->pipe_map.cnt;
   1084 		else
   1085 #endif
   1086 			*(int *)data = pipe->pipe_buffer.cnt;
   1087 		PIPE_UNLOCK(pipe);
   1088 		return (0);
   1089 
   1090 	case FIONWRITE:
   1091 		/* Look at other side */
   1092 		pipe = pipe->pipe_peer;
   1093 		PIPE_LOCK(pipe);
   1094 #ifndef PIPE_NODIRECT
   1095 		if (pipe->pipe_state & PIPE_DIRECTW)
   1096 			*(int *)data = pipe->pipe_map.cnt;
   1097 		else
   1098 #endif
   1099 			*(int *)data = pipe->pipe_buffer.cnt;
   1100 		PIPE_UNLOCK(pipe);
   1101 		return (0);
   1102 
   1103 	case FIONSPACE:
   1104 		/* Look at other side */
   1105 		pipe = pipe->pipe_peer;
   1106 		PIPE_LOCK(pipe);
   1107 #ifndef PIPE_NODIRECT
   1108 		/*
   1109 		 * If we're in direct-mode, we don't really have a
   1110 		 * send queue, and any other write will block. Thus
   1111 		 * zero seems like the best answer.
   1112 		 */
   1113 		if (pipe->pipe_state & PIPE_DIRECTW)
   1114 			*(int *)data = 0;
   1115 		else
   1116 #endif
   1117 			*(int *)data = pipe->pipe_buffer.size -
   1118 					pipe->pipe_buffer.cnt;
   1119 		PIPE_UNLOCK(pipe);
   1120 		return (0);
   1121 
   1122 	case TIOCSPGRP:
   1123 	case FIOSETOWN:
   1124 		return fsetown(p, &pipe->pipe_pgid, cmd, data);
   1125 
   1126 	case TIOCGPGRP:
   1127 	case FIOGETOWN:
   1128 		return fgetown(p, pipe->pipe_pgid, cmd, data);
   1129 
   1130 	}
   1131 	return (EPASSTHROUGH);
   1132 }
   1133 
   1134 int
   1135 pipe_poll(struct file *fp, int events, struct lwp *l)
   1136 {
   1137 	struct pipe *rpipe = (struct pipe *)fp->f_data;
   1138 	struct pipe *wpipe;
   1139 	int eof = 0;
   1140 	int revents = 0;
   1141 
   1142 retry:
   1143 	PIPE_LOCK(rpipe);
   1144 	wpipe = rpipe->pipe_peer;
   1145 	if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
   1146 		/* Deal with race for peer */
   1147 		PIPE_UNLOCK(rpipe);
   1148 		goto retry;
   1149 	}
   1150 
   1151 	if (events & (POLLIN | POLLRDNORM))
   1152 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1153 #ifndef PIPE_NODIRECT
   1154 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
   1155 #endif
   1156 		    (rpipe->pipe_state & PIPE_EOF))
   1157 			revents |= events & (POLLIN | POLLRDNORM);
   1158 
   1159 	eof |= (rpipe->pipe_state & PIPE_EOF);
   1160 	PIPE_UNLOCK(rpipe);
   1161 
   1162 	if (wpipe == NULL)
   1163 		revents |= events & (POLLOUT | POLLWRNORM);
   1164 	else {
   1165 		if (events & (POLLOUT | POLLWRNORM))
   1166 			if ((wpipe->pipe_state & PIPE_EOF) || (
   1167 #ifndef PIPE_NODIRECT
   1168 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1169 #endif
   1170 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1171 				revents |= events & (POLLOUT | POLLWRNORM);
   1172 
   1173 		eof |= (wpipe->pipe_state & PIPE_EOF);
   1174 		PIPE_UNLOCK(wpipe);
   1175 	}
   1176 
   1177 	if (wpipe == NULL || eof)
   1178 		revents |= POLLHUP;
   1179 
   1180 	if (revents == 0) {
   1181 		if (events & (POLLIN | POLLRDNORM))
   1182 			selrecord(l, &rpipe->pipe_sel);
   1183 
   1184 		if (events & (POLLOUT | POLLWRNORM))
   1185 			selrecord(l, &wpipe->pipe_sel);
   1186 	}
   1187 
   1188 	return (revents);
   1189 }
   1190 
   1191 static int
   1192 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
   1193 {
   1194 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1195 
   1196 	memset((caddr_t)ub, 0, sizeof(*ub));
   1197 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1198 	ub->st_blksize = pipe->pipe_buffer.size;
   1199 	if (ub->st_blksize == 0 && pipe->pipe_peer)
   1200 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
   1201 	ub->st_size = pipe->pipe_buffer.cnt;
   1202 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1203 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
   1204 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
   1205 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
   1206 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
   1207 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
   1208 	/*
   1209 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1210 	 * XXX (st_dev, st_ino) should be unique.
   1211 	 */
   1212 	return (0);
   1213 }
   1214 
   1215 /* ARGSUSED */
   1216 static int
   1217 pipe_close(struct file *fp, struct lwp *l)
   1218 {
   1219 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1220 
   1221 	fp->f_data = NULL;
   1222 	pipeclose(fp, pipe);
   1223 	return (0);
   1224 }
   1225 
   1226 static void
   1227 pipe_free_kmem(struct pipe *pipe)
   1228 {
   1229 
   1230 	if (pipe->pipe_buffer.buffer != NULL) {
   1231 		if (pipe->pipe_buffer.size > PIPE_SIZE)
   1232 			--nbigpipe;
   1233 		amountpipekva -= pipe->pipe_buffer.size;
   1234 		uvm_km_free(kernel_map,
   1235 			(vaddr_t)pipe->pipe_buffer.buffer,
   1236 			pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
   1237 		pipe->pipe_buffer.buffer = NULL;
   1238 	}
   1239 #ifndef PIPE_NODIRECT
   1240 	if (pipe->pipe_map.kva != 0) {
   1241 		pipe_loan_free(pipe);
   1242 		pipe->pipe_map.cnt = 0;
   1243 		pipe->pipe_map.kva = 0;
   1244 		pipe->pipe_map.pos = 0;
   1245 		pipe->pipe_map.npages = 0;
   1246 	}
   1247 #endif /* !PIPE_NODIRECT */
   1248 }
   1249 
   1250 /*
   1251  * shutdown the pipe
   1252  */
   1253 static void
   1254 pipeclose(struct file *fp, struct pipe *pipe)
   1255 {
   1256 	struct pipe *ppipe;
   1257 
   1258 	if (pipe == NULL)
   1259 		return;
   1260 
   1261 retry:
   1262 	PIPE_LOCK(pipe);
   1263 
   1264 	pipeselwakeup(pipe, pipe, POLL_HUP);
   1265 
   1266 	/*
   1267 	 * If the other side is blocked, wake it up saying that
   1268 	 * we want to close it down.
   1269 	 */
   1270 	pipe->pipe_state |= PIPE_EOF;
   1271 	while (pipe->pipe_busy) {
   1272 		wakeup(pipe);
   1273 		pipe->pipe_state |= PIPE_WANTCLOSE;
   1274 		ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock);
   1275 	}
   1276 
   1277 	/*
   1278 	 * Disconnect from peer
   1279 	 */
   1280 	if ((ppipe = pipe->pipe_peer) != NULL) {
   1281 		/* Deal with race for peer */
   1282 		if (simple_lock_try(&ppipe->pipe_slock) == 0) {
   1283 			PIPE_UNLOCK(pipe);
   1284 			goto retry;
   1285 		}
   1286 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
   1287 
   1288 		ppipe->pipe_state |= PIPE_EOF;
   1289 		wakeup(ppipe);
   1290 		ppipe->pipe_peer = NULL;
   1291 		PIPE_UNLOCK(ppipe);
   1292 	}
   1293 
   1294 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
   1295 
   1296 	PIPE_UNLOCK(pipe);
   1297 
   1298 	/*
   1299 	 * free resources
   1300 	 */
   1301 	pipe_free_kmem(pipe);
   1302 	pool_put(&pipe_pool, pipe);
   1303 }
   1304 
   1305 static void
   1306 filt_pipedetach(struct knote *kn)
   1307 {
   1308 	struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
   1309 
   1310 	switch(kn->kn_filter) {
   1311 	case EVFILT_WRITE:
   1312 		/* need the peer structure, not our own */
   1313 		pipe = pipe->pipe_peer;
   1314 		/* XXXSMP: race for peer */
   1315 
   1316 		/* if reader end already closed, just return */
   1317 		if (pipe == NULL)
   1318 			return;
   1319 
   1320 		break;
   1321 	default:
   1322 		/* nothing to do */
   1323 		break;
   1324 	}
   1325 
   1326 #ifdef DIAGNOSTIC
   1327 	if (kn->kn_hook != pipe)
   1328 		panic("filt_pipedetach: inconsistent knote");
   1329 #endif
   1330 
   1331 	PIPE_LOCK(pipe);
   1332 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
   1333 	PIPE_UNLOCK(pipe);
   1334 }
   1335 
   1336 /*ARGSUSED*/
   1337 static int
   1338 filt_piperead(struct knote *kn, long hint)
   1339 {
   1340 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1341 	struct pipe *wpipe = rpipe->pipe_peer;
   1342 
   1343 	if ((hint & NOTE_SUBMIT) == 0)
   1344 		PIPE_LOCK(rpipe);
   1345 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1346 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1347 		kn->kn_data = rpipe->pipe_map.cnt;
   1348 
   1349 	/* XXXSMP: race for peer */
   1350 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1351 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1352 		kn->kn_flags |= EV_EOF;
   1353 		if ((hint & NOTE_SUBMIT) == 0)
   1354 			PIPE_UNLOCK(rpipe);
   1355 		return (1);
   1356 	}
   1357 	if ((hint & NOTE_SUBMIT) == 0)
   1358 		PIPE_UNLOCK(rpipe);
   1359 	return (kn->kn_data > 0);
   1360 }
   1361 
   1362 /*ARGSUSED*/
   1363 static int
   1364 filt_pipewrite(struct knote *kn, long hint)
   1365 {
   1366 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1367 	struct pipe *wpipe = rpipe->pipe_peer;
   1368 
   1369 	if ((hint & NOTE_SUBMIT) == 0)
   1370 		PIPE_LOCK(rpipe);
   1371 	/* XXXSMP: race for peer */
   1372 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1373 		kn->kn_data = 0;
   1374 		kn->kn_flags |= EV_EOF;
   1375 		if ((hint & NOTE_SUBMIT) == 0)
   1376 			PIPE_UNLOCK(rpipe);
   1377 		return (1);
   1378 	}
   1379 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1380 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1381 		kn->kn_data = 0;
   1382 
   1383 	if ((hint & NOTE_SUBMIT) == 0)
   1384 		PIPE_UNLOCK(rpipe);
   1385 	return (kn->kn_data >= PIPE_BUF);
   1386 }
   1387 
   1388 static const struct filterops pipe_rfiltops =
   1389 	{ 1, NULL, filt_pipedetach, filt_piperead };
   1390 static const struct filterops pipe_wfiltops =
   1391 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
   1392 
   1393 /*ARGSUSED*/
   1394 static int
   1395 pipe_kqfilter(struct file *fp, struct knote *kn)
   1396 {
   1397 	struct pipe *pipe;
   1398 
   1399 	pipe = (struct pipe *)kn->kn_fp->f_data;
   1400 	switch (kn->kn_filter) {
   1401 	case EVFILT_READ:
   1402 		kn->kn_fop = &pipe_rfiltops;
   1403 		break;
   1404 	case EVFILT_WRITE:
   1405 		kn->kn_fop = &pipe_wfiltops;
   1406 		/* XXXSMP: race for peer */
   1407 		pipe = pipe->pipe_peer;
   1408 		if (pipe == NULL) {
   1409 			/* other end of pipe has been closed */
   1410 			return (EBADF);
   1411 		}
   1412 		break;
   1413 	default:
   1414 		return (1);
   1415 	}
   1416 	kn->kn_hook = pipe;
   1417 
   1418 	PIPE_LOCK(pipe);
   1419 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
   1420 	PIPE_UNLOCK(pipe);
   1421 	return (0);
   1422 }
   1423 
   1424 /*
   1425  * Handle pipe sysctls.
   1426  */
   1427 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1428 {
   1429 
   1430 	sysctl_createv(clog, 0, NULL, NULL,
   1431 		       CTLFLAG_PERMANENT,
   1432 		       CTLTYPE_NODE, "kern", NULL,
   1433 		       NULL, 0, NULL, 0,
   1434 		       CTL_KERN, CTL_EOL);
   1435 	sysctl_createv(clog, 0, NULL, NULL,
   1436 		       CTLFLAG_PERMANENT,
   1437 		       CTLTYPE_NODE, "pipe",
   1438 		       SYSCTL_DESCR("Pipe settings"),
   1439 		       NULL, 0, NULL, 0,
   1440 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1441 
   1442 	sysctl_createv(clog, 0, NULL, NULL,
   1443 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1444 		       CTLTYPE_INT, "maxkvasz",
   1445 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1446 				    "used for pipes"),
   1447 		       NULL, 0, &maxpipekva, 0,
   1448 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
   1449 	sysctl_createv(clog, 0, NULL, NULL,
   1450 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1451 		       CTLTYPE_INT, "maxloankvasz",
   1452 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
   1453 		       NULL, 0, &limitpipekva, 0,
   1454 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
   1455 	sysctl_createv(clog, 0, NULL, NULL,
   1456 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1457 		       CTLTYPE_INT, "maxbigpipes",
   1458 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
   1459 		       NULL, 0, &maxbigpipes, 0,
   1460 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1461 	sysctl_createv(clog, 0, NULL, NULL,
   1462 		       CTLFLAG_PERMANENT,
   1463 		       CTLTYPE_INT, "nbigpipes",
   1464 		       SYSCTL_DESCR("Number of \"big\" pipes"),
   1465 		       NULL, 0, &nbigpipe, 0,
   1466 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1467 	sysctl_createv(clog, 0, NULL, NULL,
   1468 		       CTLFLAG_PERMANENT,
   1469 		       CTLTYPE_INT, "kvasize",
   1470 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
   1471 				    "buffers"),
   1472 		       NULL, 0, &amountpipekva, 0,
   1473 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1474 }
   1475